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Correctly identifying the cells
of origin is essential for tailoring
treatment and understanding
the emergence of cancer stem
cells and late metastases
Helge Waldum* and Geir Slupphaug

Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian
University of Science and Technology, Trondheim, Norway
Malignancy manifests itself by deregulated growth and the ability to invade

surrounding tissues or metastasize to other organs. These properties are due

to genetic and/or epigenetic changes, most often mutations. Many aspects of

carcinogenesis are known, but the cell of origin has been insufficiently focused

on, which is unfortunate since the regulation of its growth is essential to

understand the carcinogenic process and guide treatment. Similarly, the

concept of cancer stem cells as cells having the ability to stop proliferation

and rest in a state of dormancy and being resistant to cytotoxic drugs before

“waking up” and become a highly malignant tumor recurrence, is not fully

understood. Some tumors may recur after decades, a phenomenon probably

also connected to cancer stem cells. The present review shows that many of

these questions are related to the cell of origin as differentiated cells being long-

term stimulated to proliferation.
KEYWORDS
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1 Introduction

Malignancy is characterized by deregulated growth and the ability to invade surrounding

tissues or metastasize to other organs. Current treatments for malignant tumors include

surgery, irradiation, and cytotoxic drugs, often leading to the apparently complete removal of

tumors. Unfortunately, many such tumors recur with reduced treatment susceptibility, even

after initially effective interventions. Such recurrence often leads to the death of the patient

and has been explained by the dormancy of malignant cells that initially survived the

cytotoxic treatment (1). The mechanisms governing entry into and emergence from

dormancy remain inadequately understood (1). The present review aims to elucidate this

phenomenon with a particular emphasis on the cells of origin of cancers.
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2 Cell of origin: differentiated versus
stem cells

Our points of view are mainly based upon long-term experience

in gastroenterology including gastric physiology and pathology.

During the late seventies and early eighties, it became evident that

the gastric hormone gastrin stimulated the enterochromaffin-like

(ECL) cell to proliferation and neoplasia in rodents and humans

(2–5), and before the identification of the ECL cell, Azzopardi and

Pollock (6) focused on argentaffin (neuroendocrine cell marker) cells

in gastric carcinomas. The description of ECL cell carcinoids in

rodents after long-term profound acid inhibition (7, 8) made the

gastrin hypothesis accepted (9). Curiously, although the use of proton

pump inhibitors (PPIs) in clinical doses induced hypergastrinemia

and ECL cell hyperplasia (10), it was claimed that in humans, unlike

animals, hypergastrinemia did not transform ECL cells into cancer

(11). Surprisingly, only our group started to examine gastric cancers

for ECL cell markers. Our initial publication revealed ECL cell

differentiation mainly in diffuse-type gastric carcinomas (12). A

critical comment from Creutzfeldt and Solcia (13) was addressed,

demonstrating that the criticism was unfounded (14). Continuing our

investigation into the role of ECL cells in gastric carcinogenesis, we

collaborated with leading pathologist Julia Polack, validating our

initial results through thorough immuno-histochemical methods

(15). Employing immunoelectron microscopy to demonstrate

neuroendocrine granules (16) and in situ hybridization to detect

expression of the gastrin receptor on gastric cancer cells (17–19), we

substantiated that the ECL cell was central in gastric carcinogenesis.

Moreover, we tracked the progression of an ECL cell carcinoid to a

highly malignant cancer (20) and the evident transformation

potential of long-term trophic stimulation of differentiated cells,

leading to the development of highly malignant tumors. Similarly,

the inactivation of the von Hippel-Lindau factor, whether hereditary

or sporadic, results in the activation of hypoxia-inducible factor 2a
(HIF-2a) (21), which chronically stimulates the erythropoietin (EPO)

cell, being the cell of origin of the most prevalent type of renal cancer

(clear cell renal cell cancer) (22). Moreover, the progression to

pituitary carcinoma after bilateral adrenalectomy may also be seen

as a consequence of long-term growth stimulation (23) like the

occurrence of postmenopausal estrogen receptor-positive breast

cancer after sex steroid hormone treatment (24).

