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Background: It has been reported that tumor immune microenvironment

performs a vital role in tumor progress. However, acting mechanism of

immune cell related genes (IRGs) in esophageal squamous cell carcinoma

(ESCC) is uncertain.

Methods: TCGA-ESCC, GSE23400, GSE26886, GSE75241, and GSE196756

datasets were gained via public databases. First, differentially expressed genes

(DEGs) between ESCC and control samples from GSE23400, GSE26886,

and GSE75241 were screened out by differential expression analysis, and

overlapping DEGs were identified. Single-cell transcriptome data of GSE196756

were applied to explore immune cells that might be involved in regulation of

ESCC. Then, weighted gene co-expression network analysis was applied to

screen IRGs. Next, differentially expressed IRGs (DE-IRGs) were identified by

overlapping IRGs and DEGs, and were incorporated into univariate Cox, least

absolute shrinkage and selection operator, and multivariate Cox to acquire

prognosis-related genes, and ESCC samples were grouped into high-/low-risk

groups on the basis of median risk score. Finally, the role of prognosis model in

immunotherapy was analyzed.

Results: Totally 248 DEGs were yielded by overlapping 3,915 DEGs in GSE26886,

459 DEGs in GSE23400, and 1,641 DEGs in GSE75241. Single-cell analysis found

that B cells, dendritic cells, monocytes, neutrophils, natural killer cells, and T cells

were involved in ESCC development. Besides, MEred, MEblack, MEpink, MEblue

and MEbrown modules were considered as key modules because of their

highest correlations with immune cell subtypes. A total of 154 DE-IRGs were

yielded by taking intersection of DEGs and genes in key modules. Moreover,

CTSC, ALOX12, and RMND5B were identified as prognosis-related genes in

ESCC. Obviously, Exclusion and TIDE scores were notably lower in high-risk

group than in the other one, indicating that high-risk group was more responsive

to immunotherapy.
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Conclusions: Through bioinformatic analysis, we identified a prognosis model

consisting of IRGs (CTSC, ALOX12, and RMND5B) in ESCC, providing new ideas

for studies related to treatment and prognosis of ESCC.
KEYWORDS

esophageal squamous cell carcinoma, immune cell infiltration, enrichment analysis, risk
model, immune checkpoint, somatic mutation
1 Introduction

Esophageal cancer has a consistently worse prognosis with a 5-

year survival rate of less than 20% because of its high invasiveness

(1). It is ranked seventh in global cancer incidence and sixth in

mortality (2). According to clinical histology, esophageal cancer can

be categorized into esophageal squamous cell carcinoma (ESCC)

and esophageal adenocarcinoma (EAC). As the major subtype of

esophageal cancer, ESCC originates from squamous epithelial cells

and primarily occurs in the upper and middle esophagus (3).

Considering the lack of effective biomarkers, many patients are

diagnosed with advanced ESCC. Surgical intervention is the

primary treatment approach for ESCC; however, it cannot achieve

complete relief for individuals with locally advanced tumors (4). In

recent years, extensive research has been conducted on ESCC

treatment regimens, including radiotherapy, chemotherapy and

targeted therapy. Despite these efforts, the 5-year survival rate for

ESCC patients is still disappointingly low (5, 6). Additionally,

patients with late-stage ESCC often endure significant suffering,

such as difficulty in eating and breathing, which is typically difficult

to treat. All underpin an urgent need to identify more effective

biomarkers for ESCC to optimize clinical diagnosis and treatment.

The tumor immune microenvironment (TIME) is known to

play a crucial role in the occurrence, development and treatment

outcomes of tumors (7, 8). Against this backdrop, immunotherapy

has recently become an effective and safe method of treating tumors

(9, 10). Immunotherapy reduces tumor metastasis and recurrence

by stimulating specific immune responses to suppress and kill

tumor cells (11). Research has demonstrated favorable therapeutic

effects of monoclonal antibodies targeting programmed cell death

protein 1 (PD-1) or programmed death-ligand 1 (PD-L1) in

treating ESCC (12, 13). More importantly, the recently developed

single-cell RNA sequencing (scRNA-seq) has been proven to be

capable of dissecting heterogeneous tumors and deciphering the

interactions between cancer cells and their microenvironment

components (14–17).

