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Purpose: This study aimed to develop and validate a radiogenomics nomogram for

predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC) on the

basis of MRI and microRNAs (miRNAs).

Materials and methods: This cohort study included 168 patients (training cohort: n

= 116; validation cohort: n = 52)with pathologically confirmedHCC,who underwent

preoperative MRI and plasma miRNA examination. Univariate and multivariate

logistic regressions were used to identify independent risk factors associated with

MVI. These risk factors were used to produce a nomogram. The performance of the

nomogram was evaluated by receiver operating characteristic curve (ROC) analysis,

sensitivity, specificity, accuracy, and F1-score. Decision curve analysis was

performed to determine whether the nomogram was clinically useful.

Results: The independent risk factors for MVI were maximum tumor length, rad-

score, and miRNA-21 (all P < 0.001). The sensitivity, specificity, accuracy, and F1-

score of the nomogram in the validation cohort were 0.970, 0.722, 0.884, and 0.916,

respectively. The AUC of the nomogram was 0.900 (95% CI: 0.808–0.992) in the

validation cohort, higher than that of any other single factormodel (maximum tumor

length, rad-score, and miRNA-21).

Conclusion: The radiogenomics nomogram shows satisfactory predictive

performance in predicting MVI in HCC and provides a feasible and practical

reference for tumor treatment decisions.
KEYWORDS

hepatocellular carcinoma (HCC), microvascular invasion (MVI), radiogenomics, nomogram,
MicroRNAs, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
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Introduction

Hepatocellular carcinoma (HCC) is a malignancy with third

highest world mortality rate (8.3%), after lung cancer (18%) and

colorectal cancer (9.4%) (1). The main treatment of HCC is surgical

resection, but recurrence is common, with a five-year recurrence

rate of up to 40%–70%. The 5-year survival rate is only 18% (2).

Microvascular invasion (MVI) is one of the most important

prognostic factors for HCC after surgical treatment, and it has

been established as a risk factor for early recurrence and poor

outcome. The term MVI refers to the cancer cell nests that are

established within the lining of blood vessels by microscopic

endothelial cells. It is considered as a sign of strong tumor

invasion ability, and it could only be diagnosed through

pathology at present. MVI-positive patients often require

improved prognosis by expanding surgical margins, and patients

with microvascular infiltration are also considered unsuitable for

liver transplantation (3–5). Therefore, developing a method for

non-invasive prediction of microvascular invasion is necessary to

guide the treatment of HCC.

The imaging characteristics of HCC, such as a non-smooth

tumor margin, arterial peritumoral enhancement, and peritumoral

hypo-intensity on hepatobiliary phase imaging (HBP), have been

confirmed to be noninvasive imaging biomarkers for MVI

prediction (4–7). However, such qualitative studies are vulnerable

to subjective factors, image quality, and interobserver variation.

Therefore, more objective quantitative methods are needed to

predict MVI. In 2012, Lambin et al. (8) proposed the concept of

radiomics, where medical images are converted into useful data by

using high-throughput quantitative features to predict the disease

treatment efficacy and prognosis. Using radiomics to predict MVI

in HCC is a major research area in recent years. Many studies with

satisfactory results have been conducted (9–11). Xu’s (10) study has

achieved predicted satisfactory results by developing a radiomics

nomogram model on the basis of computed tomography (CT). MRI

examination technology has the advantage of multimodal/

multisequence imaging and high soft-tissue resolution.

Theoretically MRI multicolumn multimodal imaging provides

more characteristic elements. Therefore, in the present study,

predictive models based on radiomic features in MRI were

developed for predicting MVI.

MicroRNAs (miRNAs) are a kind of endogenous, non-coding

RNAs. Thousands of miRNAs play a role in regulating various

molecular biological processes by inhibiting the translation of

different messenger RNAs (mRNAs) in the cell (12) .

A dysregulation of miRNAs is often associated with malignancy,

and it regulates the proliferation, migration, invasion, and

development of tumors in HCC by promoting or suppressing

them (13, 14). Previous studies have shown that combining

radiomics and genomics could remarkably improve the

performance of predictive models (15, 16). Zhou (17) et al.

screened 7 plasma miRNAs (miRNAs) out of 723 HCC-

associated miRNAs (miR-122, miR-192, miR-21, miR-223, miR-

26a, miR-27a, miR-801), which had high diagnostic performance in

the early diagnosis of hepatocellular carcinoma.Therefore, we

extracted these 7 mi-RNAs from the patients’ plasma, but among
Frontiers in Oncology 02
them, miR-192 and miR-801 had large differences in expression,

and the data were not stable enough to be screened out, so only 5

mi-RNAs (miR-122, miR-21, miR-223, miR-26a, miR-27a) were

included in the analysis. Therefore, we measured these miRNAs and

explored their relationship with HCC microvascular invasion, and

combined them with radiomics to explore the performance of the

joint model. Moreover, routine laboratory tests for HCC and

radiological characteristics based on MRI were added; the

independent risk factors for MVI were determined through

multivariate logistic regression, combined radiomics, genomics,

and clinico-radiological factors; predictive models were

established; and the performance of these models was verified.