Another interesting aspect lies in understanding why certain

cells are more prone to develop into malignancy. For instance, the

ECL cell, characterized by its lack of expression of the adherence

molecule E-cadherin (25), may be particularly predisposed to

malignancy. This is evident in hereditary gastric cancer, where

mutations in the CDH1 gene result in the absence of E-cadherin,

ultimately leading to gastric cancer (26). The temporal relationship

between hypergastrinemia and the development of malignancy was

demonstrated by a Spanish family with a missense mutation in the

gene encoding the catalytic subunit of the gastric H+/K+-ATPase

pump (ATP4A), which transports H+ ions in exchange for K+ ions

across the apical membrane of parietal cells. Individuals with this

mutation developed tumors of varying malignancy in their twenties

and thirties (27). Accordingly, it can be concluded that

differentiated cells may progress to malignancy through long-term
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stimulation of proliferation (20, 27) via phases of hyperplasia to

benign neoplasia to malignant tumors in the stomach, but probably

also in other organs. This process unfolds over extended periods,

often spanning decades. Cells with proliferative capacity and low

adherence to neighboring cells like the diffuse neuroendocrine (NE)

cells are especially prone. Carcinogenesis is a multistage process,

and therefore, cells of varying malignancy may co-exist. During the

early stages, cells with low adherence and even low proliferation

may nevertheless metastasize. These cells, which in many aspects

resemble normal cells, may not readily respond to cytotoxic

treatment but gradually accumulate new mutations leading to

increased malignancy and subsequently manifest as late

metastases. Tumors belonging to the phaeochromocytoma/

paraganglioma group show histology close to normal, making it

impossible to predict malignancy (28). In fact, only metastases that

may occur decades after initial diagnosis (29) can definitively

determine whether these tumors were benign or malignant.

Unfortunately, there are no studies investigating the expression of

E-cadherin or other adherence molecules in neuroendocrine cells

except the ECL cell (25), but the fact that they appear intermingled

between other epithelial cells must imply that they have low cell-to-

cell adhesion. Low cell-to-cell adhesion secondary to changes in the

E-cadherin–catenin complex has also been focused on in gastric

carcinogenesis (30).

The enterochromaffin (EC) cell in the small intestine (SI) can also

develop into neuroendocrine tumors (SI-NETs), but in contrast to ECL

cell-derived tumors, the pathogenesis of EC cell SI-NETs is not known.

Nevertheless, they probably play a role in the development of SI

adenocarcinomas (31). Neuroendocrine tumors (NETs) in the small

intestine are the most prevalent tumors in that organ. Interestingly,

such tumors may develop in clusters, and they most often lack driver

mutations (32), indicating a local carcinogenic factor.

The ability to develop into malignant tumors is not restricted to

differentiated cells presently accepted as neuroendocrine but probably

also other proliferating cells with low adherence. Moreover, more

tumors develop from NE cells than presently recognized. For

instance, we have shown that the most prevalent type of kidney

cancer, clear cell renal cell cancer (CCRCC), most likely originates

from EPO cells (21, 22, 33). Clinically, these tumors exhibit

similarities to NETs, including early metastases, low response to

cytotoxic drugs, and, parallel to hormonal overstimulation in NETs,

erythrocytosis in a subset of patients. They also share positivity for

neuron-specific enolase (NSE) (33, 34). NSE is a more specific

neuroendocrine marker than ordinarily believed (34). It is probably

the most sensitive neuroendocrine marker, which has also

contributed to its dubious reputation as non-specific. Hypoxia-

inducible factor (HIF) is the most important regulator of

erythropoietin release (35). Von Hippel-Lindau (VHL) disease

predisposes to CCRCC by stabilization of HIF, thereby leading to

increased and continuous stimulation of the EPO cell, both

functionally and proliferatively (36). Lack of VHL factor function is

also central in CCRCCs in general (37, 38), but the cancers not being

a part of inherent VHL disease manifest themselves a few decades

later. The prolonged hyperstimulation by HIF causing CCRCC

resembles how excessive gastrin hyperstimulation leads to gastric

cancer and is another example of cancer developing from a
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differentiated cell exposed to prolonged hyperstimulation. This

improved understanding of the pathogenesis of CCRCC has

already resulted in potentially improved treatments such as using

HIF inhibitors (36).

