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Breast cancer is the most prevalent malignancy among women worldwide.

Despite significant advances in treatment, it remains one of the leading causes

of female mortality. The inability to effectively treat advanced and/or treatment-

resistant breast cancer demonstrates the need to develop novel treatment

strategies and targeted therapies. Centrosomes and their associated proteins

have been shown to play key roles in the pathogenesis of breast cancer and thus

represent promising targets for drug and biomarker development. Centrosomes

are fundamental cellular structures in themammalian cell that are responsible for

error-free execution of cell division. Centrosome amplification and aberrant

expression of its associated proteins such as Polo-like kinases (PLKs), Aurora

kinases (AURKs) and Cyclin-dependent kinases (CDKs) have been observed in

various cancers, including breast cancer. These aberrations in breast cancer are

thought to cause improper chromosomal segregation during mitosis, leading to

chromosomal instability and uncontrolled cell division, allowing cancer cells to

acquire new genetic changes that result in evasion of cell death and the

promotion of tumor formation. Various chemical compounds developed

against PLKs and AURKs have shown meaningful antitumorigenic effects in

breast cancer cells in vitro and in vivo. The mechanism of action of these

inhibitors is likely related to exacerbation of numerical genomic instability,

such as aneuploidy or polyploidy. Furthermore, growing evidence

demonstrates enhanced antitumorigenic effects when inhibitors specific to

centrosome-associated proteins are used in combination with either radiation

or chemotherapy drugs in breast cancer. This review focuses on the current

knowledge regarding the roles of centrosome and centrosome-associated

proteins in breast cancer pathogenesis and their utility as novel targets for

breast cancer treatment.
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Introduction

Breast cancer is a commonly diagnosed malignancy and one of the

leading causes of cancer-related deaths among women worldwide (1).

Current treatment strategies for breast cancer are based on the

molecular subtype classification that takes into account cancer

cell expression of hormone (estrogen and progesterone) receptors

and the human epidermal growth factor 2 receptor (HER2) (2).

Treatment modalities include surgery and/or radio-, chemo-, anti-

endocrine, targeted and immune therapies. Despite advances in

treatment options, the recurrence of breast cancer, chemoresistance,

radioresistance andmetastatic disease remainmajor areas of concern in

achieving desired patient outcomes (3–5). Therefore, the development

of novel drugs and therapies for breast cancer is of utmost clinical

importance. Recent efforts in targeted drug development in oncology

have been focused on inhibitors of cell cycle regulation. Aberrant

regulation of cell cycle events is often observed in cancer cells (2, 6) and

has been associated with breast cancer pathogenesis and the

development of treatment resistance. This has led to the investigation

of novel targets and the development of therapeutic agents targeting the

cell cycle (2, 6–9). A large body of recent research indicates that

centrosomes and their associated proteins play an important role in cell

cycle progression and are thus highly promising targets for drug

development in breast cancer (10–13). Here, we aim to review

current knowledge on the role of centrosomes in breast cancer

pathogenesis and highlight the development of novel drugs that

target this critical hub of the cell cycle.
Centrosomes and their associated
proteins during the cell cycle

The mammalian cell cycle is an intricately coordinated and

controlled process that ensures the proper division of cells (6)

resulting in efficient segregation of genetic information. It is

regulated by the activation and deactivation of various proteins

throughout the five different stages of the cell cycle, including G0

(gap 0), G1, S (synthesis), G2 and M (mitosis) (6). The first four

stages are known as interphase, the process by which cells grow and

duplicate their genetic material to prepare for cell division (14). In the

G0 phase, cells are quiescent and remain in a state of rest (14). Upon

external stimulation, cells can enter G1 and produce mRNA and

proteins needed for DNA replication in the S phase (14). Cells in G2

then ensure DNA replication is accurate and synthesize enzymes

required for cell division (10, 14). Cells then proceed to divide during

the M phase, which progresses through five main stages: prophase,

metaphase, anaphase, telophase and cytokinesis (14). In prophase, the

chromosomes condense, and the nuclear membrane starts to break

down (15). The latter is a central step for assembling the mitotic

spindle, consisting of the centrosome and microtubules (15). The

microtubules of the developing spindle then attach to the kinetochore

of chromosomes and pull them in opposite directions, thereby having

a bi-directional orientation by the end of prophase (15). In

metaphase, chromosomes are aligned at the equatorial plate and

ensure the correct attachment of microtubules to the kinetochore,
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commonly referred to as the spindle assembly checkpoint (10, 16).

Cells can then proceed to anaphase where sister chromatids separate

to the spindle poles (16), followed by telophase where chromosomes

decondense and the nuclear membrane reforms (16). As the last and

final stage, the cytoplasm and chromosomes are equally divided into

two daughter cells during cytokinesis (15).

Centrosomes comprise a pair of centrioles surrounded by

pericentriolar material and function as the major microtubule

organizing centers in mammalian cells (17). They play an important

role in regulating many cellular processes during interphase, such as

cell morphology and polarization; as well as during mitosis, such as

spindle formation, chromosome segregation and cytokinesis (18).

These intracellular organelles are regulated by a large variety of

centrosome-associated proteins throughout the cell cycle (19)

(Figure 1, Table 1). The complex process of centriole duplication and

maturation is orchestrated by a number of proteins during various

stages of the cell cycle (Figures 1-4). During G1, centrioles prepare to

divide with the help of Polo-like kinase 4 (PLK4) activity (29, 73)

(Figure 2). Upon being recruited by centrosomal C-terminal encoded

protein (CEP) 152 and CEP192 (53), PLK4 binds and phosphorylates

SCL/TAL-interrupting locus protein (STIL) and associates with spindle

assembly abnormal protein 6 (SAS6) to initiate centriole duplication

(68, 74) (Figure 2). The phosphorylation of STIL promotes its binding

to centrosomal P4.1-associated protein (CPAP; also known as

centromere protein J [CENPJ]) (63), which interacts with CEP120

and is responsible for regulating centriole assembly, length and

duplication during the S phase (46, 64) (Figure 2). During the G1

and S phases, Cyclin-dependent kinase (CDK) proteins also interact

with their cyclin partners to facilitate centriole duplication (Figure 3).

Centriole maturation then occurs in G2 and is primarily regulated by

PLK1 and Aurora kinase A (AURKA) (Figure 4) (6). PLK1 regulates

the localization of AURKA to the centrosome, which phosphorylates

and activates PLK1 to promote bipolar spindle formation and mitotic

entry (20, 31). PLK1 also regulates NIMA-related-kinase 2 (NEK2),

which participates in bipolar spindle assembly to promotemitotic entry

as well as mediates centrosome separation duringmitosis by interacting

with Centrosomal NEK2-Associated Protein 1 (C-NAP1; also known

as CEP250) (21, 55, 66, 75, 76) (Figure 4). At this stage, the separating

centrosomes form the poles of the mitotic spindle to facilitate

chromosome segregation (Figure 1) (19).

In the M phase, PLK1 also phosphorylates Ninein-like protein

(NLP), which interacts with BRCA1 to mediate spindle assembly

and centriole separation (22, 57). NLP is also phosphorylated and

regulated by AURKB (33), a major component of the chromosome

passenger complex (CPC), which is responsible for correcting

improper spindle attachments to the kinetochores during

metaphase in order to facilitate the proper execution of mitosis

(16). AURKB also controls chromosome condensation and

orientation by regulating survivin, another CPC subunit (34).

Survivin, which localizes to the mitotic spindle, microtubules and

centrosome (19) is phosphorylated by PLK1 and activates AURKB

to promote mitotic exit and complete cell division (71). During

mitotic exit, separase cleaves the sister chromatids and initiates

anaphase (23). Anaphase-promoting complex/cyclosome (APC/C)

then facilitates the separation of the sister chromatids, thereby

promoting chromosome separation (13). Chromosomes are then
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evenly divided into two daughter cells during cytokinesis (19). As

such, centrosomes and their associated players have a crucial role

throughout the cell cycle (10) and centrosome aberrations, such as

defects in the structure and function of centrosomes as well as the

dysregulation of their associated proteins, could lead to known

hallmarks of cancer such as mitotic catastrophe and aneuploidy (17,

19, 77) (Figure 1).
Centrosomes and their associated
proteins in breast cancer

Centrosome aberrations are a result of the centrosome cycle

being deregulated or a direct consequence of cytokinesis failure
Frontiers in Oncology 03
(78). This has been linked to chromosomal instability, which may

support genomic changes and mutation accumulation that can

encourage tumor development and resistance to therapy (79).

Hence, it’s not surprising that centrosome aberrations have been

implicated in various cancers and contribute to their development,

growth and metastatic progression (80–83). A common centrosome

aberration found in many cancers is centrosome amplification,

which leads to alterations in the intricate process of cell division,

thereby resulting in numerical chromosomal instability (i.e.,

aneuploidy or polyploidy) and the accumulation of genetic

changes (84). This in turn can enhance tumorigenic properties of

cancer cells. Numerical chromosomal instability induced by

centrosome amplification can also accelerate the onset and spread

of carcinomas via the accumulation of genetic mutations (19, 83,
FIGURE 1

Overview of the mechanism of centrosomes during the cell cycle. Initiation of centriole duplication begins in G1. CEP152 and CEP192 recruit PLK4,
which binds and phosphorylates SCL/TAL-interrupting locus protein (STIL) and associates with spindle assembly abnormal protein 6 (SAS6). STIL is
recruited by CEP131, which gets phosphorylated by Polo-like kinase 4 (PLK4) and is responsible for regulating the centriole positioning of Cyclin-
dependent kinase 2 (CDK2). CDK2 binds to its cyclin partner (cyclin E) but this interaction is inhibited by p21, the latter which gets activated by p53.
Centriole duplication and elongation commences in S phase. The phosphorylation of STIL promotes its binding to centrosomal P4.1-associated
protein (CPAP), which interacts with C-terminal encoded protein 120 (CEP120). CEP135 associates with SAS6 to link it to CPAP. Checkpoint kinase 1
(CHK1) phosphorylates and inhibits cell division cycle 25 (CDC25) A/C, which is responsible for dephosphorylating and activating CDK2/Cyclin A and
CDK1/Cyclin B, respectively. CHK1 also phosphorylates and activates WEE1 during G2 (centriole maturation), which can phosphorylate and inhibit
CDK1 activity. CDK1/Cyclin B interacts with Aurora kinase A to enhance its phosphorylation and activation of PLK1. Aurora kinase A activity is
inhibited by BRCA1. PLK1 induces CDC25C activation and WEE1 degradation as well as regulates NIMA-related-kinase 2 (NEK2) activity. NEK2
phosphorylates CEP250 and mediates centrosome separation (M phase). Mitosis (M) is broken down into 6 steps: interphase, prophase, metaphase,
anaphase, telophase, and cytokinesis. During prophase, PLK1 and Aurora kinase B phosphorylate Ninein-like protein (NLP) and survivin. The former
interacts with BRCA1, and the latter activates Aurora kinase B activity. BRCA1 also inhibits PLK1 activity. CDK1/Cyclin B activates APC/C which
regulates chromosome separation and degrades centrosomal components (such as SAS6, STIL, etc.) throughout mitosis. Separase regulates
chromosome and centriole separation by cleaving sister chromatids during metaphase. Based on references 9, 13, 21 and 22. Created with
BioRender.com.
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85). Hence, the genomic instability that drives the development of

cancer is exacerbated by these anomalies, which hinders the proper

segregation of chromosomes during cell division.