This study aimed to develop and validate a radiogenomics

nomogram model for preoperative prediction of MVI in HCC.

The nomogram is helpful for clinicians to assist in determining

individual therapeutic strategies for patients with HCC.
Materials and methods

Patients

This retrospective study was approved by the institutional

review board, with a waiver for patient informed consent. We

included all patients who underwent preoperative MRI and plasma

mi-RNAs between December 2018 and November 2021. The

inclusion criteria were as follows: (a) all patients who underwent

radical hepatectomy with postoperative pathologic confirmation of

hepatocellular carcinoma and complete clinical data;(b) MRI

examination and plasma miRNA testing within two weeks prior

to surgery; (c) Histopathology report containing a complete

description of hepatocellular carcinoma (tumor size, number,

MVI status and category, etc.); (d) The images were free of

artifacts, sequence loss, and high image quality, meeting the basic

requirements for image segmentation. The exclusion criteria were

as follows: (a) the patient underwent any form of anticancer

treatment (surgery, drugs, etc.) before surgery;(b) vascular or

vascular invasion or the presence of distant metastasis was

detected by the naked eye in preoperative imaging;(c) combined

with other primary tumors.

Then, 168 patients (142 males and 26 females) comprised the

final cohort. The included patients were divided into training (n =

116; 100 males and 16 females) and validation cohorts (n = 52; 43

males and 9 females), with a ratio of 7:3. The flowchart of patient

enrollment and grouping in Figure 1. All patients received routine

laboratory tests and plasma miRNA examinations prior to curative

resection. Further information on the patients is available

in Table 1.
Histopathological examination

Seven-point baseline sampling method was used to take 1:1

samples at the junction between the cancer and the paracancerous

liver tissues at the clock positions of twelve, three, six, and nine

points of the tumor. At least one piece of tissue was taken inside the
frontiersin.org
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tumor, and one piece of liver tissue was taken ≤ 1 cm (near

paracancerous) and > 1 cm (distal paracancerous) from the

tumor margin (18). Histopathological features (tumor size,

number, MVI status, and category) were consistently assessed by

two experienced abdominal pathologists.
Collection of plasma samples and
miRNA extraction

Venous blood samples were collected from all patients with

HCC prior to any means of processing. Before the sample collection

was conducted, a written consent was obtained for each patient to

donate a sample for the purpose of the study. For specific steps on

collection of plasma samples and miRNA extraction, please refer to

the Supplementary Materials 1.
MRI examination

MRI examinations were conducted using a GE DISCOVERY

750W 3.0 T MRI scanner, with axial in-phase and opposed-phase

T1 weighted imaging (T1WI), axial T2-weighted imaging with fat

suppression (T2WI-FS), diffusion-weighted imaging (DWI), and

DCE-MRI (dynamic contrast-enhanced magnetic resonance

imaging) sequences for all patients. Please refer to Supplementary

Material 2 for specific MRI parameters.
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Analysis of radiological characteristics

The radiological characteristics were independently evaluated by

two abdominal radiologists A (RA) and B (RB), with 7 and 15 years of

experience, respectively. If any differences occurred, senior radiologist

C (RC) with 20 years of experience would join the discussion to reach a

consensus. All radiologists were aware that the lesions were HCCs but

blinded to all other laboratory and histopathological information. The

largest tumor was used to analyze patients with multiple tumors. The

evaluation was based on the Liver Imaging Reporting and Data System

(LI-RADS version 2018) (19), and the important morphological

features reported in the relevant literature (7). The qualitative

features of the images were assessed refer to Supplementary Material 3.
Analysis of radiomics

Image segmentation
HCC image segmentation was performed by RA and RB with the

use of three-dimensional (3D) slicer software (version 5.0.2). The

volumes of interest (VOIs) were delineated in the axial T2WI-FS,

DWI (with b value of 800 s/mm2), AP, PP, and DP images. For

assessment of the reproducibility and reliability of image segmentation,

images of 30 randomly selected patients were first segmented by RA

and RB separately. Then, 30 patients were re-segmented by RB after 2

weeks, and the images of the remaining patients were segmented by

RA. The segmentation results were validated by RC.
FIGURE 1

Flowchart of patient enrollment and grouping.
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TABLE 1 Comparisons of patient characteristics in training and validation cohorts.