Therefore, an immune-related prognostic model was

constructed using bioinformatic methods, such as single-cell

analysis, differential expression analysis, weighted gene co-

expression network analysis (WGCNA) and so forth, based on

datasets TCGA-ESCC, GSE23400, GSE26886, GSE75241, and
02
GSE196756 from public databases. Additionally, the mechanism

of the prognosis-related genes in ESCC was investigated with the

help of gene set enrichment analysis (GSEA), immunology and

somatic mutations. In this way, the present study could afford

profound implications for uncovering the prognosis and treatment

of ESCC.
2 Materials and methods

2.1 Sources of data

The TCGA-ESCC dataset with gene count, fpkm and

annotation files, clinical and survival information, and somatic

mutation data of samples were acquired via University of

California Santa Cruz (UCSC) Xena (http://xena.ucsc.edu/), from

82 cases of ESCC tumor tissues samples (81 ESCC samples had

survival information) and 11 cases of paraneoplastic tissues

samples. The microarray datasets GSE53622, GSE23400,

GSE26886, GSE75241 were collected from Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/gds) by

R package GEOquery (version 2.62.2) (18), containing 60 ESCC

samples with gene expression and clinical information in

GSE53622, 53 ESCC tumor tissues samples and 53 paraneoplastic

tissues samples in GSE23400, 9 ESCC tumor tissues samples and 18

paraneoplastic tissues samples in GSE26886, 15 ESCC tumor tissues

samples and 15 ESCC tumor tissues samples in GSE75241. The

single-cell transcriptome dataset GSE196756 was also gained via

GEO database, which included 3 treatment-naive ESCC samples

and 3 control samples for paired adjacent tissues.
2.2 Differential expression analysis

Differentially expressed genes (DEGs) between ESCC and

control samples from GSE23400, GSE26886, and GSE75241

datasets were respectively mined via R package limma (version

3.50.1) by setting |log2FC| > 1 and adj. P< 0.05 (19). After that, up-

regulated DEGs in three datasets were taken intersection to yield

up-regulated DEGs, and down-regulated DEGs in three datasets

were overlapped to yield down-regulated DEGs.
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2.3 Single-cell transcriptome data analysis

The single-cell transcriptome data of GSE196756 was applied to

identify immune cells that might be involved in the regulation of the

ESCC. First, data preprocessing and normalization were executed via

R package Seurat (version 4.1.0) (20) by setting 100< nFeature< 5000,

nCoun t< 2 00 00 , a nd p e r c e n t .m t< 5% . Mor e ov e r ,

FindVariableFeatures function was utilized to identify the top 2000

highly variable genes in GSE196756, and the results were visualized

via LabelPoints function. To determine the number of principal

components for optimal clustering, the principal component

analysis (PCA) was implemented. Subsequently, the clusters were

reclustered utilizing the JackStraw test algorithm, and the

ScoreJackStraw function was applied to calculate gene scores at null

distribution, and the number of clusters at the inflection point when

the decline in standard deviation flattened out was selected. The

nearest neighbor graph was computed in accordance with the

euclidean distance in PCA space, and UMAP algorithm was

utilized for dimensionality reduction. Moreover, the marker genes

in each cell cluster with other clusters were found via the

FindAllMarkers function, and they were compared with the data in

Human Primary Cell Atlas Data using R package SingleR (version

1.831) (21) to get the cell subtypes, and immune cells types.
2.4 WGCNA and enrichment analyses

To screen out module genes associated with immune cell types,

WGCNA was implemented in TCGA-ESCC dataset samples by R

package WGCNA (version 1.70–3) (22). First, infiltration

abundance values of 22 immune cells were estimated applying cell

type identification by estimating relative subsets of RNA transcripts

(CIBERSORT). The subtypes of the immune cells identified in the

single-cell analysis were selected out, and the cells with sample

number in infiltration less than 70% were excluded. The Wilcoxon-

test was employed to examine for discrepancy in the proportions of

above cells between ESCC and control samples, and the scores of

them were considered as traits for WGCNA to identify key

modules. Then, outliers were removed by clustering the samples

to guarantee the accuracy of the analysis. A soft threshold was

determined for the TCGA-ESCC dataset for determining that the

interactions among genes maximally conformed to the scale-free

distribution. Subsequently, the dissimilarity coefficient was

introduced by calculating the adjacency and similarity among

genes, and the systematic clustering tree among genes was

acquired accordingly, and modules were screened out in

accordance with the criteria of dynamic tree cutting. What’s

more, correlation analysis of modules with traits were

accomplished, and the module with adj. P<0.05 and |Cor| > 0.3

were sifted out as the key modules. Finally, the DEGs and genes in

the key modules were overlapped to generate differentially

expressed immune cell related genes (DE-IRGs), and they were

enrolled in Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analyses via R package

clusterProfiler (version 4.2.2) (23) with the threshold of adj. P< 0.05.
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2.5 Creation of a prognosis model

According to the survival information of 81 ESCC samples in

TCGA-ESCC dataset, univariate Cox was implemented on DE-

IRGs to sift out genes that related to the survival of ESCC. After

that, the least absolute shrinkage and selection operator (LASSO)

analysis of genes acquired in the previous step was applied to yield

genes corresponding to lambda min for proportional hazards (PH)

hypothesis test. Subsequently, genes satisfying the PH hypothesis

test were incorporated into multivariate Cox analysis to acquire

prognosis-related genes. Meanwhile, the expression of prognosis-

related genes between ESCC and control samples were also analyzed

utilizing Wilcox test in the TCGA-ESCC dataset. Then, the risk

score for ESCC samples in the TCGA-ESCC dataset was calculated.