Specific to this review, centrosome amplification has been

strongly associated with the development and progression of

breast cancer (10, 30) and numerical chromosomal instability is

frequently observed in this disease (86, 87). It is a common feature

of the most aggressive triple-negative breast cancer subtype, or

TNBC, a highly genetically unstable disease (88). Breast tumors are

fueled by this instability (89) and subsequently promote the

acquisition of new mutations, which contributes to breast tumor

heterogeneity (90). In vitro and in vivo studies in breast cancer have

confirmed that centrosome amplification promotes tumorigenesis

(10, 91, 92). However, the underlying causes of centrosome

aberrations in cancer in general and in breast cancer in particular

are not fully understood due to the complexities of the regulation of

centrosomes and multiple proteins involved in regulating this key

component of cell division. Here we highlight key proteins linked to

the regulation of centrosomes and their utility as targets for

therapeutic development.
Polo-like kinases

A family of serine/threonine protein kinases known as the PLKs

are involved in the control of many different cellular functions, with

the regulation of centrosomes being of particular importance (26).

There are five members in this family (PLK1-5) and each member

has a unique function and subcellular location (26). PLK2 and PLK3

aid in regulating mitosis through centriole duplication and DNA

replication respectively (26), with studies reporting tumor-

promoting properties in colorectal cancer (27, 28). Meanwhile,

PLK1 and PLK4 appear to be essential for centrosome regulation

(93), with PLK1 controlling centrosome maturation (94) and PLK4

controlling centriole duplication (63). Hence, aberrations of PLK1

and PLK4 can cause centrosome-related errors, which in turn

impact genomic stability and cell division accuracy and thereby

play a vital role in cancer, including breast cancer (24, 25) (Table 1).
PLK1

PLK1 is a key regulatory protein involved in cell division and

preservation of genomic integrity (90). Specifically, PLK1 controls

the process of centrosome maturation by phosphorylating

pericentriolar material proteins to drive their expansion

(Figure 4) (95). It was noted that in healthy cells, PLK1

expression is strictly regulated, ensuring that it is activated

precisely when needed throughout G2 and mitosis (96). PLK1 has

been found to be overexpressed in breast cancer (97), with up to

92% of TNBC patients showing overexpressed levels of this protein

(98). Overexpression of PLK1 in breast cancer is thought to result in

aberrant cell division and genomic instability (99) (Table 1). Higher

PLK1 levels have also been linked to chemotherapy resistance (100)
Frontiers in Oncology 04
TABLE 1 Overview of the function and aberrations of centrosome-
associated proteins.

Protein Function Aberration

Polo-Like Kinases (PLKs)

PLK1 (6,
20–25)

• Regulates centrosome maturation
and separation, spindle assembly
and mitotic entry.
• Induces CDC25C activation and
WEE1 degradation.
• Regulates NEK2 activity and
AURKA localization.
• Phosphorylates and releases NLP
during mitosis.
• Phosphorylates and
activates survivin.

• Overexpressed in breast
and prostate cancer.
• Overexpression leads to
chromosome segregation
defects, increases cancer
cell proliferation, and
promotes genomic
instability.
• Overexpression is
associated with
poor prognosis.

PLK2
(26, 27)

• Regulates mitosis by
phosphorylating and activating
proteins involved in spindle
assembly, centrosome maturation,
and cytokinesis, ensuring proper
chromosome segregation and
cell division.

• Overexpressed in
colorectal cancer.
• Overexpression blocked
apoptotic cell death and
promoted tumor growth.

PLK3
(26, 28)

• Regulates mitosis by
phosphorylating and activating
proteins involved in centrosome
maturation, spindle formation, and
chromosome alignment, ensuring
proper cell division and
genomic stability.

• Downregulated in
colorectal cancer.
• Low levels associated
with worse prognosis in
colorectal cancer.

PLK4 (24,
25, 29, 30)

• Centriole duplication. • Overexpressed in breast,
prostate, and cervical
cancer.
• Overexpression results
in supernumerary
centrosomes, thereby
promoting
genomic instability.

Aurora Kinases (AURKs)

AURKA
(6, 20,
31, 32)

• Regulates centrosome maturation
and separation, spindle assembly
and formation.
• Phosphorylates and
activates PLK1.

• Overexpressed in breast
and prostate cancer.
• Overexpression
promotes centrosome
amplification
and aneuploidy.

AURKB
(16,
32–34)

• Component of the chromosome
passenger complex (CPC), which is
essential for proper mitosis.
• Controls chromosome
condensation and orientation.
• Phosphorylates and regulates
NLP.
• Regulates cell proliferation via
phosphorylation of survivin.

• Overexpressed in breast
and prostate cancer,
NSCLC, and glioblastoma.
• Overexpression leads to
chromosome segregation
defects, improper cell
division, aneuploidy, and
genomic instability.

AURKC
(35)

• Role in mitosis is understudied. • Expression is limited to
testicular tissue.

Cyclin/Cyclin-Dependent Kinases (CDKs)

CDK1/
CDC2
(36–40)

• Controls the activation of CDK1/
Cyclin B.

• Overexpressed in breast
and colorectal cancer.
• Overexpression leads to
improper cell division.

(Continued)
frontiersin.org

https://doi.org/10.3389/fonc.2024.1370565
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Athwal et al. 10.3389/fonc.2024.1370565
TABLE 1 Continued

Protein Function Aberration

Cyclin/Cyclin-Dependent Kinases (CDKs)

CDK2
(36–40)

• Regulates mitotic entry and exit,
chromosome and centrosome
separation and bipolar spindle
assembly.
• Enhances AURKA-mediated
PLK1 phosphorylation and
activation.
• Activates APC/C during mitosis.

• Overexpressed in breast,
ovarian, pancreatic, liver,
lung, thyroid, and
colorectal cancer.
• Overexpression leads to
aberrant cell cycle
progression and
genomic instability.

Checkpoint Kinase 1 (CHK1)/WEE1

CHK1
(41–43)

• DNA-damage checkpoint.
• Causes temporary S and G2 phase
arrest by phosphorylating and
inhibiting CDC25A and C,
respectively.
• Phosphorylates and
activates Wee1.

• Overexpressed in breast
cancer (specifically
TNBC), colon, and liver
cancer.
• Overexpression
promotes cell invasion
and metastasis.

WEE1
(43–45)

• DNA-damage checkpoint.
• Phosphorylates and inhibits CDK1
activity, thereby causing G2 arrest.

• Overexpressed in breast,
colon, and liver cancer.
• Overexpression results
in increased tumor cell
proliferation, and
subsequent
genomic instability.

C-terminal Encoded Proteins (CEPs)

CEP120
(46, 47)

• Associates with CPAP and
regulates centriole elongation.

• Overexpressed in gastric
cancer.
• Overexpression induces
the formation of
excessively long centrioles.

CEP131
(48–50)

• Phosphorylated by PLK4.
• Recruits STIL.
• Regulates the centriole positioning
of CDK2.

• Overexpressed in breast
and colon cancer.
• Overexpression results
in supernumerary
centrosomes, thereby
promoting chromosomal
instability, mitotic
aberrations, and
genomic instability.

CEP135
(51, 52)

• Participates in procentriole
assembly.
• Associates with SAS6 to connect it
to CPAP.

• Dysregulated in breast
cancer.
• Dysregulation can cause
defects in chromosome
segregation and promote
centriole amplification.

CEP152
and 192
(53, 54)

• Recruits PLK4 to centrioles. • CEP192: Elevated levels
in hepatocellular
carcinoma.
• Overexpression
promotes cellular.
proliferation and
genomic instability.

CEP250
(C-
NAP1)
(55)

• Interacts with NEK2 to promote
centrosome separation.

• Overexpressed in breast
and colon cancer (TCGA).

(Continued)
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TABLE 1 Continued

Protein Function Aberration

Other

APC/C
(13, 56)

• Regulates the separation of sister
chromatids and mitotic exit.
• Controls the activity of CDK1/
Cyclin B.
• Degrades SAS6, STIL, CPAP
and cyclins.

• Levels are upregulated in
breast cancer.
• Aberrant APC/C activity
induces abnormal cellular
proliferation, aneuploidy,
and genomic instability.

BRCA1
(57)

• Localized at the centrosome.
• Cell cycle and DNA-damage
checkpoint.
• Inhibits PLK1 to regulate NLP
centrosome localization and protein
stability.
• Interacts with NLP to regulate
chromosome segregation and
bipolar spindle formation.
• Ubiquitylates and degrades cyclin
B and CDC25C.
• Inhibits AURKA activity.

• Mutated or depleted in
breast and ovarian cancer.
• Mutation or suppression
leads to improper DNA
repair, aberrant cell cycle
progression, aneuploidy,
and genomic instability.

CDC25A
(58–61)

• Dephosphorylates CDK2
rendering it active.
• Regulates G1/S progression.

• Overexpressed in breast
and colorectal cancer.
• Overexpression
promotes aberrant cycle
progression, chromosome
aberrations and
genomic instability.

CDC25C
(60, 62)

• Regulates G2/M progression and
plays an important role in
checkpoint protein regulation in
case of DNA damage, which can
ensure accurate DNA information
transmission to the daughter cells.
• Dephosphorylates CDK1 and
activates the CDK1/Cyclin
B complex.

• Overexpressed in breast,
ovarian, lung, liver,
gastric, bladder, prostate,
and colorectal cancer.
• Overexpression causes
abnormal cell cycle
progression, which leads
to uncontrolled cell
proliferation and
genomic instability.