Characteristics
Training cohort Validation cohort

MVI+ (n=39) MVI− (n=77) P MVI+ (n=18) MVI− (n=34) P

Age (years) 58.97 ± 8.49 59.48 ± 8.90 0.769 58.89 ± 10.22 56.03 ± 11.33 0.375

Sex
Male
Female

29 (74.36%)
10 (25.64%)

33 (84.62%)
6 (15.38%)

0.726 13 (72,22%)
5 (27.78%)

29 (85.29%)
5 (14.71%)

0.304

HBV
Present
Absent

38 (97.44%)
1 (2.56%)

73 (94.81%)
4 (5.19%)

0.514 18 (100.0%)
0(0.00%)

32 (94.12%)
2 (5.88%)

0.160

AFP (ng/mL)
≤ 20

20–400
>400

19 (48.7%)
8 (20.5%)
12 (30.8%)

39 (50.6%)
22 (28.6%)
16 (20.8%)

0.079
11 (61.1%)
2 (11.1%)
5 (27.8%)

15 (44.1%)
12 (35.3%)
7 (20.6%)

0.383

ALT (µ/l)
≤ 40
>40

25 (64.1%)
14 (36.9%)

55 (71.4%)
22 (28.6%)

0.318 10 (55.6%)
8 (44.4%)

23 (67.6%)
11 (32.4%)

0.372

AST (µ/l)
≤ 35
>35

22 (56.4%)
17 (43.6%)

42 (45.5%)
35 (54.5%)

0.364 10 (55.6%)
8 (44.4%)

22 (64.7%)
12 (35.3%)

0.415

TBIL (µmol/l)
≤ 20
>20

26 (66.7%)
13 (33.3%)

53 (68.8%)
24 (31.2%)

0.379 12 (66.7%)
6 (33.3%)

22 (64.7%)
12 (35.3%)

0.418

ALB (g/l)
≤ 40
>40

17 (43.6%)
22 (56.4%)

42 (54.5%)
35 (45.4%)

0.635 9 (50.0%)
9 (50.0%)

19 (55.9%)
15 (44.1%)

0.869

PIVKA-II (mAu/mL)
≤ 40
>40

4 (10.3%)
35 (89.7%)

11 (14.3%)
66 (85.7%)

0.910 4 (22.2%)
14 (77.8%)

5 (14.7%)
29 (85.3%)

0.144

PT (s)
≤ 14
>14

35 (89.7%)
4 (10.3%)

68 (88.3%)
9 (11.7%)

0.941 17 (94.4%)
1 (5.6%)

29 (85.3%)
5 (14.7%)

0.679

INR
≤ 1.0
>1.0

18 (46.2%)
21 (53.8%)

18 (23.4%)
59 (76.6%)

0.382 8 (44.4) %
10 (55.6%)

8 (23.5%)
26 (76.5%)

0.376

MiRNA-21 29.60 ± 1.40 31.32 ± 0.85 < 0.001 29.18 ± 1.19 31.13 ± 0.76 < 0.001

MiRNA-26a 32.08 ± 1.67 30.27 ± 1.69 < 0.001 32.32 ± 1.53 30.40 ± 1.60 < 0.001

MiRNA-27a 27.35 ± 2.04 28.51 ± 0.95 0.002 26.50 ± 1.97 28.46 ± 1.03 < 0.001

MiRNA-122 28.96 ± 1.62 29.89 ± 0.95 0.001 28.35 ± 1.48 29.81 ± 0.97 < 0.001

MiRNA-223 31.88 ± 1.50 31.13 ± 1.06 0.001 32.46 ± 1.30 31.25 ± 1.07 < 0.001

Maximum tumor length 6.43 ± 3.36 5.16 ± 2.58 0.044 6.11 ± 2.88 5.24 ± 3.05 0.320

Tumor margin
Smooth

Non-smooth
3 (7.7%)
36 (92.3%)

23 (29.9%)
54 (70.1%)

0.007 1 (5.6%)
17 (94.4%)

12 (35.3%)
22 (64.7%)

0.043

Number
=1
>1

36 (92.3%)
3 (7.7%)

68 (88.3%)
9 (11.7%)

0.730 16 (88.9%)
2 (11.1%)

31 (91.2%)
3 (8.8%)

1.000

Enhancement pattern
Typical
Atypical

35 (89.7%)
4 (10.3%)

73 (94.8%)
4 (5.2%)

0.530 2 (11.1%)
16 (88.9%)

32 (94.1%)
2 (5.9%)

0.900

Radiologic capsule
Present
Absent

7 (17.9%)
32 (82.1%)

40 (51.9%)
37 (48.1%)

< 0.001 3 (16.7%)
15 (83.3%)

20 (58.8%)
14 (41.2%)

0.004

(Continued)
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Radiomics feature extraction, selection, and
signature building

A total of 7045 radiomic features were extracted from each

segmented lesion using the SlicerRadiomics plugin in 3DSlicer.