risk score =o
n

i=1
(Coefi*Expi)

(where Coefi denoted the correlation coefficient, and Expi denoted

the sample expression corresponding to the gene), and ESCC samples

were classified into high-/low-risk groups in accordance with the

median risk score. Nevertheless, the survival difference between these

two groups were compared applying Kaplan-Meier (K-M) survival

analysis. The receiver operating characteristic (ROC) curves were

plotted with the aim of evaluating prediction accuracy of the

prognosis model, and the expressions of prognosis-related genes

between high-/low-risk groups were analyzed. Furthermore, the

results were validated by the same methods in the GSE53622.
2.6 Screening for independent prognostic
factors and gene set enrichment analysis

For further investigating the relationship between ESCC patients’

survival and clinical characteristics, a clinical prognostic model was

constructed. Based on clinical characteristics (age, gender, pathologic

M, pathologic N, and pathologic T), survival information of ESCC

samples, and risk score, the survival differences between high-/low-

risk groups were compared for each clinical characteristic. In TCGA-

ESCC dataset, risk score and clinical characteristics were analyzed by

univariate Cox analysis, and factors meeting P< 0.05 were extracted

for PH hypothesis test. The factors satisfying the PH hypothesis test

were enrolled in multivariate Cox analysis to sift out independent

prognostic factors. After that, a nomogram was created via R package

rms (version 6.2–0) (24) to predict the probability of patient survival,

and calibration curve was drawn to further validate the results.

Ultimately, the GSEA for the prognosis model was also applied by

R package clusterProfiler (version 4.2.2) (23) by setting adj. P< 0.05

and |NES| > 1 to explore the biological functions and pathways

(Background gene set: c2.cp.kegg.v7.4.symbols.gmt).
2.7 Immune microenvironment analysis

To assess the association of Major Histocompatibility Complex

(MHC) genes with prognosis-related genes, the correlation analysis was
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carried out. According to the risk score of ESCC samples in TCGA-

ESCC dataset and the expressions of 22 MHC genes, correlation

coefficients were computed between MHC genes and risk score, and

between MHC genes and prognosis-related genes by R package stats

(version 4.1.0) (25) by setting |Cor| > 0.3 and P< 0.05, respectively.

Then, to understand the response to immunotherapy in patients with

different risks, the differences in immunotherapy response between

high-/low-risk groups was analyzed. Tumor immune dysfunction and

exclusion (TIDE), Dysfunction, and Exclusion scores of ESCC samples

were computed via TIDE website (http://tide.dfci.harvard.edu), and

their differences between high-/low-risk groups and their correlation

with risk score were analyzed. After that, patients with TIDE score ≥ 0

were considered deemed to be non-responders to immunotherapy, and

those with a TIDE score ≤ 0 were deemed to be responders to

immunotherapy, followed by calculation of their proportions in the

different risk groups. The correlations of these three scores with risk

score were also analyzed utilizing R package stats (version 4.1.0) (25).

Furthermore, the association between 48 immune checkpoints and risk

score was explored, and expressions of immune checkpoints between

different risk groups were also compared.
2.8 Somatic mutation analysis

In order to clarify the difference and association of somatic

mutations between two risk groups, the somatic mutation data for

ESCC samples in TCGA-ESCC dataset was yielded via R package

TCGAmutations (version 0.3.0) (26). First, the top 25 genes in the

high-/low-risk groups were analyzed for mutual exclusion and co-

occurrence characteristics, as well as the mutation frequencies of genes

in 10 oncogenic pathways. The top 10 genes with the most mutations

in the samples from the high-/low-risk groups were visualized utilizing

R package maftools (version 2.10.5) (27). Afterwards, mutual exclusion

and co-mutagenesis analysis was applied to obtain important

information about disease-associated genes and aberrant pathways.

Finally, the OncogenicPathways function was utilized to count the

frequency of mutations in the 10 oncogenic pathways in different

groups to determine the key oncogenic pathways.
2.9 Reverse transcription quantitative real-
time polymerase chain reaction

Five ESCC tumor tissues and para-carcinoma tissues from 5

ESCC patients were obtained from The Second Affiliated Hospital

of Anhui Medical University with their knowledge and consent.

This research was allowed by Ethics Committee of the Second

Affiliated Hospital of Anhui Medical University (Approval No.:

YX2023–210). In short, total RNA of 10 samples were abstracted

through TRIzol in accordance with the manufacturer’s direction. In

the back of quality control by Nano drop and NanoPhotometer

N50, reverse transcription was implemented using SureScript-First-

strand-cDNA-synthesis-kit (Servicebio, Wuhan, China) on the

basis of the manufacturer’s amplification. Next, 2xUniversal Blue

SYBR Green qPCR Master Mix was utilized to perform qPCR

analysis. Table 1 listed the primer sequences for qPCR. The
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expression level of prognosis-related gene was counted via 2−DDCt

method with GAPDH as the internal reference gene.
2.10 Immunohistochemistry

Immunohistochemistry was utilized to detect protein expression

of prognosis-related genes in ESCC tumor tissues. Initially, tumor

tissues were fixed in a 4% paraformaldehyde solution and embedded

in paraffin, followed by sectioning. Subsequently, paraffin sections

underwent dewaxing, rehydration, and antigen retrieval. Endogenous

peroxidase activity was then inactivated by incubating at room

temperature for 10 minutes with peroxidase blocker. Sections were

incubated with primary antibody overnight, followed by exposure to

secondary antibody for 20 minutes at room temperature the next day.