CPAP/
CENPJ
(63–65)

• Regulates centriole assembly,
length, and duplication.
• Regulates growth of microtubules
during centriole assembly and
elongation.
• Associates with STIL.

• Overexpressed in breast
cancer.
• Overexpression results
in unchecked cellular
proliferation, which leads
to genomic instability.

NEK2 (21,
66, 67)

• Role in bipolar spindle assembly.
• Mediates centrosome separation.
• Promotes mitotic entry.
• Phosphorylates CEP250.

• Overexpressed in breast
cancer.
• Overexpression results
in supernumerary
centrosomes and
multinucleated cells,
thereby promoting
genomic instability.

NLP (22,
33, 57)

• Regulates chromosome
segregation and bipolar spindle
formation.
• Interacts with BRCA1.
• Phosphorylated by CDK1,
AURKB and PLK1.

• Overexpressed in breast,
lung, and ovarian cancer.
• Overexpression induces
aneuploidy and
genomic instability.

SAS6
(68, 69)

• Associates with STIL and PLK4. • Overexpressed in breast
and colorectal cancers.
• Overexpression results
in supernumerary
centrosomes, thereby

(Continued)
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and aggressive tumor cell morphologies (101), making this protein

an attractive biomarker candidate (102, 103) and a drug target. A

number of PLK1 inhibitors, such as Rigosertib (ON-01910),

Volasertib (BI 6726) and BI 2536 (104–106), have been developed

(Table 2). These highly selective PLK1 inhibitors have been

investigated in preclinical studies (104–106, 189) and have been

reported to promote apoptosis, G2/M arrest and to induce

anticancer effects in head and neck square cell carcinoma

(Rigosertib) (105), non-small cell lung carcinoma and melanoma
Frontiers in Oncology 06
(Volasertib) (106), colorectal cancer (Volasertib and BI 2536) and

pancreatic and cervical cancers (BI 2536) (104). BI 2536 has also

been shown to reduce the invasion and metastasis of breast cancer

(107). In response to BI 2536, tamoxifen-resistant MCF-7 breast

cancer cells display antiproliferative effects in vitro and antitumor

effects in vivo (107). Currently, there is a lack of knowledge of the

efficacy of Rigosertib and Volasertib monotherapy in breast cancer,

hence clinical trials are focused on other carcinomas (115, 116, 118)

(squamous cell, pancreatic, acute myeloid leukemia) and disorders

(117) (myelodysplastic syndrome). However, BI 2536 has entered

phase II clinical trials for patients with recurrent or metastatic solid

tumors, such as breast cancer (108).
PLK4

PLK4 plays an important role in centrosome amplification in

breast cancer, overseeing the essential process of centriole duplication

(10, 30). By phosphorylating and activating STIL, a central part of the

centriole, PLK4 allows its interaction with other centrosome-related

proteins, such as SAS6 and CPAP (63) (Figure 2). The binding and

recruitment of these other centrosome-associated proteins facilitate the

process of centriole duplication (63). PLK4 is often aberrantly

expressed in breast cancer, which can lead to abnormal centrosome

duplication and aneuploidy, thereby inducing genomic instability and

consequently contributing to breast cancer tumorigenesis and poor

clinical prognosis (30). High levels of PLK4 are especially significant in

TNBC, as overexpression of this gene has been observed in 48% of

TNBC tumors, demonstrating the potential correlation between PLK4

and the development of TNBC (190). A more comprehensive

investigation further demonstrates that PLK4 overexpression occurs

in 26% of all breast cancer tumors, and this overexpression has been

associated with a reduced survival rate among breast cancer patients
TABLE 1 Continued

Protein Function Aberration

Other

promoting
genomic instability.

Separase
(23, 70)

• Initiates anaphase.
• Regulates chromosome and
centriole segregation by cleaving
sister chromatids.

• Overexpressed in breast
cancer.
• Overexpression induces
aneuploidy and
genomic instability.

STIL
(68, 69)

• Bound and phosphorylated
by PLK4.

• Overexpressed in breast,
lung, and ovarian cancers.
• Overexpression results
in supernumerary
centrosomes, thereby
promoting
genomic instability.

Survivin
(19, 34,
71, 72)

• Localized on centrosomes,
microtubules, and mitotic spindle.
• Regulates chromosome cohesion
and metaphase alignment.
• Activates AURKB and promotes
cell division.

• Overexpressed in breast,
lung, gastric, colon, liver,
and ovarian cancer.
• Overexpression results
in improper cell division,
increased cancer cell
proliferation and
genomic instability.
FIGURE 2

Overview of centriole duplication. To initiate centriole duplication, C-terminal encoded protein (CEP) 152 and CEP192 recruit Polo-like kinase 4
(PLK4) to the mother centriole, where it phosphorylates CEP131, which in turn recruits SCL/TAL-interrupting locus protein (STIL). PLK4 then binds
and phosphorylates STIL as well as associates with spindle assembly abnormal protein 6 (SAS6) during late G1 and early S phase to initiate centriole
duplication. CEP135 interacts with SAS6 to link it to centrosomal P4.1-associated protein (CPAP), which directly binds to CEP120 to induce centriole
elongation of the nascent centriole. Cyclin E is recruited to the centrosome via its centrosome localization domain to promote entry into the S
phase and facilitate centriole duplication. It is bound to both the centrosome and its Cyclin-dependent kinase (CDK) partner, CDK2, to facilitate
centriole duplication and progression of the cell cycle. Based on references 24, 27, 150 and 212. Created with BioRender.com.
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(191). In addition to being correlated with centrosome amplification,

the increased expression of PLK4 suggests that it may play a role in the

development of more aggressive tumors that exhibit high-grade

malignancy and a dedifferentiated cellular state (30). Understanding

the relationship between centrosome amplification, PLK4

overexpression, and the poor prognosis linked to aggressive tumors,

PLK4 becomes a compelling target for therapy in high-grade breast

malignancies (192) (Table 1).
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Various targeted therapeutic compounds against PLK4 have

been developed, such as Centrinone, Centrinone B, CFI-400945 and

YLT-11 (109, 112, 119) (Table 2). Centrinone and Centrinone B are

highly selective PLK4 inhibitors (109). They both act by preventing

centriole formation, which results in the depletion of centrosomes

and subsequent cell cycle arrest (109). Centrinone has been shown

to cause p53-mediated G1 arrest in cervical cancer (HeLa) cells

(109), while Centrinone B induces apoptotic death in melanoma
FIGURE 4

Overview of centriole maturation. Centriole maturation occurs during G2/M and is governed by both Polo-like kinase 1 (PLK1) and Aurora kinase A
(AURKA). Both centrosome-associated proteins are bound and recruited to the centrosome by C-terminal encoded protein 192 (CEP192) and are
responsible for expanding the pericentriolar material in order to prepare for mitotic spindle formation. CEP250 is one of the many factors that form
the linkage between both centrioles and acts as a docking site for other proteins to bind to. CEP250 is bound and phosphorylated by NIMA-related-
kinase 2 (NEK2) at the proximal ends of both centrioles. Together, PLK1, AURKA, CEP250 and NEK2 orchestrate centriole maturation and separation.
Cyclin B is bound to the centrosome via a centrosome localization sequence at its C-terminus. The activation of cyclin B with its Cyclin-dependent
kinase (CDK) partner, CDK1, occurs at the centrosome through the dephosphorylation by cell division cycle 25C (CDC25C), where its activity is
regulated by Checkpoint Kinase 1 (CHK1). CHK1 also targets WEE1 for activation, which inactivates CDK1/Cyclin B. The centrosome-associated
proteins, CHK1, WEE1, CDK1/Cyclin B and CDC25C also work together to facilitate centriole maturation and separation. Based on references 21, 36,
37, 152 and 234. Created with BioRender.com.
FIGURE 3

Cyclin-dependent kinases (CDKs) and their cyclin partners facilitate centriole duplication. Cyclin E is recruited to the centrosome via its centrosome
localization domain and binds to the centrosome and its Cyclin-dependent kinase (CDK) partner, CDK2, to promote S phase entry and facilitate
centriole duplication. Cyclin A has a centrosome localization sequence that allows it to bind to the centrosome as well as CDK2. The complex
formation of cyclin A and CDK2 is promoted by cell division cycle 25A (CDC25A), which in turn is regulated by Checkpoint Kinase 1 (CHK1). Based
on references 150, 151 and 238. Created with BioRender.com.
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TABLE 2 Overview of drugs targeting centrosomes and associated proteins.

Drug name
Targets
(IC50)

Effects Preclinical Studies Clinical Trials

Polo-like Kinase Inhibitors

BI 2536 (104,
107, 108)

PLK1 (0.83 nM),
PLK2 (3.5 nM),
PLK3 (9.0 nM)

• First selective PLK1
inhibitor.
• Further reduces the invasion
and spread of breast cancer.

• Induced G2/M arrest and apoptotic cell death
in tamoxifen-resistant MCF-7 cells and HeLa
cells in vitro.
• Inhibited tumor growth of human colon and
pancreas xenografts in immunodeficient nude
mice in vivo.
• Inhibited proliferation of tamoxifen-resistant
MCF-7 breast cancer cells in vitro.
• Inhibited tumor growth and metastasis in
tamoxifen-resistant MCF-7 breast cancer cells
in vivo.

Phase II: Breast Cancer, Endometrial,
Head and Neck, Melanoma, Ovarian,
Sarcoma (NCT00526149)

Centrinone
(109, 110)

PLK4 (2.71 nM) • Highly selective inhibitor.
• Prevents centriole
formation, which blocks
centriole duplication and
depletes centrosomes.

• Caused p53-mediated cell cycle arrest in the
G1 phase in Hela cells in vitro.
• Blocked cell proliferation and reduced
survival of MCF-7 cells in vitro.

N/A

Centrinone B
(109, 111)

PLK4 (8.69 nM) • Highly selective inhibitor.
• Prevents centriole
construction, which blocks
centriole duplication and
depletes centrosomes.

• Human melanoma cell lines, except those
that are p53 mutant, have significantly lower
cell viability and increased apoptotic cell death
in vitro.

N/A

CFI-400945
(112–114)

PLK4 (2.8 nM) • Oral, specific, first-in-class
inhibitor.
• Inhibits PLK4 by preventing
its autophosphorylation at
serine 305.
• Induces genomic instability
and aneuploidy, which results
in cell cycle arrest or
cell death.