Python (version 2.7.18) was used for radiological feature selection.

These features included shape, first-order histogram features and

texture features. The 1856 features with intra- and inter-correlation

coefficients (ICCs) values less than 0.8 were firstly excluded, and the

remaining features were initially screened by SelectKBest. The remaining

features were selected by least absolute shrinkage and selection operator

(LASSO) algorithms. The features of the LASSO regression result in

which the corresponding coefficients with non-zero were retained. 10-

fold cross-validation was performed to select the optimal a value, and

the coefficients of the corresponding radiomics features were obtained at

the same time. The radiomic feature score (rad-score) reflecting the

MVIwas calculated for each patient by using a linear combination of the

selected features weighted with the respective coefficients.

Model construction, evaluation, and comparison
All variables (laboratory tests, miRNA, radiological

characteristics, and radiation scores) were first screened by

univariate analysis, and then independent risk factors for MVI

were determined by stepwise backward regression with the

principle of minimum AIC (Akaike information criterion) value

by multivariate logistic regression analysis. All the independent risk

factors were used separately to build the corresponding prediction

models and construct the nomogram. The ROC curves were

plotted, the discriminant efficiency of MVI predictions was

quantified using AUC, and multiple comparisons between

different models were carried out by Delong test. The 95% CI of

AUCs, sensitivity, specificity, and accuracy were also calculated. F1-

score was used to evaluate a binary classification model with

unbalanced data samples. The clinical utility of the nomogram

was evaluated using decision curve analysis, which quantifies the

net benefit to the overall cohort at different threshold probabilities

(20). The process of the present study is illustrated in Figure 2.
Statistical analysis

Statistical analysis was performed using R software (version

3.4.1). Continuous variables were expressed as mean ± standard
Frontiers in Oncology 05
deviation. The categorical variables were presented as percentages.

Kolmogorov–Smirnov tests were used to evaluate the distribution’s

normality. For identification of variables that differed significantly

between the training and validation cohorts, Student’s t test was

used to compare the quantitative data, and Chi-square test or

Fisher’s exact test was used to compare the qualitative data. The

reproducibility of the feature extraction was assessed by calculating

the intra- and inter-correlation coefficients (ICCs), and ICCs > 0.80

were considered to have good reproducibility. The Hosmer–

Lemeshow’s goodness-of-fit test was used to evaluate whether the

model’s predicted probabilities fitted the actual probabilities. The

sensitivity, specificity, and accuracy were calculated by confusion

matrix in accordance with the cutoff value that maximized the

Youden index. Statistical significance was set at P < 0.05.
Results

Clinico-radiological characteristics and MVI
prediction factors

A comparison of the clinico-radiological characteristics is shown

in Table 1. Among the 168 patients with HCC,MVI was diagnosed in

the resected tissue of 57 patients. The comparison between the

training and validation cohorts was not statistically different in

terms of age, gender, AFP, and other clinical indicators (P = 0.144–

0.941). All five miRNAs significantly differed between MVI+ and

MVI− in the training and validation cohorts (P < 0.05). The patients

with MVI+ and MVI− also showed significantly different imaging

characteristics (tumormargin, radiologic capsule, arterial peritumoral

enhancement, and intratumor necrosis/hemorrhage) (P < 0.05). No

significant differences were found in the tumor number and

enhancement pattern between MVI+ and MVI− in either the

training cohort or the validation cohort (P = 0.530–1.000).

The univariate analysis showed that five imaging features

(maximum tumor length, tumor margin, radiologic capsule, peri-

arterial tumor enhancement, and presence of hemorrhage and

necrosis) and the five kinds of miRNAs (miR-21, miR-26a, miR-

27a, miR-122, and miR-223) were significantly associated with MVI

(P < 0.05). In the multivariate analysis, maximum tumor length and

miR-21 were found to be independent predictors of MVI. The

specific information is shown in Table 2.
TABLE 1 Continued

Characteristics
Training cohort Validation cohort

MVI+ (n=39) MVI− (n=77) P MVI+ (n=18) MVI− (n=34) P

Arterial peritumoral
enhancement

Present
Absent

36 (92.3%)
3 (7.7%)

44 (57.1%)
33 (42.9%)