Lung cancer is another prevalent cancer where NE cells play an

important role in carcinogenesis since small cell and large cell

pulmonary cancers are regarded as NE tumors (39). In fact, the

prevalence of the more benign variant, NETs, localized to the lungs,

is secondary only to the gastrointestinal tract. There are many types

of NE cells in the lungs either spread in the mucosa (40) or as

collections as neuroendocrine bodies (41) often localized to

bifurcations of the airways. The latter type plays an important

function in the regulation of blood oxygenation (42). The diffusely

spread NE cells in the airway surface are also believed to be

regulatory, but their precise functions remain to be elucidated.

Lung NE cells are the source of the presently called NETs,

previously carcinoids (43), whereas the cell of origin of the small

and large cell pulmonary carcinomas remains unknown and is not

clarified since the early stages of these tumors have not been

identified (44). Finally, trans-differentiation may be an alternative

for NE cells as the cell of origin for lung NE cancers as well as

cancers of the prostate (45).
3 Breast and prostate cancers

Prolonged hormonal stimulation is central in the pathogenesis of

breast and prostate cancers, which both probably originate from

differentiated cells. Unfortunately, there has been no definitive

identification of the specific cells of origin for cancers in these two

organs. Both breast and prostate cancers exhibit significant

heterogeneity (46, 47). Interestingly, there are similarities regarding

cells of origin, whether basal or luminal cells (48, 49). Tumors are also

categorized based on their expression of sex hormone receptors,

estrogen receptor (ER) (48, 50), or androgen receptor (AR) (49). The

central role of estrogen in mammary carcinogenesis is underscored

by the large contrast in cancer incidence between the two sexes (51).

Although sex hormones are central in the pathogenesis of both

breast and prostate cancers, many of these cancers do not express

sex hormone receptors. This could be due to mutations during the

carcinogenic process or that the tumor nevertheless developed from

a sex hormone receptor-negative cell. Thus, while AR was found to

be expressed in virtually all luminal cells, half of the basal cells, and

60% of fibroblasts in the normal prostate, there was a loss of AR

particularly in the fibroblasts and the tumor cells during the

evolution of cancer (52). Another explanation may be that a

receptor-positive cell may itself develop into the tumor, and

simultaneously, it may provoke neoplasia in another cell

(receptor-negative) type by releasing a signal substance-

stimulating secretion and proliferation finally leading to neoplasia

in this cell as well. This would be parallel to gastric cancers, where

gastrin stimulates the proliferation of ECL cells leading to ECL cell

NETs and gastric carcinoma of diffuse type. Concomitantly, the

release of signal substances from the ECL cell stimulates the

proliferation of stem cells (gastrin receptor negative) causing

cancer of intestinal type (53) (Figure 1).
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Sex hormone-induced breast and prostate cancers may promote

tumorigenesis by stimulating the proliferation of their target cells,

which by releasing signal substances stimulates the growth of another

cell type leading to a hormone receptor-negative cancer.

Furthermore, overexpression of the chemokine CXCL12-y in

prostate and breast epithelial cells induces a shift from a luminal

cell type to a non-luminal cell type (56). Among candidates for signal-

producing cells in the prostate is the recently identified PEG10+ NE

cell (57). NE cells are found in most prostate cancers. However,

among the serum markers for NE cells tested, only chromogranin A

(CgA) was positively correlated to the number of CgA-staining cells

in the tumors (58). Recently, neuropeptide Y was reported to be

increasingly expressed during the tumorigenic process in the prostate

(59) and thus is a possible driver of carcinogenesis. In families with

hereditary increased risk of prostate cancer, there is also an increased

risk of breast, gastric, and renal cancers (60). Like in the gastric

oxyntic mucosa, there are NE cells located basally in the glands in the

prostate (61), whereas this is debatable in the breast (62, 63). Electron

microscopy has revealed intracellular secretory granules in prostate

NE cells, distinguishing between open-type cells connected to the

gland lumen and closed type cells lacking such connection (61, 64).