Finally, staining was performed using diaminobenzidine (DAB), with

counterstaining achieved using hematoxylin.
3 Results

3.1 Selection of DEGs

There were 3,915 DEGs in GSE26886 (Figures 1A, B), 459

DEGs in GSE23400 (Figures 1A, B), and 1,641 DEGs in GSE75241

(Figures 1A, B), respectively, and the heat maps illustrated the top10

up- and down- regulated DEGs in three datasets. Subsequently, 106

up-regulated and 142 down-regulated DEGs were yielded by taking

intersection of up-regulated DEGs and down-regulated DEGs in

three datasets, respectively, and they were merged to get 248 DEGs

(Figure 1C; Supplementary Table S1).
3.2 B cells, dendritic cells, monocytes,
neutrophils, natural killer cells and T cells
were annotated in GSE196756

The violin plot demonstrated the nFeature, nCount, and

percent.mt in different samples after quality control (Figure 2A).
TABLE 1 The primers of prognosis-related gene and GAPDH for RT-qPCR.

Gene Primer

ALOX12 F TCTGGAGATGGCCCTCAAAC

ALOX12
R

GAAGCTCTTCCATCCCCGAG

CTSC F AGAGCATCTGTTGAGGGACTCT

CTSC R CTGCCTTGGAGGTAGGTCAC

RMND5B
F

GGGAGTTGCTCGGACTCAAA

RMND5B
R

AGAGAGGGTGGCTGAGAGAG

GAPDH F CGAAGGTGGAGTCAACGGATTT

GAPDH R ATGGGTGGAATCATATTGGAAC
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Besides, volcano plot illustrated the top 20 highly variable genes,

including IGKC, IGHG1, HBA1, etc. (Figure 2B). From Figure 2C,

it could be seen that when the number of clusters was 20, the

standard deviation decreased gently, thus it was taken as the

optimal number of clusters. When resolution = 0.8, the 30 cell

clusters were yielded (Figure 2D). Eventually, 12 cell subtypes were

finally identified, and which included 6 immune cells (B cells,

dendritic cells, monocytes, neutrophils, natural killer cells, T

cells) (Figure 2E).
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3.3 Screening for the key modules

Totally 8 immune cell subtypes were identified form TCGA-ESCC

(naive B cells, CD8 T cells, memory resting CD4 T cells, memory

activated CD4 T cells, follicular helper T cells, regulatory T cells (Tregs),

resting dendritic cells, activated dendritic cells), among which the

proportions of naive B cells, memory resting CD4 T cells, memory

activated CD4 T cells, and activated Dendritic cells were notably different

between ESCC and control samples, suggesting that the development
A B

C

FIGURE 1

Selection of differentially expressed genes (DEGs) between ESCC and control samples. (A) Volcano plots depicted DEGs in GSE26886, GSE23400
and GSE75241 dataset, respectively. Red: upregulation; blue, downregulation. (B) Heatmaps depicted DEGs in GSE26886, GSE23400 and GSE75241
dataset, respectively. (C) Venn diagrams revealed 106 up-regulated overlapping DEGs and 142 down-regulated overlapping DEGs, respectively.
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and progression of ESCC was related to these immune cells (Figure 3A).

Figure 3B manifested a better overall clustering of the dataset samples

without eliminating samples. Based on the location of red line in

Figure 3C, the soft threshold of 4 was determined. At this point, the

network was approaching the scale-free distribution and presented a flat

trend, as seen by the vertical coordinate R2 exceeding 0.85 and the mean

value of the adjacency function steadily approaching 0. Next, the 8

modules were finally sifted out by building the co-expression matrix

(Figure 3D), among which the MEred, MEblack, MEpink, MEblue, and

MEbrown modules were considered as the key modules because their
Frontiers in Oncology 06
correlations with immune cell subtypes score conformed to adj. P<0.05

and |Cor| > 0.3, and which totally contained 8,630 genes (Figure 3E).
3.4 DE-IRGs were related to skin formation
related pathways