• Inhibits tumor development significantly in
MDA-MB-468 nude mice xenografts in vivo.
• Anticancer effects observed in breast-,
ovarian, colorectal, and lung cancer cell lines.

Phase II: TNBC
(NCT03624543)

Rigosertib (ON-
01910) (105,
115–117)

PLK1 (9 nM) and
PLK2 (39 nM)

• Highly potent against PLK1. • Caused cell cycle arrest and apoptosis in head
and neck squamous cell carcinoma (HNSCC)
in vitro.
• Induced tumor regression in xenografts of
HNSCC in vivo.

Phase II: Squamous cell carcinoma
(NCT03786237)
Phase III: Myelodysplastic syndrome
(NCT01241500) and pancreatic
cancer (NCT01360853)

Volasertib (BI
6727) (106, 118)

PLK1 (0.87 nM),
PLK2 (5 nM),
PLK3 (56 nM)

• Highly potent and selective
against PLK1.

• Induced G2/M arrest and apoptosis in
NSCLC cells in vitro.
• Caused tumor regression in xenografts of
neuroblastoma and colorectal cancer in vivo.

Phase II: Acute myeloid
leukemia (NCT00804856)

YLT-11 (119) PLK4 (22 nM) • Causes cell death,
aneuploidy, and
mitotic catastrophe.

• Induced cell death in breast cancer cell lines
in vitro.
• Reduced tumor growth in human breast
cancer xenograft models in vivo.

Phase I: Breast cancer (https://doi.org/
10.1038/s41419-018-1071-2)

Aurora Kinase Inhibitors

Alisertib
(MLN8237)
(120–124)

AURKA
(1.2 nM)

• Highly selective inhibitor.
• Second generation
(predecessor to MLN8054).

• Induced cell cycle arrest, spindle aberrations,
polyploidy, followed by senescence or apoptosis
in multiple myeloma cells in vitro.
• Blocked tumor growth of prostate, ovarian
and colorectal cancer cell lines in vitro.
• Caused tumor regression in neuroblastoma
and lymphoma xenografts in vivo.

Phase II: Breast cancer
(NCT01045421,
NCT00807495, NCT01466881)

Barasertib
(AZD1152)
(125, 126)

AURKA (1.37
mM) and AURKB
(0.37 nM)

• Highly selective AURKB
inhibitor.
• Interferes with G2,
mitosis, cytokinesis.

• Inhibited growth of breast cancer cell lines in
vitro.
• Inhibited tumor growth in xenograft models
of breast cancer in vivo.

Phase I: Advanced solid tumors (https://
doi.org/10.1007/s10637-012-9825-7)

BI 811283 (120,
127, 128)

AURKB (9 nM) • Disrupts cell
cycle progression.

• Inhibited proliferation and induced
polyploidy, and senescence in cancer cell lines

Phase I: Advanced solid tumors (https://
doi.org/10.1007/s00280-016-3095-6)

(Continued)
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TABLE 2 Continued

Drug name
Targets
(IC50)

Effects Preclinical Studies Clinical Trials

Aurora Kinase Inhibitors

in vitro.
• Inhibited tumor growth of NSCLC and
colorectal cancer cell line xenograft models.

ENMD-2076
(129–133)

AURKA (13 nM) • Selective against AURKA. • Induced G2/M arrest and apoptosis in
multiple myeloma cells in vitro.
• Induced tumor regression in xenografts of
breast, melanoma, and colorectal cancer.

Phase II: Ovarian cancer
(NCT01104675), Triple Negative Breast
Cancer (NCT01639248)

Hesperidin
(134, 135)

AURKB
(250 nM)

• Potent inhibitor. • Observed antiproliferative effects in MCF7
cells in vitro.
• Reduced tumor growth and metastasis in
xenograft models of TNBC in vivo.

N/A

VX-680 (MK-
0457) (136–140)

AURKA (0.6
nM), AURKB (18
nM), AURKC
(4.6 nM)

• First inhibitor.
• Reduces cell growth and
induces apoptosis.

• Inhibited proliferation and induced G2/M
arrest and apoptosis of clear cell renal cell
carcinoma in vitro.
• Prevents the formation of leukemia, colon,
and pancreatic cancers in vivo.

Phase I: Cancer (NCT02532868)

VX-689 (MK-
5108) (120,
141, 142)

AURKA
(0.064 nM)

• Highly selective. • Inhibited tumor growth in human tumor cell
lines (breast, colon, pancreas, NSCLC) in vitro
and in colorectal carcinoma xenograft models
in vivo.

Phase I: Solid tumors (NCT00543387)

CDK1/2 Inhibitors

CYC065
(Fadraciclib)
(143, 144)

CDK2 (5 nM) • Second generation. • Induced apoptosis in trastuzumab-resistant
breast cancer cells in vitro.
• Inhibited growth of trastuzumab-resistant
breast cancer xenografts in vivo.

Phase I: Advanced solid
tumors (NCT02552953)

Dinaciclib (MK-
7965; SCH
727965)
(7, 145–149)

CDK1 (3 nM),
CDK2 (1 nM)

• Second generation.
• Therapeutic index is 10-fold
higher than Flavopiridol.

• Induced apoptosis and G1 and G2/M arrest
in various human tumor cell lines (breast,
prostate, pancreas etc.) in vitro.
• Inhibited cell proliferation in xenograft
models of ovarian, and pancreatic cancers.

Phase II: NSCLC (10.1016/
j.lungcan.2013.11.020), advanced breast
cancer (10.1016/j.clbc.2013.10.016)

Flavopiridol
(alvocidib) (18,
145, 150, 151)

CDK1 (30–50
nM),
CDK2 (70–
170 nM),

• First generation.
• Suffered from low
therapeutic index.

• Induced G1 and G2 arrest in vitro.
• Induced apoptosis in mouse tissue in vivo.
• Induced tumor regression in xenografts of
lymphoma and leukemia.

N/A

HI 5 (3-
hydrazonoindolin-
2-one) (152)

CDK2 (1.15 mM) • Novel anti-breast
cancer drug.

• Induced G2/M arrest and apoptotic death in
MCF7 cells in vitro.

N/A

R-roscovitine
(seliciclib/
CYC202)
(18, 153)

CDK1 (650–2690
nM), CDK2
(100–710 nM)

• First generation.
• Suffered from low
therapeutic index.

• Induced G2/M arrest and cell death in
colorectal carcinoma in vitro.
• Growth of xenografts for colorectal and
uterine cancer was mildly suppressed in vivo.

N/A

RGB-286638
(154, 155)

CDK1
(2 nM), CDK2
(3 nM)

• Second generation. • Induced mitotic arrest and apoptosis and
inhibited transcription in multiple myeloma
cells in vitro.
• Inhibited tumor growth and extended
survival of mice bearing multiple myeloma
xenografts in vivo.

Phase I: Advanced solid tumors (https://
doi.org/10.1158/1078-0432.CCR-
14-0325)

TG02
(Zotiraciclib)
(156, 157)

CDK1 (9 nM),
CDK2 (5 nM)

• Second generation. • Induced G1 arrest and apoptosis in multiple
cancer cell lines. (TNBC, colon, lung,
melanoma) in vitro.
• Caused tumor regression and extended
survival of mice with TNBC and
AML xenografts.

N/A

(Continued)
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TABLE 2 Continued

Drug name
Targets
(IC50)

Effects Preclinical Studies Clinical Trials

CHK1/WEE1 Inhibitors

AZD1775 (MK-
1775; adavosertib)
(6, 158–163)

WEE1 (5.2 nM) • Prematurely initiates
mitosis, causing cell cycle
arrest and consequent
apoptotic cell death.

• Initiated apoptosis and cell cycle arrest in
breast and colorectal cancer cells in vitro.
• Extended survival in pancreatic, NSCLC, and
glioma xenografts in vivo.
• Observed anticancer effects in trastuzumab-
resistant HER-2+ breast cancer cells.

Phase I: Advanced solid tumors
(NCT0248231)
Phase II: Lung, ovarian, pancreatic,
stomach, and head and neck cancer

LY2606368
(prexasertib)
(164, 165)

CHK1 (<1 nM),
CHK2 (8 nM)

• High selectivity for CHK1. • Caused replication catastrophe, which
fragmented chromosomes and caused mitotic
cell death in vitro.
• Inhibited tumor growth in xenografts of
lung cancer.

Phase II: TNBC, ovarian and prostate
cancer (NCT02203513)

MK-8776 (SCH
900776)
(166–169)

CHK1 (3 nM),
CDK2 (160 nM)

• High potency and selectivity
for CHK1.

• Induced G2/M arrest and apoptosis in
cervical, lung, pancreas, and colon cancer in
vitro.
• Observed antitumor effects in breast cancer
cells with p53 depletion in vitro.
• Increased the efficacy of chemotherapy in
xenograft models of pancreatic cancer in vivo.

Phase I: Advanced solid
tumors (NCT00779584)

Others

CCB02 (170) CPAP-tubulin
inhibitor
(689 nM)

• Causes centrosome
declustering, prolonged
multipolar mitosis and
cell death.

• Demonstrated antiproliferative activity in
TNBC cells in vitro and in nude mice bearing
human breast and lung tumor xenografts
in vivo.

N/A

INH1 (171) NEK2 (56 mM) • Disrupts Hec1/NEK2
binding and triggers
NEK2 degradation.

• Suppressed breast cancer cell proliferation in
vitro.
• Reduced growth of breast cancer mouse
xenografts in vivo.

N/A

RE44 (10d)
(172, 173)

CDC25A (13.5
mM) and
CDC25B (4.26
mM) Inhibitor

• Disrupts CDC25A/
B activity.

• Caused mouse cancer cells to enter a G2/M
phase of cell cycle arrest in vivo.
• Prevented the CDC25B substrate, CDK1 from
being dephosphorylated.

N/A

Sepin-1 (174) Separase
(14.8 mM)

• Non-competitive inhibitor
of separase.

• Suppressed cell proliferation and induced
apoptosis.
• Reduced growth of human cancer cell lines
and breast cancer xenograft tumors in mice
in vivo.

N/A

Combination Therapy

Alisertib +
Paclitaxel
(175, 176)

AURKA
+ Microtubules

• Alisertib potentially delays
the onset of acquired
resistance to paclitaxel.

• Synergistic anticancer effects observed in
breast cancer xenograft models in vivo.