< 0.001 17 (94.4%)
1 (5.6%)

15 (44.1%)
19 (55.9%)

0.001

Intratumor necrosis/hemorrhage
Present
Absent

33 (84.6%)
6 (15.4%)

45 (58.4%)
32 (41.6%)

0.005 17 (94.4%)
1 (5.6%)

19 (55.9%)
15 (44.1%)

0.011
HBV, hepatitis B virus; AFP, serum alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate amino transferase; TBIL, total bilirubin; ALB, albumin; PIVKA-II, protein induced by
vitamin K absence or antagonist-II; PT, prothrombin time; INR, international normalized ratio; MVI, microvascular invasion.
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Feature selection and radiomics
signature building

Radiomics features were downscaled by SelectKBest and LASSO,

resulting in a final selection of 11 features, all of which were derived

fromDWI andDP sequences. The ICCs ranged from 0.856 to 0.989 for

the intra-observers and from 0.843 to 0.982 for the inter-observers.

These values demonstrated the high reliability of the measurements

taken by the observers. A linear combination of the selected features,

weighted by their respective logistic regression coefficients, was used to

generate the rad-score (risk score reflecting the probability of MVI).

This score was used to calculate each selected VOI as follows:

rad-score = 0.33 + exponential_firstorder_Energy_DWI ×

0.049456 + original_firstorder_Energy_DWI × 0.032877 +

wavelet-HLH_glszm_SizeZoneNonUniformity_DWI × 0.006842

+ exponential_firstorder_Skewness_DH × 0.014393 −

original_shape_Sphericity_DH × 0.014946 +

logarithm_glszm_LowGrayLevelZoneEmphasis_DH × 0.016827 +

wavelet-LHL_firstorder_Median_DWI × 0.000386 +

wavelet-LHL_glrlm_HighGrayLevelRunEmphasis_DWI ×

0.034749 −

wavelet-LHL_firstorder_Skewness_DWI × 0.012754 +

wavelet-HLH_firstorder_Skewness_DWI × 0.027165 +

original_glszm_LowGrayLevelZoneEmphasis_DH × 0.001094
Frontiers in Oncology 06
The univariate and multifactorial regression analyses showed

that the rad-score is an independent risk factor for MVI (Table 2).
Model construction and evaluation

The independent predictive factors of MVI, which were

maximum tumor length, miR-21, and rad-score, were identified

by univariate and multivariate logistic regression methods. The

MVI prediction model incorporated these three independent risk

factors to develop a nomogram prediction model (Figure 3).

The three single-factor models of tumor maximum length, miR-

21, and rad-score reached AUC values of 0.658 (95% CI: 0.551–

0.764), 0.907 (95% CI 0.866–0.949), and 0.836 (95% CI: 0.763–

0.909) in the training cohort, respectively, and 0.632 (95% CI:

0.465–0.799), 0.881 (95% CI: 0.763–0.998), and 0.704 (95% CI:

0.551–0.857) in the validation cohort, respectively. The nomogram

model had an AUC of 0.900 (95% CI 0.808–0.992) in the validation

cohort, with sensitivity, specificity, accuracy, and F1-score of 0.970,

0.722, 0.884, and 0.916, respectively (Figures 4A, B, Table 3). The

Hosmer–Lemeshow’s goodness-of-fit test evaluated the model

performance at P = 0.55 > 0.05, indicating that the actual value of

the prediction model fitted well with the predicted value. The

decision curve showed the clinical usefulness of the different
FIGURE 2

Flowchart showing the radiogenomics analysis for MVI prediction. ROI segmentation was performed on axial MR images, and then radiomic features
were extracted and selected. Next, the radiomic score was calculated for each patient by using a linear combination of selected features weighted with
the respective coefficients. The radiological characteristics, miRNAs, and clinical information were also collected. Finally, all variables were screened by
univariate and multivariate logistic regression analyses to identify the independent risk factors for MVI, which were used to construct the nomogram. The
nomogram was evaluated with ROC curve and decision curve. Delong test was used to compare area under the curves (AUCs) from different models.
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models (Figures 4C, D). The prediction performance of the

nomogram model was satisfactory in the validation cohort, with

the decision curve shown in Figure 4D. The net benefit of predicting

the decision curve for the nomogram and miR-21 model was higher

than that for other models when the threshold probability was > 0%.