Taking intersection of DEGs, and genes in key modules resulted

in 154 DE-IRGs (Figure 4A). Besides, DE-IRGs were involved in GO

entries containing epidermis development, skin development,
A B

D

E

C

FIGURE 2

Single-cell transcriptome data analysis for GSE196756. (A) Violin plot of nFeature, nCount, and percent.mt after quality control. (B) Volcano plot depicted
2,000 highly variable genes (red). (C) Principal component analysis (PCA) determined the optimal dimensions. (D) UMAP clustering plot displayed 30 cell
clusters in the sample, and heat map depicted the marker genes in 30 cell clusters. (E) UMAP clustering plot revealed 12 different cell subtypes.
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extracellular matrix organization, collagen metabolic process,

epidermal cell differentiation, etc. (Figure 4B). Simultaneously, they

were also enriched to KEGG pathways like ECM-receptor interaction,

protein digestion and absorption, relaxin signaling pathway, AGE-

RAGE signaling pathway in diabetic complications (Figure 4C).
3.5 The prognostic model demonstrated an
excellent ability for predicting
ESCC patients

The three prognosis-related genes, namely CTSC, ALOX12, and

RMND5B were finally identified via univariate Cox, LASSO, PH
Frontiers in Oncology 07
hypothesis test and multivariate Cox (Figures 5A–C), and their

expressions were all notably different between ESCC and control

samples (Figure 5D). It could be found that the hazard ratio (HR) of

ALOX12 was less than 1, but its expression was higher in ESCC

than in normal tissues, while RMND5B showed the opposite trend.

It may be due to the fact that the high expression of the gene is to

counteract a certain aberration in the tumor cells, or it may be due

to the fact that the gene exerts its anti-tumor effect by affecting the

immune infiltrating cells. Meanwhile, we found that patients in the

CTSC and RMND5B high expression groups had a worse prognosis

by the K-M survival curve, while patients in the ALOX12 high

expression group had a better prognosis (Figure 5E). Figure 6A

showed that the risk scores of TCGA-ESCC dataset samples were all
A

B

D

EC

FIGURE 3

Identification of key genes associated with immune cells by WGCNA. (A) Comparison of immune cells between ESCC and control samples.
(B) Clustering of TCGA-ESCC dataset samples. (C) Determination of the optimal soft threshold. (D) All genes were classified into various modules by
hierarchical clustering. (E) Heatmap of module-trait correlation. * P < 0.05, ** P < 0.01; ns, no significance.
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greater than 0. From Figure 6B, it could be seen that the survival

samples were mainly clustered in the regions with lower risk score,

while the death samples were opposite. Besides, the K-M curve

showed that the survival of high-risk group was substantially lower

than the other one (Figure 6C). Undoubtedly, the area under curve

(AUC) values of 1- (AUC = 0.86), 2- (AUC = 0.80) and 3- (AUC =

0.88) year were all greater than 0.8, indicating that the prognosis

model had an excellent ability of predicting ESCC patients

(Figure 6D). From the heatmap, it was clear that ALOX12 was

lowly expressed in high-risk group, while the opposite was true for

CTSC, and RMND5B (Figure 6E). The results were further

validated in the GSE53622 (Supplementary Figure S1). KM curve

suggested that high-risk patients demonstrated a terrible survival

rate (P=0.0408), as well as AUC values were 0.67, 0.67, and 0.62 for

1-, 2-, and 2-years, correspondingly. These findings indicated that

prognostic model had reliable generalization in predicting

ESCC survival.
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3.6 The clinical prognostic model had a
favourable ability for predicting ESCC
patients, and the prognosis model was
related to immune related pathways

K-M curves demonstrated notable survival differences between

two risk groups in age, male, pathologic M0, pathologic N0,

pathologic N1, and pathologic T2 (Figure 7A). Additionally, three

independent prognostic factors, namely risk score, gender, and

pathologic N, were finally gained through univariate and

multivariate Cox (Figure 7B). Subsequently, nomogram revealed

that the clinical prognostic model had a favorable ability for

predicting ESCC patients, and this result was further confirmed

through calibration curve (Figure 7C). What’s more, the prognosis

model was enriched to 74 KEGG pathways, among which the

pathways with positive enrichment score included antigen

processing and presentation, phagosome, allograft rejection,
A

B

C

FIGURE 4

Acquisition of differentially expressed immune cell related genes (DE-IRGs) and enrichment analysis. (A) Venn diagrams revealed 154 DE-IRGs.
(B) Bagua plot of GO analysis on DE-IRGs. (C) Bagua plot of KEGG analysis on DE-IRGs.
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natural killer cell mediated cytotoxicity, oxidative phosphorylation

(Figure 7D), and the pathways that with negative enrichment score

contained neuroactive ligand-receptor interaction, protein

digestion and absorption, signaling pathways regulating

pluripotency of stem cells, calcium signaling pathway,

etc. (Figure 7D).
3.7 The prognosis model played an
essential role in the immunotherapy
of ESCC