Phase II: Breast cancer (NCT02187991)

AZD1775 +
Paclitaxel
(177–182)

WEE1
+ Microtubules

• Effective against tumors with
a defective G1 phase
checkpoint due to loss of
p53 function.

• Demonstrated antitumor activity in xenograft
models of breast, ovarian and lung cancer
in vivo.

Phase I Ovarian Cancer
(NCT02272790), TNBC
(NCT03012477), Gastric cancer
(NCT02448329), lung
cancer (NCT02513563)

CFI-400945 +
Radiation
(183, 184)

PLK4 +
DNA damage

• Further exacerbates
chromosomal instability to
cause cellular lethality.

• Reduced colony formation and tumor
survival in TNBC cell lines (in vitro) and
xenograft models (in vivo) respectively.

N/A

Dinaciclib +
Pembrolizumab
(185–187)

CDK 1, CDK2 +
PD-1

• Dinaciclib shown to have
synergistic anticancer effects
with anti-PD-1 therapy.

• Exerts synergistic anticancer effects in
TNBC models.

Phase I: Advanced or metastatic breast
cancer (NCT01676753) and
hematological
malignancies (NCT02684617)

LY2606368 +
Olaparib
(164, 188)

CHK1 + PARP • LY3023414 synergizes with
Olaparib to cause cell death in
breast cancer cells.

• Synergistic antitumor effects observed in
TNBC cell models in vitro.

Phase I: Advanced solid
tumors (NCT03057145)
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cells (111). In MCF-7 human breast cancer cells, Centrinone caused

centrosome loss, which subsequently inhibited cellular proliferation

and reduced survival in vitro (110). However, in some cancer cells

(HeLa, NIH/3T3), Centrinone treatment blocked cellular

proliferation independent of centrosome loss and its effect was

suggested to be insufficient for use as a single agent for cancer

therapy (189). YLT-11 is another novel PLK4 inhibitor which has

shown substantial antiproliferative and antitumor effects in breast

cancer cells in vitro and in vivo respectively (119). Moreover, this

agent has demonstrated a good safety profile with no significant

toxic effects (119).

CFI-400945 emerges as the most promising candidate drug for

PLK4 inhibition (Table 2). It is the first orally available inhibitor

that targets PLK4 (112) and can also inhibit AURKB activity (113).

This drug inhibits PLK4 by preventing its autophosphorylation at

serine 305 (113). Upon inhibition of PLK4, it induces genomic

instability and aneuploidy, eventually leading to cell death or cell

cycle arrest (113). Inhibition of PLK4 has also been shown to

significantly reduce tumor growth in vivo (113). CFI-400945 has

shown antitumor activity in preclinical studies, including TNBC,

and has demonstrated to be a safe and well-tolerated drug in a phase

1 clinical trial (112, 113). It is currently being investigated in phase 2

trials (NCT03624543) in patients with TNBC (114). Although CFI-

400945 is demonstrating encouraging clinical responses from

monotherapy treatment, combination therapies with other DNA-

damaging agents or radiotherapy which promote mitotic

catastrophe may result in greater anticancer effects than each

treatment alone, thereby proving to be an effective treatment

strategy for breast cancer patients. Multimodality combination

treatment has been investigated in TNBC models, where CFI-

400945 with radiation (183, 184) has been shown to synergize

anticancer effects (Table 2). Namely, compared to single agent

treatment, the combination treatment significantly reduced

colony formation in TNBC cell lines and patient-derived

organoids (PDOs) in vitro and decreased tumor growth and

improved humane endpoint survival in mouse xenografts in vivo

(183). Both CFI-400945 (113) and radiotherapy induce genomic

instability and genotoxic stress, thus acting in combination

potentially further exacerbates chromosomal instability to

eventually cause cell death (192, 193).
Aurora kinases

AURKs are a family of serine/threonine protein kinases and are

vital for controlling several parts of the cell cycle, most notably

mitosis (194, 195). Three members make up the AURK family

(AURKA, AURKB, AURKC) (194). However, the role of AURKC

in mitosis is understudied and its expression is limited to testicular

tissue (35). Hence, knowledge of AURKC’s role in tumorigenesis is

limited (35). Conversely, AURKA and AURKB have piqued the

most interest among researchers due to their critical roles in

centrosome regulation (194, 195). AURKA plays a key role in

centrosome maturation and separation (16, 33, 196), specifically

by phosphorylating several pericentriolar material proteins to

organize the mitotic spindle (195) (Figure 4). While AURKB is
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essential for controlling chromosomal alignment and segregation

during mitosis (78, 79, 197). This ensures the correct arrangement

and operation of centrosomes during cell division. Overexpression

of AURKA and AURKB disrupts G2 phase checkpoints (198),

which results in improper chromosomal segregation during

mitosis, chromosomal instability, and promotes uncontrolled cell

division. These factors may contribute to tumor formation, as well

as the development of more aggressive and genetically

heterogeneous cancer cells (6, 199). AURKA/B have been

observed to be overexpressed in various cancers, including breast

(32, 200, 201). High expression of these kinases in breast cancer

strongly correlates with poor survival outcomes (202). It was

reported that inhibition of AURKA significantly decreased the

survival of luminal and HER-2 cancer models (202). In light of

this, the aberrant expression of AURKA/B in cancer emphasizes

their potential value as therapeutic and drug-development targets

(32, 203, 204) (Table 1).

Various inhibitors that target AURKA/B have been developed,

such as VX-680 (MK-0457), VX-689 (MK-5108), Alisertib

(MLN8237), ENMD-2076, Barasertib (AZD1152), Hesperidin,

and BI 811283 (120, 134, 136) (Table 2). VX-680 is a first-in-class

AURKA inhibitor (136). It has been shown to inhibit cellular

proliferation and promote apoptotic death in various human

cancers, such as ovarian and cervical cancers (136–138). It was

shown to induce G2/M arrest and apoptosis in clear cell renal cell

carcinoma in vitro (139) as well as tumor regression in colon and

pancreatic tumors in vivo (140). Although initial results were

encouraging, clinical trials using VX-680 were discontinued due

to the concern regarding its toxicity (205). However, VX-689, a

potent inhibitor of AURKA was well tolerated in preclinical models

and human studies with no reports of toxic adverse effects (120).

VX-689 monotherapy was shown to suppress cell proliferation in a

wide range of tumors, such as breast, colon, pancreas, and NSCLC

using in vitro models (141) and elicited anti-tumor effects in

colorectal xenograft models in vivo (120). A phase I clinical trial

of VX-689 monotherapy in advanced solid tumor patients showed

that the drug is generally well-tolerated (142). Alisertib is another

highly selective and second-generation AURKA inhibitor (120,

121). Upon inhibition of AURKA, it induces G2/M arrest and

aneuploidy, which subsequently leads to senescence or apoptosis in

multiple myeloma cells in vitro (122). Alisertib monotherapy has

also been shown to inhibit tumor cell proliferation in prostate,

ovarian and colorectal cancer cells in vitro (121). In vivo studies

have shown reduced tumor growth in xenografts of neuroblastoma

(123) and lymphoma (121). There are currently more than 30

clinical trials using Alisertib in a wide variety of cancers (breast,

lung, ovarian, prostate) (6). In particular, there are ongoing phase II

studies in breast cancer that show patient response rates of 18%

when given alisertib monotherapy (124). Inhibition of AURKA by

ENMD-2076 also promotes cell cycle arrest in the G2/M phase and

cell death via apoptosis in multiple myeloma cells in vitro (129).

ENMD-2076 treatment has also been shown to diminish the growth

of breast, melanoma and colorectal tumor xenografts in vivo (130).

Moreover, phase II trials of ENMD-2076 monotherapy in ovarian

cancer have demonstrated a median overall survival of

approximately 12 months, compared to 11 months without
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treatment (131, 132). Single-agent treatment with ENMD-2076 also

resulted in clinical benefit or partial response in 16.7% of patients

with TNBC in phase II trials (133), thereby highlighting its utility as

a novel therapeutic for cancer patients.

AURKB inhibitors have shown mixed results in terms of their

efficacy and clinical applicability (18) (Table 2). The selective AURKB

inhibitor Barasertib showed promising results in preclinical studies in

breast cancer (125) and was well tolerated in phase I trials in patients

with advanced solid tumors (126). However, phase II trials were

suspended after failing to show any significant clinical benefit in

most patients with advanced solid tumors, including breast tumors

(6). Other highly selective AURKB inhibitors include Hesperidin (134)

and BI 811283 (120). Hesperidin has demonstrated antiproliferative

activity inMCF7 breast cancer cells in vitro (134) and anticancer effects,

such as reduced tumor growth and metastasis in mouse xenograft

models of TNBC in vivo (135). Thus, further investigation regarding its

efficacy and safety profile is warranted. BI 811283 has also shown

efficacy in several solid tumors by inhibiting cell proliferation and

inducing polyploidy and senescence in vitro (127) and reducing tumor

growth in mouse xenograft models in vivo (127). Additionally, it has

been demonstrated to be well-tolerated in a phase I clinical trial in

patients with advanced solid tumors, including breast cancer (128).

Other novel therapeutic approaches have investigated the

combination of Alisertib (175) or AZD1775 (177) with paclitaxel,

a widely used anticancer agent that targets microtubules in a vast

array of tumors (206) (Table 2). When treating breast cancer

xenograft models with Alisertib and paclitaxel, synergistic or

additive effects were observed (176). Moreover, in a phase II

clinical study, the combination of Alisertib and paclitaxel

significantly improved median progression-free survival (10.2

months) in metastatic breast cancer patients compared to either

treatment alone (7.1 months) (175). This suggests that the addition

of Alisertib could potentially delay the onset of acquired resistance

to paclitaxel (175). Moreover, combining AZD1775 with paclitaxel

in a mouse xenograft model of breast cancer resulted in the

inhibition of tumor growth and extended animal survival (178).

Currently, multiple clinical trials are studying this combination in

various cancers harboring p53 mutations, including TNBC (179–

182); the type of mutations in which AZD-1775 monotherapy has

been proven to be most effective (177).
Cyclin-dependent kinases

Another group of regulatory proteins known as CDKs is involved

in centrosome control and cell cycle progression (36). There are 20

known members of the CDK family in humans, and they all play

different roles in regulating different facets of cell division and

proliferation (37, 38). In particular, CDK1 and CDK2 are

important cell cycle regulators that play a critical role in

coordinating various phases of cell division, including DNA

replication and segregation (39). The activity of CDK1/2 is closely

regulated by the binding of cyclins A/B (37), ensuring proper

progression through the cell cycle checkpoints (201). In particular,

CDK1/2 are essential for centrosome duplication and segregation

through their regulatory roles in the G1/S and G2/M phases of the cell
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cycle (37, 207–209) (Figures 2-4, Table 1). Specifically in G2, CDK1

promotes centrosome maturation and separation once activated by

cyclin B (210) and CDK2 phosphorylates proteins required for

centriole duplication and separation (211) (Figures 3, 4).