This finding suggested that the nomogram and miR-21 models

could achieve satisfactory net clinical benefits.
Model comparison

Among the three single-factor models of maximum tumor

length, miR-21, and rad-score, the miR-21 model performed best,

and the differences with the other two one-factor models were all

statistically significant in the validation cohort (miR-21 vs.

maximum tumor length: AUC of 0.881 vs. 0.632, P = 0.004; miR-

21 vs. rad-score: AUC of 0.881 vs. 0.704, P = 0.009). The nomogram
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prediction model outperformed the miR-21 model (AUC of 0.900

vs. 0.881; P = 0.464), the rad-score model (AUC of 0.900 vs. 0.704;

P = 0.003), and the maximum tumor length model (AUC of 0.900

vs. 0.632; P = 0.003) in the validation cohort. However, no statistical

difference was found between the nomogrammodel and the miR-21

model (P = 0.464), as detailed in Table 3 and Figure 5.
Discussion

In this study, we have successfully developed and rigorously

validated a multi-omics nomogram prediction model, which

integrates MRI-derived radiomics, radiological features, and

miRNA-based genomics. The resulting radiogenomic nomogram

has demonstrated excellent performance in accurately predicting

microvascular invasion in HCC, thus providing a non-invasive yet

reliable clinical method for preoperative prediction.
TABLE 2 Univariate and multivariate analysis to identify risk factors associated with MVI in the training cohort.

Variables
Univariate analysis Multivariate analysis

OR (95% CI) P OR (95% CI) P

Sex 0.95 (0.74–1.23) 0.726 NA NA

Age 1.00 (0.99–1.01) 0.769 NA NA

HBV 1.15 (0.75–1.77) 0.514 NA NA

AFP 1.00 (0.99–1.01) 0.198 NA NA

PIVKA-II 1.00 (0.99–1.00) 0.906 NA NA

ALT 0.99 (0.99–1.00) 0.318 NA NA

AST 0.99 (0.99–1.00) 0.364 NA NA

TB 0.98 (0.99–1.02) 0.379 NA NA

ALB 1.01 (0.99–1.13) 0.641 NA NA

PT 0.98 (0.94–1.06) 0.941 NA NA

INR 0.96 (0.87–1.05) 0.382 NA NA

MiRNA-21 0.81 (0.76–0.85) < 0.001 0.73 (0.66–0.78) < 0.001

MiRNA-26a 1.12 (1.08–1.17) < 0.001 1.05 (0.99–1.11) 0.065

MiRNA-27a 0.89 (0.84–0.94) < 0.001 0.95 (0.81–1.11) 0.518

MiRNA-122 0.88 (0.83–0.94) 0.002 1.04 (0.74–1.44) 0.840

MiRNA-223 1.11 (1.04–1.19) < 0.001 0.86 (0.68–1.09) 0.220

Maximum tumor length 1.05 (1.02–1.07) < 0.001 0.90 (0.87–0.93) < 0.001

Tumor margin 1.33 (1.09–1.07) < 0.001 0.99 (0.83–1.18) 0.478

Number 0.91 (0.68–1.21) 0.509 NA NA

Enhancement pattern 0.84 (0.60–1.18) 0.314 NA NA

Radiologic capsule 0.73 (0.62–0.86) < 0.001 0.92 (0.79–1.07) 0.788

Arterial peritumoral enhancement 1.44 (1.21–1.71) < 0.001 1.10 (0.93–1.29) 0.329

Intratumor necrosis/hemorrhage 1.30 (1.09–1.56) < 0.001 0.93 (0.81–1.08) 0.915

Rad-score 9.33 (4.65–18.74) < 0.001 7.92 (3.78–16.6) < 0.001
HBV, hepatitis B virus; AFP, serum alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate amino transferase; TBIL, total bilirubin; ALB, albumin; PIVKA-II, protein induced by
vitamin K absence or antagonist-II; PT, prothrombin time; INR, international normalized ratio; OR, odds ratio; CI, confidence interval. NA, not available.
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The expression of miR-21, miR-27a, and miR-122 in the MVI+

group was upregulated compared with that in the MVI− group,

whereas the expression of miR-26a and miR-223 was

downregulated. These differences were all statistically significant.

By contrast, the differences in conventional laboratory indicators,

such as AFP, were not statistically significant between the MVI+

group and the MVI− group, indicating that the miRNAs extracted

in the plasma of patients with HCC were more meaningful in

suggesting MVI than the conventional laboratory indicators.

Further univariate and multivariate analyses showed that miR-21

had better correlations than other clinical laboratory tests. Studies

have shown that miR-21 is one of the most expressed miRNAs in

liver diseases, such as nonalcoholic fatty liver disease (21). Ladeiro

et al. (22) found that miR-21 was significantly overexpressed in

HCC, as compared to benign tumor or non-neoplastic liver tissue.

The maladjusted expression of miRNA could be used as a

biomarker, and it could be detected in the plasma of patients.