As can be seen from the chord plot, five MHC genes (B2M,

HLA-B, HLA-C, HLA-E, and HLA-G) were positively correlated
Frontiers in Oncology 09
with risk score (Figure 8A). Besides, there was a positive correlation

between B2M and CTSC, whereas HLA-DMA, HLA-DMB, HLA-

DPB1, HLA-DRA, and HLA-DRB1 all had negative correlations

with ALOX12 (Figure 8B). Violin plots showed that the Exclusion

and TIDE scores were notably lower in high-risk group than in the

other one, manifesting that samples in high-risk group were more

responsive to immunotherapy, and that immune cells penetrated

into the tumor tissues more easily (Figure 8C). Meanwhile, the

Exclusion and TIDE scores were negatively correlated with the risk

score, indicating that the higher the risk score, the lower the degree

of immune rejection of the patients and the more sensitive response

to immunotherapy (Figure 8D). As demonstrated in Figure 8E,

there was a marked difference in the number of immunotherapy

responders and non-responders between high-/low-risk groups.
A

B

D

E

C

FIGURE 5

Identification of prognosis-related genes. (A) Univariate cox analysis. (B) Least absolute shrinkage and selection operator (LASSO) regression analysis.
(C) Multivariate Cox analysis. (D) Comparison of the expression of the three prognosis-related genes between ESCC and control samples. (E) KM survival
curves between high and low expression groups of three prognosis-related genes. ** P < 0.01, *** P < 0.001.
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Apparently, there were associations between risk score and the

immune checkpoints CD200R1, TMIGD2 and TNFSF14

(Figure 8F). Box plot revealed that the expressions of CD200R1,

TNFSF14, TMIGD2, and TNFRSF25 were notably higher in high-

risk group than in the other one, demonstrating that their

associated immune pathways or activities were more active in

high-risk group (Figure 8G).
3.8 The prognosis model might influence
ESCC patients prognosis by modulating
TP53 and NOTCH pathways

As can be seen from the waterfall plots, 10 genes were mutated

in high-risk group samples, with the highest number of mutated

samples was missense mutation, and TP53 had the highest

mutation frequency, followed by TTN (Figure 9A), TP53, and

TTN also had the highest mutation frequency in low-risk group

(Figure 9B). Thereafter, heatmap showed a higher number of co-

mutations occurring among the top 25 mutated genes in high-/low-

risk groups, suggesting that these mutations might occur
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simultaneously in the same patient and that these genes might be

involved in interdependent pathways or functions (Figure 9C).

Moreover, pathway with the highest frequency of gene mutations

in high-risk group was TGF-Beta, and TP53 had the highest

number of samples with pathway mutations (20 cases with

mutations), whereas the pathway with the highest frequency of

gene mutations in low-risk group was TP53 and NRF2, and the

pathway with the highest number of samples with pathway

mutations was TP53 (55 cases with mutations). Therefore, the

variability of gene mutations within the TP53 and NOTCH

carcinogenic pathways might be strongly associated with patient

risk score (Figure 9D).
3.9 Expression verification of CTSC,
ALOX12 and RMND5B by RT-qPCR
and immunohistochemistry

At last, the expression of three prognosis-related genes in

clinical samples was experimentally validated. The RT-qPCR

result revealed that ALOX12 was markedly up-regulated
A B

D

E

C

FIGURE 6

Prognostic value of three prognosis-related genes in TCGA-ESCC dataset. (A) Risk score distribution of ESCC samples. (B) Overall survival (OS)
distribution of ESCC samples. (C) K-M survival analysis of ESCC samples. (D) ROC curves for 1-, 2-, and 3-year survival in ESCC patients. (E) Heatmap
displayed the expression levels of three genes in high-/low-risk groups.
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(P=0.0144) and RMND5B was markedly down-regulated

(P=0.0016) in tumor samples compared with controls, while the

expression of CTSC was not notably different (P=0.7259) between

tumor and control samples (Figures 10A–C). Afterwards, the

protein expression of three prognosis-related genes was further

verified by immunohistochemistry. The results demonstrated that

the protein expression of ALOX12 and RMND5B was significantly

lower in tumor tissues compared to paraneoplastic tissues, while

there was no significant difference in the protein expression of

CTSC (Figures 11A–C ). This might be due to the small sample size
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or the heterogeneity of the sample, after which we will do

further validation.
4 Discussion

ESCC is the most common pathological type of esophageal

cancer in Asian countries, and it is the fourth leading cause of

cancer-related deaths in China (28). Currently, owing to its poor

prognosis and limited treatment efficacy, there is a need to develop
A

B D

C

FIGURE 7

Prognostic value of risk score and clinical characteristics in TCGA-ESCC dataset. (A) K-M survival analysis between different clinical subgroups.
(B) Univariate and multivariate Cox analysis of risk score and clinical characteristics. (C) Nomogram and calibration curve for predicting 1-, 2-, and
3-year survival in ESCC patients. (D) Gene set enrichment analysis (GSEA) for the prognosis model.
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clinically valuable biomarkers. The immune microenvironment and

various immune cells perform pivotal roles in tumor progression

and treatment (29). In this research, we constructed a prognostic

model on the basis of immune cell–related prognostic biomarkers in

the ESCC using public transcriptome data.