The dysregulation of CDKs can result in cell cycle aberrations

and centrosome abnormalities, specifically affecting centrosome

duplication and segregation, and ultimately promoting

tumorigenesis (40) (Table 1). Studies in breast cancer have

revealed elevated CDK1/2 levels in approximately 60% of tumor

samples compared to normal breast tissue (32). Elevated levels of

these kinases or their activating cyclins lead to disrupted cell cycle

checkpoints and abnormal cell division (212). This genomic

instability allows cell cycle progression even in the presence of

DNA damage, enabling breast cancer cells to evade arrest and divide

uncontrollably (213–215). Moreover, the overexpression of CDK1/2

interferes with DNA repair pathways, causing genomic instability

and tumor growth progression (215). In HER2-positive breast

tumors, overexpression of CDKs appears to promote unregulated

cell cycle progression and uncontrolled tumor development (216).

The control of the cell cycle in luminal breast tumors (217–219)

may also be influenced by CDK overexpression, which can

accelerate cell division. Consequently, targeting abnormal CDK1/

2 expression and activity has emerged as a promising therapeutic

strategy to suppress cancer cell proliferation and restore proper cell

cycle regulation (213).

Various CDK1/2 inhibitors have been developed and investigated

in preclinical and clinical studies, such as Flavopiridol (Alvocidib), R-

roscovitine (Seliciclib or CYC202), Dinaciclib (MK-7965 or SCH

727965), TG02 (Zotiraciclib), CYC065 (Fadraciclib), RGB-286638

and HI-5 (18, 143, 145, 152, 154, 156) (Table 2). Flavopiridol and R-

roscovitine are classified as first-generation pan-CDK inhibitors, which

demonstrate limited specificity to various CDKs (18). Flavopiridol

especially is the most extensively investigated CDK inhibitor, with over

60 clinical trials conducted between 1998 and 2014 (145). This

compound effectively inhibits several CDKs by inducing G1 and G2

arrest; thereby blocking cell cycle progression and subsequently

inhibiting cancer cell growth (150). These anticancer effects have

been observed in breast and lung cancer cells in vitro (150).

Flavopiridol also reduced tumor growth in xenograft models of

leukemia and lymphoma in vivo (151). However, despite

demonstrating strong antitumor activity in preclinical studies, phase

II clinical trials with Flavopiridol alone failed to show efficacy against

solid carcinomas (18). R-roscovitine also demonstrated antitumor

activity by inducing cell death and G2/M arrest in colorectal

carcinoma cells in vitro but only mildly suppressed tumor growth of

colorectal and uterine carcinoma xenografts in vivo (153), thereby

exhibiting a lack of clinical application as a therapeutic agent.

Moreover, first-generation pan-CDK inhibitors have led to relatively

high rates of adverse effects (220), causing toxicities at concentrations

required to effectively inhibit their targets (18).

To overcome the aforementioned drawbacks observed with

first-generation CDK inhibitors, second-generation pan-CDK

inhibitors have been developed (Table 2) (145). Dinaciclib was

one of the most extensively studied second-generation pan-CDK

inhibitor (145). Compared to Flavopiridol, it has a ten-fold higher

therapeutic index (146) and selectively targets CDK2 with an IC50
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of 1 nM (145). In preclinical studies, this compound induced cell

cycle arrest in G1 and G2/M as well as initiated apoptotic cell death

in multiple human cancer cell lines in vitro, including breast cancer

(146). Additionally, dinaciclib treatment suspended tumor cell

proliferation in ovarian (146) and pancreatic (147) xenograft

models in vivo. However, early clinical trials with Dinaciclib

monotherapy showed limited efficacy towards a range of solid

tumors, including breast cancer (7, 148, 149). However,

combining Dinaciclib with anti-PD-1 therapy showed synergistic

antitumor effects in colorectal cancer compared to single-agent

treatments (185). Hence, the combination of dinaciclib with PD-1

inhibitors, such as pembrolizumab has been investigated (186, 187)

(Table 2). Dinaciclib and pembrolizumab treatment caused

synergistic anticancer effects in TNBC models via attenuation of

metastasis and synthetic lethality (186). Encouraging antitumor

activity in hematological malignancies was also observed upon

combination treatment (187). Currently, phase I trials with this

combination modality are being tested in TNBC patients as well as

those with leukemia, multiple myeloma and lymphoma (186, 187).

Other second-generation pan-CDK inhibitors, such as TG02,

promote antiproliferative effects in a broad range of cancer cell lines

(TNBC, melanoma, lung, colon) by initiating G1 arrest and

apoptosis in vitro (Table 2) (156, 157). TG02 also reduced tumor

growth and survival in mouse xenograft models of acute myeloid

leukemia (AML) (156) and TNBC (157) in vivo. These results

support the development of trials focused on assessing the clinical

efficacy of TG02. Furthermore, CYC065 has been reported to cause

apoptotic death of trastuzumab-resistant breast cancer cells in vitro

as well as induce tumor regression in trastuzumab-resistant breast

cancer xenograft models in vivo (143). A phase I clinical trial in

patients with advanced solid tumors also demonstrated manageable

levels of toxicity upon CYC065 treatment, thereby supporting the

potential of this agent as a clinical therapeutic (144). Lastly, RGB-

286638 has been shown to block transcription and initiate cell cycle

arrest and cell death via apoptosis in multiple myeloma cells in vitro

(154). Additionally, it has inhibited tumor growth and survival of

multiple melanoma xenograft models in vivo (154). The

information regarding this compound’s efficacy in breast cancer is

still lacking, although a phase I study of RGB-286638 monotherapy

demonstrated to be safe and well tolerated in patients with

advanced solid tumors (155). Recently, a novel and potent CDK2

inhibitor, 3-hydrazonoindolin-2-one scaffold, called HI 5 has

emerged as a potential anti-breast cancer agent (152). It elicited

encouraging preclinical results by demonstrating antiproliferative

effects in MCF-7 breast cancer cells through the induction of growth

arrest at the G2/M phase and apoptotic death in vitro (152). Further

studies of H1 5 are warranted to advance its development to

clinical trials.
Checkpoint Kinase 1 (CHK1)/WEE1

CHK1 and WEE1 are checkpoint kinases that control the cell

cycle by slowing it down to ensure there is enough time for precise

DNA replication and DNA damage repair (221). This helps

preserve genomic stability and prevents the spread of potentially
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detrimental genetic changes (41, 221, 222). CHK1 mainly controls

the G2/M checkpoint to monitor DNA damage and cell cycle

progression (41), whereas WEE1 serves as a negative regulator

(44) of the cell cycle by blocking CDKs (Table 1). In terms of their

role in centrosome regulation, CHK1 localizes to interphase

centrosomes and controls centrosome separation through CDK1

activity, whereas WEE1 inactivates the CDK1/Cyclin B complex

through inhibitory phosphorylation to also participate in the

control of centrosome separation (223) (Figure 4).

Overexpression of CHK1 and WEE1 has been reported in the

setting of cancer (42, 43) and has been shown to aid in the growth

and development of tumors (41). The overexpression of CHK1 and

WEE1 in cancer cells provides them with a survival advantage over

cells with normal expression levels. These proteins facilitate cancer

cells to overcome genotoxic stress, promote extended cell cycle

arrest, and actively assist DNA repair pathways. Thus, cancer cells

are able to avoid dying and preserve the integrity of their DNA (41,

42). As a result, the normal checkpoints that prevent DNA

replication errors, genomic instability, and the buildup of DNA

damage are overridden by cancer cells (224). Various studies have

reported overexpression of CHK1 and WEE1 in breast cancer

patients (45, 225) as well as in colon and liver cancer (43)

(Table 1). This overexpression negatively affects the sensitivity of

these cells to chemicals that damage DNA in luminal breast tumors

(226). Increased expression in CHK1 and WEE1 also appears to

facilitate long-term survival of HER2-positive breast tumor cells

(45) through the repair of DNA damage, dysregulation of the cell

cycle and the evasion of apoptosis. On the other hand, inhibition of

CHK1/WEE1 halts the progression of the cell cycle, causing DNA

damage and premature entry of the cell into the M phase, which

may trigger selective destruction of cancer cells (227).

CHK1/WEE1 are emerging as promising candidates for

anticancer drug development (158, 164, 166). MK-8776, a

selective and potent inhibitor of CHK1, has been shown to cause

G2/M arrest and apoptotic death of cervical, lung, pancreas and

colon cancer cells in vitro (166). There has been a lack of research

regarding its role as a monotherapy in breast cancer and in vivo

studies. However, it has shown promising results as a

radiosensitizer in TNBC models in vitro by inhibiting autophagy

(167), as well as a chemosensitizer in pancreatic cancer xenograft

models in vivo (168). Phase I studies in patients with advanced solid

tumor carcinomas (but not breast cancer patients) demonstrated

that MK-8776 monotherapy was well tolerated (169) (Table 2).

LY2606368 (Prexasertib) has also demonstrated high selectivity

for CHK1 (164). Treatment of cancer cells with LY2606368 triggers

the activation of cell division cycle (CDC) 25A, resulting in

increased levels of CDK2 (18). This drives S phase progression,

which causes the accumulation of replication forks and

subsequently the formation of DNA double-stranded breaks,

commonly referred to as replication catastrophe (164). When

studying the antitumor effects of LY2606368 in preclinical

models, the compound caused the fragmentation of chromosomes

and induced mitotic cell death in HeLa cells in vitro (164) as well as

exhibited enhanced tumor regression in a lung cancer xenograft

model in vivo (164). In TNBC cell lines in vitro, LY2606368

monotherapy caused the degradat ion of homologous
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recombination proteins (BRCA1 and RAD51) as well as induced

cell cycle arrest in the S phase (228). These alterations in the

homologous recombination machinery suggest the possibility of

LY2606368’s utility as a combination modality with Olaparib, a

wel l-known PARP inhibitor that targets homologous

recombination deficiency in breast cancer (164). The combination

of LY26006348 with Olaparib induced DNA damage and cell cycle

arrest in TNBC cells in vitro, leading to mitotic catastrophe,

genomic instability and cell death (164). A phase II clinical trial

of LY26006348 monotherapy in patients with TNBC has shown

limited activity (165), hence clinical trials are focused on its

combination with other targeted agents, such as Olaparib (188).