Studies have shown that miR-21 plays a role in promoting HCC

growth invasion, distant metastasis, and other links (21).

Furthermore, this study confirmed that among other miRNAs

detected in plasma, only miR-21 emerged as an independent risk

factor for MVI in HCC. The miR-21 model surpassed the rad score

and maximum tumor length models in predicting MVI, and the

differences were statistically significant in the validation cohort

(P<0.05). These findings indicate that the miR-21 model performs

well in preoperative prediction of MVI in HCC. Conventional

clinical laboratory indicators, including tumor markers such as

AFP, were all excluded in the univariate analysis due to their

relatively poor correlation compared to other variables.

On the basis of the morphological characteristics of MRI,

previous meta-analysis studies have found that some of MRI

signs were significantly associated with MVI, including larger

tumors (> 5 cm), rim arterial enhancement, arterial peritumoral

enhancement, non-smooth tumor margin, and multiple lesions (7).

The present study incorporated these MR morphological features

into the analysis and found that only the maximum tumor length is
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an independent predictor of MVI in HCC. Increased tumor volume

led to increased contact between the tumor and adjacent normal

liver tissues, thereby promoting the formation of microvessels.

A total of 7045 features were extracted from five different MRI

sequences, and then 11 radiomic features were screened out by

SelectKBest and LASSO. Interestingly, these features were all

derived from DWI and DP sequences. A previous study (23)

found that primary radiomic signatures extracted from delayed-

phase sequences were associated with MVI. Zhang et al. (24)

compared the performance of different MRI sequences to predict

MVI and found the performance of DP to be the best (AUC =

0.806). The present study also found the value of DP to be the best

in predicting MVI, which could be explained by the fact that tumors

continue to release a large number of angiogenic factors that

promote tumor angiogenesis and change tumor perfusion,

resulting in the differences between MVI−and MVI+ being more

easily shown in DP sequences (25). DWI also has a satisfactory

performance, as confirmed by some previous studies (26, 27). This

finding could be explained that the minimum value of the apparent

diffusion coefficient of DWI could reflect the densest tumor, the

most abundant neovascularization, and the most active tumor

proliferation. The hepatobiliary phase of specific contrast agents

has been reported to make an important contribution to suggesting

MVI (7). It is important to note that when hepatocyte-specific

agents are used, DWI is usually scanned after contrast, and the

ability and contribution of DWI may differ, which needs to be

proven by further research.

After rigorous data analysis and model training, we have

successfully developed a nomogram model that comprehensively

incorporates various risk factors. In stringent tests using training

and validation datasets, the model exhibited outstanding predictive

performance, with AUC values reaching 0.942 and 0.900,

significantly surpassing other single-factor models. The

nomogram model demonstrated satisfactory performance in

predicting microvascular invasion in HCC. Looking back at

previous studies, although nomogram models based on radiomics
FIGURE 3

Radiogenomics nomogram for predicting MVI in hepatocellular carcinoma. (1) Factors in the prediction model: maximum tumor length, rad-score,
and miRNA-21, the scale on the line segment corresponding to each factor represents the range of values of the factor, and the length of the line
segment represents the contribution of the factor to the probability of occurrence of the outcome variable. (2) Points and total pionts: individual
points represent the individual scores corresponding to each factor at different ranges of values, and the total points represents the sum of the
individual scores corresponding to all the factors at different ranges of values. (3) Prediction: the scale value corresponding to the total points
indicates the risk of microvascular invasion in patients with hepatocellular carcinoma.
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and clinical factors have shown promising predictive capabilities,

most of them still have limitations in performance, with AUC

values generally ranging from 0.801 to 0.861 (28–30). Notably, these

models often involve numerous risk factors, whereas our

nomogram model incorporates only three independent risk

factors, highlighting the advantages of multi-omics approaches in

data processing and model development.

In previous explorations, such as the study by Banerjee et al.

(28), they delved into the radiogenomics of MVI in liver cancer,

innovatively developing a novel imaging biomarker called

radiogenomic venous invasion (RVI) by combining venous

invasion genes in hepatocellular carcinoma with dynamic

contrast-enhanced CT. This achievement has achieved significant

results in predicting MVI and prognosis. Similarly, Taouli et al. (29)

also conducted in-depth research on the imaging characteristics and

genomic data of hepatocellular carcinoma, successfully identifying

imaging features related to aggressive hepatocellular carcinoma

genes through a combination of preoperative CT or MR

examinations and transcriptomic analysis.

However, our study adopted a more unique and precise

approach. We directly used miRNAs closely related to liver
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cancer as variables in logistic regression analysis, screening out

miRNAs species independently associated with MVI in liver cancer

through rigorous univariate and multivariate analysis.