Through the identification of immune cell types and subsequent

bioinformatic screening, three genes related to ESCC prognosis

were identified, including cathepsin C (CTSC), arachidonate 12-
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lipoxygenase (ALOX12) and required for meiotic nuclear division 5

homolog B (RMND5B). CTSC is a lysosomal cysteine protease of

the papain family and is correlated with the development of

squamous cell carcinoma (30). Zhao et al. showed that the

expression of CTSC gene was increased in myeloid cells of

Pancreatic adenosquamous carcinoma (31). Moreover, a recent

work by Han et al. revealed that CTSC promotes colorectal

cancer metastasis by upregulating CSF1 to regulate immune
A

B D

E F

G

C

FIGURE 8

Correlation analysis of risk score with immune microenvironment. (A) Chord plot depicted five MHC genes positively associated with risk score.
(B) Chord plot depicted correlation between five MHC genes and three prognosis-related genes. (C) Comparison of TIDE, Dysfunction, and
Exclusion scores between high-/low-risk groups. (D) Correlation analysis of risk scores with TIDE, Dysfunction, and Exclusion scores. (E) Comparison
of the number of responders and non-responders to immunotherapy between high-/low-risk groups. (F) Correlation analysis of risk score with
immune checkpoints. (G) Comparison of immune checkpoints between high-/low-risk groups. * P < 0.05, ** P < 0.01; ns, no significance.
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evasion (32). However, the specific mechanisms of action of CTSC

in ESCC occurrence and progression have not been studied. Our

analysis of overall survival data showed that CTSC can serve as a

prognostic risk factor (hazard ratio [HR] > 1) in patients with ECSS.

ALOX12 acts on polyunsaturated fatty acids to produce active lipid

molecules and plays a significant role in inflammation and oxidative

reactions (33). A previous study by Chen et al. demonstrated that

genetic and pharmacological inhibition of ALOX12 can suppress
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the growth and migration of lung cancer cells, induce apoptosis and

increase sensitivity to chemotherapy (34). Furthermore, a research

by Weng et al. showed that high ALOX12 expression in colorectal

cancer can indicate increased immune infiltration and a better

response to immunotherapy (35). Analysis of the overall survival

data in ESCC patients showed that ALOX12 is a protective factor

for patient survival (HR< 1). Nevertheless, further research is

necessary to clarify the specific mechanisms of action of ALOX12
A B

D

C

FIGURE 9

Gene mutation analysis. (A) Waterfall plot of mutations in high-risk groups. (B) Waterfall plot of mutations in low-risk groups. (C) Heatmap revealed
top 25 mutated genes in high-/low-risk group. (D) Mutation frequency analysis of 10 oncogenic pathways in high-/low-risk group.
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A B C

FIGURE 10

Expression levels validation of prognosis-related genes through RT-qPCR. (A-C) Comparison of ALOX12 (A), RMND5B (B), and CTSC (C) expression
levels between ESCC and control sample. * P < 0.05, ** P < 0.01; ns, no significance.
A

B

C

FIGURE 11

Immunohistochemistry was utilized to detect protein expression of prognosis-related genes in ESCC tumor tissues. (A-C) Comparison of ALOX12
(A), RMND5B (B), and CTSC (C) expression levels between ESCC and control sample. ** P < 0.01, **** P < 0.0001; ns, no significance.
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in ESCC progression. RMND5B, also known as GID2, has

ubiquitin-related protease activity. Deng et al. found that GID2

interacts with CDKN3 and regulates the growth and apoptosis of

pancreatic cancer cells (36). The present study is the first to

demonstrate that RMND5B is a prognostic marker for the

survival of ESCC patients and is a risk factor (HR > 1). The

specific mechanisms of action of RMND5B in ESCC progression

have not been reported previously.

Further, we verified the expression of three prognostic genes by

RT-qPCR and immunohistochemistry in this study. Previous studies

of this project have shown that CTSC and RMND5B are cancer-

promoting factors. However, this experiment indicates that

RMND5B is actually under-expressed in tumor tissues, suggesting

that the activity of this gene may be enhanced in a number of ways

(gene, mutations, chromosomal rearrangements, gene amplification,

etc.), not necessarily by overexpression. ALOX12 is a tumor

suppressor gene, but it is highly expressed in tumor tissues by RT-

qPCR, which may be due to the fact that this gene can enhance the

occurrence of tumor suppressor pathway through over-expression,

thus achieving the function of tumor suppressor. However,

immunohistochemical results showed that its expression in tumor

tissues was reduced. Because there are many levels of regulation of

gene expression, of which regulation at the transcriptional level is

only one link, there are also post-transcriptional regulation and post-

translational regulation, and post-translational regulation plays a role

in the final protein expression. In addition, factors such as mRNA

degradation, protein degradation and modified folding may cause

differences in mRNA abundance and protein expression levels.

Therefore, the specific mechanisms of prognostic genes and tumor

development need to be further investigated.