The combination modality of LY26006348 and Olaparib has been

investigated in a phase I study in patients with metastatic solid

tumors, including advanced-stage breast cancer (188) (Table 2).

AZD1775 (MK-1775; Adavosertib), a potent, selective and first-

in-class WEE1 inhibitor, causes increased CDK1 and CDK2 levels,

leading to the premature entry of cells into mitosis (158). This

results in the induction of mitotic arrest and cell death via apoptosis

(158). These effects were observed in colorectal cancer cells in vitro

(158). AZD1775 monotherapy has also been reported to extend the

survival of pancreatic (159), NSCLC (160) and glioma (161) mouse

xenografts in vivo. In HER-2 positive breast cancer, AZD1775 has

shown remarkable anticancer effects by overcoming anti-HER2

agent trastuzumab resistance through the initiation of apoptosis

and G2/M arrest in breast cancer cells in vitro (162). These

promising preclinical studies have led to numerous clinical trials

of single-agent AZD1775 and its combination with chemotherapies

in a variety of carcinomas (6). One, in particular, was a phase I trial

of patients with advanced solid tumors such as ovarian cancer and

TNBC where AZD1775 monotherapy was found to be well

tolerated (163) (Table 2).
C-terminal encoded proteins

The CEP family of proteins is the active component within the

centrosome and consists of 31 members (48). They play a key role in

cell cycle control and centriole duplication (48). In particular,

CEP120, CEP131, CEP135, CEP152, CEP192 and CEP250 hold

potential as therapeutic targets (48) (Table 1). CEP120 is known to

directly interact with CPAP to elongate centrioles (Figure 2), and its

depletion has been shown to suppress CPAP-mediated centriole

elongation (46). Its overexpression is known to produce overly long

centrioles, which disrupts the process of centriole duplication and

promotes atypical supernumerary centrioles (46). Elevated levels of

CEP120 have been observed in gastric cancers with minimal

information regarding its expression in breast cancer (47). CEP131

has a vital role in the maintenance of genomic instability during cell

cycle progression by regulating centriole duplication (48, 49). It does

so through the phosphorylation by PLK4, which facilitates the

recruitment of STIL to the centriole (50) (Figure 2). Upon elevated

levels of CEP131, STIL is excessively recruited, which promotes

supernumerary centrosomes (50). This has been observed in breast

cancer, where the deubiquitinating enzyme USP9X, an integral

component of the centrosome and required for centriole
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duplication, causes excessive levels of CEP131, thereby contributing

to the pathogenesis of breast cancer (49). These findings support the

promise of CEP131 as a novel target for anti-cancer interventions,

particularly for breast cancer. CEP135 also plays a key role in

regulating centriole duplication by interacting with SAS6 to link it

to CPAP (51) (Figure 2). Similar to CEP120, depletion of CEP135 is

known to suppress CPAP-induced centriole elongation (51), and its

overexpression induces centrosome amplification (52). This has been

shown to cause chromosome segregation errors in breast cancer cells,

thereby promoting its carcinogenic properties (52). CEP152 and

CEP192 are both involved in the recruitment of PLK4 to the

centriole in order to ensure proper centriole duplication (53)

(Figure 2). However, little is known about its tumor-promoting

properties in breast cancer. A study by Liu et al. did identify

CEP192 as a novel prognostic marker in hepatocellular carcinoma

based on increased expression with tumor stage and association with

a high mortality and recurrence rate (54). Inhibition of CEP192

blocked the proliferation of hepatocellular carcinoma cell lines,

suggesting its utility as a novel anti-cancer target (54). Given these

findings, more studies are warranted to determine the role of CEP152

and CEP192 in breast cancer tumorigenesis as well as its potential as a

therapeutic target. Lastly, CEP250 is phosphorylated by NEK2 in

order to induce centrosome separation and bipolar spindle formation

(55). This is important for proper progression of the cell cycle and

maintenance of genomic instability. Limited knowledge is available

about the aberrant expression of CEP250 in breast cancer and cancer

in general. Instead, most research has focused on studying elevated

levels and inhibition of NEK2 in breast cancer tumorigenesis (229–

231) (see below). Overall, there is limited knowledge about the

carcinogenic mechanism of CEPs in the progression of breast

cancer and more research in this field is warranted.
Other proteins

The SAS6 and STIL proteins are vital for controlling cell

division and forming the mitotic spindle, a structure that is

necessary for appropriate chromosomal segregation during cell

division (68). Along with PLK4, SAS6 and STIL are the core

components of centriole duplication, and together they initiate

the creation of a new centriole (68) (Figure 2). However, the

development of cancer has been linked to the deregulation of

these proteins (69) (Table 1). Changes in STIL and SAS6 levels

have been linked to several subtypes of breast cancer, such as TNBC

(232, 233), luminal breast cancer (234, 235), and HER2-positive

breast cancer (236, 237). Tumor growth can be aided by the

deregulation of these proteins, which can result in abnormal cell

division and genetic instability (238, 239). By providing new paths

for precision medicine in the treatment of luminal, HER2+, and

TNBC subtypes, an understanding of the molecular processes

involving STIL and SAS6 in breast cancer subtypes holds promise

for the development of novel targeted therapeutics.

CPAP/CENPJ are essential proteins for regular cellular

functions, especially those involving the control of centrosome

activity and cell division (240). In order to maintain centrosome

stability and appropriate chromosomal segregation, which
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guarantees accurate genetic material transfers to daughter cells,

CPAP/CENPJ interacts with various centrosome-associated

proteins (241) (Figure 2). These interactions allow CPAP to

positively regulate centriole length and to aid in the duplication

of centrosomes (63). Hence, the development of cancer may be

facilitated by abnormal cell division and genomic instability

brought on by disruptions in these proteins’ regular activity. A

variety of cancers, including breast cancer, have been linked to

overexpression in CPAP/CENPJ (65) (Table 1). The unchecked cell

proliferation observed in luminal and HER2-positive breast cancer

subtypes is thought to be associated with deregulation of

centrosome activity mediated by CPAP/CENPJ (242). Moreover,

abnormalities in these proteins may also affect the genomic stability

of cells, which may contribute to the emergence and advancement

of TNBC (243). Understanding the specific roles of CPAP/CENPJ

in breast cancer subtypes provides valuable insights for the

development of targeted therapeutic approaches in the future.

Currently, drug treatments addressing CPAP/CENPJ are

understudied regarding their use in the treatment of breast

cancer. Bridging this research gap could result in new

opportunities for targeted therapies and progress the field toward

more tailored and successful treatments for breast cancer patients.

A family of dual-specific phosphatases known as CDC25 are

essential to the control of the cell cycle (244, 245). CDC25 exists in

three primary isoforms: CDC25A, CDC25B, and CDC25C (244,

245). The G1/S transition is mostly regulated by CDC25A, the G2/

M transition is regulated by CDC25B and the G2/M checkpoint is

dependent on CDC25C (58–60). A vital component in the proper

progression of the cell cycle, including the control of centrosomes and

chromosomes, is the cell cycle regulator CDC25A (61) (Table 1).

CDC25A participates in centrosome regulation by dephosphorylating

CDKs (61) (Figure 3). This promotes cell cycle advancement, as well

as regulates centrosome duplication and maturation (61).

Furthermore, CDC25A regulates apoptosis, highlighting the

complexity of its role in cellular functioning (61). CDC25A

dysregulation, however, has been linked to a number of

malignancies, including breast cancer (58–60) (Table 1). CDC25A

has been shown to be overexpressed in HER2-positive and TNBC

subtypes (246–248). The overexpression of HER2 in HER2-positive

breast tumors is correlated with overexpression of CDC25A, which

may lead to unchecked cell proliferation (246). Moreover, abnormal

cell cycle progression has been linked to CDC25A dysregulation in

TNBC tumors (247, 248). Thus, CDC25A might serve as a potential

therapeutic target in breast cancer (247). One of the compounds that

has an inhibitory effect towards CDC25A/B is an o-hydroxybenzyl

derivative RE44 (10d), which has shown promise in models of mouse

tsFT210 breast cancer cell line in vivo (172, 173) (Table 2).

Another key protein involved in the control of the cell cycle is

CDC25C (60, 62). It typically functions as a phosphatase, helping to

promote the G2 phase transition to mitosis by removing inhibitory

phosphate groups from CDKs (244, 245) (Figure 4). It participates

in centrosome regulation through the co-localization with cyclin B

at the centrosomes in G2 (249) and is responsible for

dephosphorylating CDK1 to activate the CDK1/Cyclin B complex

to regulate centrosome maturation and separation (249).

Dysregulation of CDC25C has been linked to the uncontrolled
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proliferation of cells (62). The fast and uncontrollable cell division

observed in TNBC can be attributed to CDC25C overexpression

(245, 248). Acquiring insight into CDC25C’s function in these

subtypes of breast cancer could assist with developing more focused

treatment strategies (Table 1).

A major force in controlling the progression of the cell cycle is

the kinase NEK2 (250). Its typical role in mitosis consists of the

maintenance of correct chromosomal segregation by aiding in the

precise arrangement of centrosomes and microtubules (67). It also

assists in the regulation of centrosome separation by localizing to

the centrosome and controlling bipolar spindle formation as well as

facilitating correct spindle attachments (67, 230). However, a

number of malignancies, particularly breast cancer, have been

linked to the deregulation of NEK2 (67) (Table 1). NEK2

overexpression has been linked to TNBC (230), luminal breast

cancer (230), and HER2-positive (251) breast cancer subtypes.

Increased genomic instability, tumor development, and abnormal

cell cycle progression are all influenced by elevated activity of NEK2

(252). Following the inhibition of NEK2, a subsequent step involves

the inhibition of CDK4/6 (253). Notably, these two therapies used

together significantly reduced the extent of breast tumor in mice

without causing harm to the animals in vivo (253). The combination

of these treatments changed the mitotic spindle genes’ mechanistic

features in vivo, suggesting a higher degree of genomic instability

(253). All these findings point to NEK2 as a potential therapeutic

target for the treatment of aggressive breast malignancies like

TNBC, when combined with FDA-approved CDK4/6 inhibitors.