Subsequently, we combined these crucial miRNAs with radiomics

and clinical radiological features to construct an efficient and

accurate prediction model, achieving satisfactory preoperative

prediction of MVI. This achievement provides a powerful tool or

method for the accurate prediction of microvascular invasion in

hepatocellular carcinoma, guiding clinical decision-making,

optimizing treatment plans, and ultimately improving the survival

rate and quality of life of patients.
Limitations

This study still has some limitations. First, it is a small, single-

center study. Therefore, the results should be complemented by

further validation from larger queues at other centers. Second,

miRNAs have many types, and only a small number was detected

in this study. Secondly, there are many types of miRNAs, only a

small amount was detected in this study, although this part of
A B

DC

FIGURE 4

(A, B) ROC curves for different models in the training and validation cohorts. The ROC graph is a curve that reflects the relationship between
sensitivity and specificity. According to the position of the curve, the whole graph is divided into two parts, the area below the curve is called AUC
(Area Under Curve), which is used to indicate the prediction accuracy, the higher the value of AUC, that is, the larger the area under the curve,
indicating that the prediction accuracy is higher. The closer the curve is to the upper left corner, the higher the prediction accuracy. Panels A, B
represent the prediction values of different models for the training cohort and validation cohort, respectively. (C, D) Clinical decision curves for
different models in the training and validation cohorts. Clinical utility is evaluated in terms of Decision curve analysis (DCA), which reflects the ability
of a model to benefit patients by influencing clinical decisions.A good model should have a high net benefit value at the threshold required by its
clinical question. The net benefit of predicting the decision curve for the nomogram and miR-21 model was higher than that for other models when
the threshold probability was > 0%. This finding suggested that the nomogram and miR-21 models could achieve satisfactory net clinical benefits.
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miRNAs has been shown to be associated with HCC caused by

hepatitis B virus (HBV) (17), and the vast majority of patients we

included are accompanied by HBV infection, but the effect of this

data on HCC caused by non-HBV is unknown, so the results may

only be valuable for HBV-associated HCC, in addition, whether

there is genomic data with better performance than miR-21 needs

to be further explored and verified. Third, miRNA is still a

deve lop ing b iomarker and i s repor ted to have low

reproducibility (30). Although we strictly follow standard

procedures in the process of extracting miRNA, miRNA data

stability is susceptible to a variety of factors such as limited
Frontiers in Oncology 10
amount of analyte before analysis, cell contamination, risk of

inhibition, etc., which may introduce some bias into the final

result. It is believed that with the development of liquid biopsy

technology, the reproducibility and stability of miRNA data will

be improved, so as to be used for robust clinical prediction.

Fourth, MVI involves the tumor edge, but only the internal

characteristics of the tumor were analyzed, and the ROI outside

the tumor, especially around the tumor, was not expanded. In

some studies (10, 31, 32), radiological features were extracted by

expanding the ROI, achieving good results. This method is also a

part of the follow-up research that needs to be further improved.
TABLE 3 Performance of different MVI prediction models.

Models AUC Sensitivity Specificity Accuracy F1-score

Maximum tumor length
Training cohort
Validation cohort

0.658 (0.551–0.764)
0.632 (0.465–0.799)

0.987
0.764

0.256
0.555

0.698
0.692

0.835
0.764

Rad-score
Training cohort
Validation cohort

0.836 (0.763–0.909)
0.704 (0.551–0.857)

0.688
0.647

0.871
0.833

0.750
0.711

0.785
0.746

MiRNA-21
Training cohort
Validation cohort

0.907 (0.866–0.949)
0.881 (0.763–0.998)

0.827
0.911

0.865
0.777

0.843
0.865

0.875
0.898

Nomogram
Training cohort
Validation cohort

0.942 (0.899–0.985)
0.900 (0.808–0.992)

0.805
0.970

0.948
0.722

0.853
0.884

0.832
0.916
AUC, area under the ROC curve.
FIGURE 5

Heatmap showing statistical differences between different models in the validation cohort. The nomogram model outperforms the maximum tumor
diameter model and the radiomics scoring model, and the differences are statistically significant (P < 0.05). The AUC value of the nomogram model
is slightly higher than that of the miR-21 model, although the difference is not statistically significant (P = 0.464).
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Conclusion

The radiogenomic nomogram exhibited promising preoperative

predictive capabilities and clinical decision-making implications in

forecasting microvascular invasion (MVI) in hepatocellular

carcinoma (HCC). This model holds the potential to emerge as a

biomarker for MVI in HCC in the future, though its efficacy

necessitates further validation through extensive studies

encompassing larger sample sizes from multiple centers.
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