Following the analysis of these three prognosis genes associated

with immune of patients with ESCC, an immune-related prognostic

model based on these three genes was further constructed. The

prognostic model exhibited a marked survival difference between

high- and low-risk patients, with high-risk patients having a poorer

survival. In addition, the results of the ROC curve confirmed the

high reference value of this prognostic model for survival prediction

in ESCC patients. Currently, there are widely reports on prognostic

models for ESCC patients, such as fibroblast-associated prognostic

models, cuproptosis-related prognostic models, cell death-related

prognostic models, etc. Compared with these models, the immune-

related prognostic model constructed in this study incorporated

immune-related genes, which helped to identify patients with a

higher risk of disease progression or recurrence, and also captured

the complex interactions between ESCC and the immune system

accurately. Meanwhile, the constructed immune-related prognostic

model could add valuable information about the ESCC’s immune

response, thus improving the accuracy of prognostic prediction and

contributing to therapeutic decision-making. In addition, by

assessing the immune characteristics of patients, the model could

guide the selection of appropriate immunotherapies and improve

treatment outcomes.

According to the Cox analysis results, the risk score was

identified as an independent prognostic factor. A nomogram

predicting the 1- to 3-year survival rate of patients with ESCC

was created, which incorporated the independent prognostic factors
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of gender and pathologic N stage. A calibration curve was plotted,

and the survival predictions made by this curve model closely

matched the actual survival rates of the patient cohort. This

further underscores the clinical potential of this curve model.

Moreover, GSEA revealed that the calcium signaling pathway,

ECM-receptor interaction and focal adhesion were enriched in low-

risk patients. Previous studies have confirmed the association

between the calcium signaling pathway and ESCC cell

proliferation (37). Various bioinformatics studies have

demonstrated that the ECM-receptor interaction is associated

with the development and progression of ESCC or EAC (38–41).

Focal adhesions have been found to be associated with cell

migration, as well as focal adhesion kinases with adhesive signal

transduction (42). Moreover, focal adhesion kinases are known to

have a pivotal role in cancer progression (42), including ESCC

progression (43). In line with these findings, our results also suggest

close associations of these pathways and functions with ESCC

progression and patient survival.

The treatment strategy of immunotherapy focuses on activating the

patient’s immune system to combat cancer, and it has become one of

the common approaches for cancer treatment, alongside surgery,

radiation therapy and targeted therapy (44). Immune checkpoint

molecules are receptor–ligand pairs that regulate immune

stimulation or suppression, playing crucial roles in maintaining

immune tolerance and reducing tissue damage (45). Immune

checkpoint molecules in cancer cells are associated with immune

evasion, and targeting these molecules can prevent cancer cells from

escaping the immune system, thus enhancing immune recognition. In

patients with ESCC, immunotherapy targeting PD-1/PD-L1 immune

checkpoint molecules has revealed promising clinical efficacy (46). Our

study indicates that based on the risk scoring model, high-risk patients

have significantly lower exclusion scores and TIDE scores compared

with other patients. This suggests that high-risk patients exhibit a

stronger response to immunotherapy, and immune cells can more

easily infiltrate tumor tissue. Additionally, the exclusion and TIDE

scores showed negative correlations with the risk score, indicating that

the degree of immune exclusion decreases as the risk score increases in

patients with ESCC, and the response to immunotherapy becomes

more sensitive. Our risk-scoring model can provide valuable guidance

for clinical decisions regarding immunotherapy for patients.

Furthermore, we identified correlations between risk score and the

expressions of the immune checkpoint genes CD200R1, TMIGD2 and

TNFSF14. The expression levels of CD200R1, TNFSF14, TMIGD2 and

TNFRSF25 were markedly higher in high-risk patients than in low-risk

patients, suggesting that related immune pathways or activities are

more active in high-risk patients. Recently, a CD200R1-targeting

antibody, 23ME-00610, was reported to enhance the function of

anti-tumor T cells by blocking CD200:CD200R1 binding, thus

inhibiting tumor growth while participating in the immune

activation pathway (47). TNFSF14, also known as LIGHT, is highly

effective in driving anti-tumor immune responses and inducing

changes in the tumor microenvironment (48). Studies have indicated

that incorporating LIGHT in immunotherapy regimens is

highly promising (48), and future research is warranted. Our results

suggest that CD200R1 and TNFSF14 are potential targets for

ESCC immunotherapy.
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In conclusion, our study identified three prognosis related

biomarkers associated with immune cells in patients with ESCC,

offering fresh insights into the mechanisms of the immune

microenvironment and ESCC progression. The risk-scoring

model based on these prognostic biomarkers offers future

directions for understanding ESCC progression. However, our

research has certain limitations. Firstly, the sample size and

information from the public database were limited, and the

clinical applicability of the nomogram needs validation with data

from a greater number of clinical patients. Second, the roles of these

three prognostic biomarkers in the development and progression of

ESCC require further investigation, and their relationships with the

immune microenvironment need to be explored further. We will

continue to monitor the progress of research related to these three

biomarkers and their associations with the tumor immune

microenvironment in ESCC.
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