As the function of NEK2 varies in luminal, HER2-positive, and

TNBC settings, knowing the precise impact of NEK2 dysregulation

in distinct breast cancer subtypes can provide important insights for

targeted therapy approaches. Moreover, small molecule inhibitors

against NEK2, such as INH1, blocked the proliferation of several

breast cancer cell lines in vitro as well as reduced the growth of

tumor mouse xenografts of breast cancer in vivo (171) (Table 2).

Therefore, these pathways also serve as potential therapeutic

strategies for breast cancer.

A crucial component of cellular machinery, APC/C controls

how the cell cycle progresses. In a typical cell cycle, APC/C

coordinates the degradation of certain proteins at various phases

to enable appropriate cell division (254). In relation to centrosome

regulation, APC/C is known to localize to the centrosome during

mitosis and interact with various centrosome-associated proteins

(such as CEPs) to facilitate mitotic spindle assembly (255).

Dysregulation of APC/C, however, has been linked to a number

of cancers, including breast cancer (56) (Table 1). The onset and

advancement of breast cancer have been linked to aberrant APC/C

activity, which affects vital cellular functions like proliferation and

genomic integrity (256). For example, dysregulation of APC/C can

cause unchecked cell division and genomic instability, which can

aid in the development and spread of breast cancer (256). Inhibition

of APC/C (13) or interference with the CPAP-tubulin interaction

via CCB02 (170) prevents extra centrosomes from aggregating

during mitosis, commonly referred to as centrosome clustering

(Table 2). This helps reduce the number of cancer cells with

amplified centrosomes, thereby reducing tumor growth (13, 50).

These effects have been observed in TNBC and colon cancer cells in
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vitro as well as mice bearing breast and lung cancer xenografts in

vivo (13, 50) (Table 2).

Survivin, another centrosome-associated protein, is essential for

controlling cell division and preventing apoptosis (257). In order to

properly assemble the mitotic spindle and guarantee precise

chromosomal segregation during cell division, survivin regulates

centrioles and centrosomes (258). It also plays a critical function in

the accurate coordination of cellular activities during mitosis by

aiding in cytokinesis and stabilizing microtubules (258). Hence,

abnormal survivin expression has been linked to a number of

malignancies, including breast cancer (72) (Table 1). Survivin is

frequently overexpressed in breast cancer (72) and linked to the

pathogenesis of its various molecular subtypes, such as luminal

(259), HER2-positive (260), and TNBC (261). Thus, there is a

potential for using therapeutic targeting of survivin in breast cancer

(262). However, preclinical studies of survivin inhibitors in breast

cancer are limited.

Another protein that is implicated in cell division is separase,

which is involved in sister chromatid separation during mitosis

(263). Its regular function is to break the cohesin protein, which

keeps chromatids joined together and enables precise gene transfer

to daughter cells (264). During metaphase, it is known to cleave the

centrosomal protein, pericentrin, allowing for centrioles to separate

and be ready for the next round of centriole duplication (265). On

the other hand, elevated levels of separase activity have been linked

to a number of cancers, including breast cancer (70) (Table 1).

Separase dysregulation has been connected to luminal (266), HER2-

positive (267), and TNBC (268) breast cancer subtypes. The

presence of hormone receptors in luminal breast tumors leads to

separase hyperactivity, which can cause unchecked cell proliferation

(269, 270). Separase dysregulation can render HER2+ breast tumors

to be more aggressive by exacerbating the overexpression of HER2

(271). Thus, investigation of separase inhibition in breast cancer is a

promising strategy. Sepin-1 has been shown to be a non-

competitive inhibitor of separase, thereby preventing its

enzymatic activity (174) (Table 2). This drug exhibits the ability

to suppress cell proliferation and induce apoptosis in order to

hinder the growth of human cancer cell lines and breast cancer

xenograft tumors in mice (174) (Table 2).
Aspects of regulation of centrosomes
and their associated proteins by
tumor suppressors and oncogenes in
the context of breast cancer

The vastness of proteins participating in centriole duplication

and maturation and regulation of centrosomes, combined with

dynamic changes that take place in these processes during various

phases of the cell cycle requires complex regulatory mechanisms

that are provided by various cell signaling pathways, involving

tumor suppressors and oncogenes, which are outside of the scope of

this review. However, several such molecules are worth noting in

the context of breast cancer. A guardian of the genome and a well-

known tumor suppressor protein, p53, is known to participate in
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breast cancer pathogenesis and is found mutated in 30% of all breast

tumors (272). p53 targets p21, a gene that regulates centrosome

stability by inhibiting CDK2/Cyclin E during early S phase

(Figure 1) (273). Inactivation of p53 along with the involvement

of p21 leads to the induction and increase of centrosome

amplification and aneuploidy in breast cancer, which is known to

be associated with its poor prognosis (273). There has been

emerging evidence indicating a mutual crosstalk between PLKs

and p53 in cancer cells (274). For instance, PLK1 is tightly regulated

by p53 and the regulation of DNA-damage repair by PLK1 is

mediated through p53 among other proteins (275). However, in

p53-null breast cancer cells, the regulation of PLK1 becomes

dysregulated, leading to abnormal levels and in turn contributes

to the development of breast cancer (275). There have also been

reports of the direct interaction of AURK proteins and p53 (276).

For example, the overexpression of AURKA in breast cancer may

lead to enhanced degradation of p53, which in turn facilitates the

development and progression of breast tumors (277).

BRCA1/2 are tumor-suppressor proteins participating in DNA

damage repair pathways whose hereditary mutations are linked to

the increased risk of breast cancer development (278, 279). BRCA1

is known to localize to the interphase and mitotic centrosomes and

binds specifically to the mother centrioles (280). It adjusts

centrosome function by inhibiting AURKA and CDK1/Cyclin B

(Figure 1) (281). It also inhibits PLK1 in order to regulate the

centrosomal localization and stability of NLP (Figure 1) (22). It has

been reported that BRCA1 inhibition leads to centrosome

amplification and aneuploidy, which promotes breast cancer

tumor progression (280). It has also been shown that 62% of

breast cancers overexpress AURKA, which is responsible for

blocking the function of BRCA1 during G2, the phase of the cell

cycle when its activity is crucial for regulating the centrosome (282).

This inhibition led to the induction of supernumerary centrosomes

and a more aggressive breast cancer (282).

PIK3CA is a key oncogenic protein involved in cell growth,

survival and migration, and is known to be mutated in 40% of

hormone receptor and HER2-positive advanced breast tumors

(283). Mutations in PIK3CA lead to sustained activation of the

PI3K pathway, which has been shown to induce centrosome

amplification through CDK2/Cyclin E pathways (283). It was

found that increased levels of PIK3CA led to higher levels of

cyclin E, which in turn caused enhanced activation of centrosome

duplication (284). Thereby, contributing to the overamplification of

centrosomes observed in breast tumors (284).
Discussion

Despite significant advances in diagnosis and treatment, breast

cancer remains one of the leading causes of cancer-related deaths

among women. It is essential to develop novel treatment

approaches for the improvement of oncological outcomes in

breast cancer patients. Due to abnormalities in cell division (a

well-known characteristic of breast cancer cells and cancer cells in

general), a focus of interest in the study of breast cancer treatment is

the utilization of cell cycle proteins as therapeutic targets. In
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particular, targeting the centrosome and centrosome-associated

proteins has piqued interest as a viable therapeutic approach due

to their important role in cell cycle control.

Centrosomes are key players in the normal process of cellular

division and are regulated by a large variety of centrosome-associated

proteins (17, 19) (Figure 1, Table 1). The most notable proteins studied

are PLKs, AURKs, CDKs, CHK1 andWEE1. These proteins have been

shown to be linked to breast cancer by contributing to its development

and progression, particularly through centrosome amplification, which

is a common centrosome abnormality (10, 80, 84). Hence, targeting

proteins involved in the regulation and function of centrosomes are

attractive therapeutic targets for this aggressive disease. Currently, there

are targeted therapeutics against centrosome-associated proteins in

development with some in clinical trials (Table 2). These include the

PLK4 inhibitor CFI-400945; PLK1 inhibitor BI 2536; AURKA

inhibitors Alisertib and EMND-2076; AURKB inhibitor BI 811283;

CHK1 inhibitor LY2606368; CDK2 inhibitor Dinaciclib and others.

These agents as well as the majority of those described in this review

have been shown to cause severe mitotic spindle abnormalities, such as

the promotion of chromosome missegregation during mitosis in breast

cancer cells. This leads tomitotic catastrophe, such asmitotic arrest and

aneuploidy, which subsequently results in senescence or apoptotic cell

death. Since inhibitors against these proteins have shown promising

potential in preclinical models as well as clinical trials, they have strong

utility to benefit breast cancer patients in the clinic.

This review synthesized a complex topic of centrosomes and their

associated proteins in breast cancer, examining a vast amount of

information that serves to emphasize their potential role in the

future in terms of biomarker and drug discovery. While there is a

number of proteins described here in the context of centrosomes and

breast cancer, many of them have multiple roles that are not directly

related to centrosome regulation. For example, proteins such as CHK1,

WEE1 and CDKs, are known to participate in other mechanisms and

pathways such as DNA-damage and DNA replication. On the other

hand, some proteins have multiple roles in the complex process of

centrosome regulation. For example, PLKs participate in both the

maturation and duplication of centrosomes. Hence, it is difficult to

discern the degree to which these proteins play a role in breast cancer

through centrosome regulation and at which exact stages of this

process their dysregulation participates in breast cancer pathogenesis.

Furthermore, some of these proteins are not well studied in cancer,

particularly in breast cancer, limiting the scope of this review. To

address this, the implications of these proteins in other cancers were

addressed. Lastly, the number of proteins discussed in this study are

regulated by a plethora of regulatory pathways involving tumor

suppressors and oncogenes, some of which have been linked to

breast cancer pathogenesis. While here we address such key

pathways, their detailed overview in the context of centrosomes and

their regulation in breast cancer deserve a separate analysis of

the literature.

Overall, this review highlights the importance of centrosomes

and their associated proteins in breast cancer pathogenesis and as

potential therapeutic targets for breast cancer treatment. Advances

in research and drug development in this area provide encouraging

results in terms of augmenting precision oncology-based treatment

approaches in breast cancer required to improve outcomes in this
Frontiers in Oncology 17
prevalent and deadly disease. To our knowledge this is the first

comprehensive review of centrosomes and their associated proteins

in breast cancer, summarizing a large amount of information that

could help set the stage for further scientific and clinical

developments in this field.
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