NE cells in the normal prostate cannot be identified by

histochemistry using hematoxylin and eosin but with immune

histochemistry using traditional markers like chromogranin,

synaptophysin, and NSE. Prostate NE cells do not express the

androgen receptor or prostate-specific antigen (PSA), and based

upon negativity for Ki67, they are also claimed to be non-
FIGURE 1

Gastrin stimulates the enterochromaffin-like (ECL) cell to proliferate
and to release mediators including regenerating gene (REG)
proteins, a family of small proteins with many functions (54),
including stimulation of stem cell proliferation (55). Long-term
stimulation of these two cells leads to gastric cancers of diffuse and
intestinal types [with permission from Waldum et al. (53)].
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proliferative (61, 64). Human ECL cells, which for years were claimed

not to divide (65), showed a very slow proliferation in that capturing

these scarce cells in the act of proliferation was challenging (66).

Nevertheless, the lineage plasticity of prostate carcinomas from

adenocarcinomas to neuroendocrine androgen receptor-negative

cancers represents a major change in cancers, worsening prognosis,

and may be due to epigenetic differences (67).

Distinct NE differentiation is evident in various well-defined

conventional-type breast carcinomas, but there is still a controversy

about whether true NE neoplasms originating from NE cell precursors

exist (63). CgA-positive cells have been described in both normal breast

tissue and carcinomas (68, 69). Furthermore, by combining

immunohistochemistry with gene expression analysis, the percentage

of tumors being positive for NE markers increased (70). Breast NE cell

carcinoma phenotypes can also be clear cell carcinoma (71), mucinous

carcinoma (72), or small cell carcinoma (73). The distinction between

luminal and basal cell breast cancers is not definitive, as there is a

lineage plasticity where luminal tumors with low ER change in the

direction of basal cells (74). The shared reliance on sex hormones in

carcinogenesis as well as the parallel mechanisms involved underscores

the significant similarities between breast and prostate cancers.
4 Metastases

Differentiated cells with poor adherence to each other or

supportive tissue cells, such as NE cells interspersed among other

cells, are probably more prone to lose connections and disseminate,

that is, to metastases. Thus, not only neuroendocrine carcinomas

but also the more benign variant NETs often show metastases at an

asymptomatic stage (75, 76). This pattern is akin to CCRCCs (77),

which most likely also are of neuroendocrine origin (21, 22, 33).

Melanoma, originating from melanocytes derived from neural crest

cells, also demonstrates early metastasis as well as cellular plasticity

(78). This underscores the broader pattern that many cancers

develop from differentiated cells (79). Additionally, endometriosis,

which is treated like a non-neoplastic benign disease, nevertheless,

can metastasize (80). The central role of cellular adherence in

carcinogenesis is exemplified by hereditary diffuse gastric cancer,

resulting from inactivating mutations in the E-cadherin gene (81).

Also, breast cancer (82, 83) and prostate cancer (84) exhibit early

metastasis. Thus, these two cancers, being among the most

prevalent in women and men, may often have metastasized at

diagnosis. Breast cancer screening programs may hopefully increase

the rate of diagnosis before metastasis (85), and the new improved

methods in the diagnosis of prostate cancer (86) may also improve

the prognosis of this cancer.

Nonetheless, the prevailing theory of carcinogenesis is that most

cancers develop from stem cells (87), characterized by their rapid

proliferation and plasticity. Accumulated evidence suggests that this

is an oversimplification. For instance, gastric cancer can develop

from an ECL cell, a differentiated NE cell leading to diffuse type

cancers, or from stem cells, causing the intestinal type of gastric

cancer (53). Although multiple stem cell receptors have been
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identified (88), their roles in carcinogenesis have received less

attention, possibly due to their widespread effects, in contrast to

the specific hormone receptors that play a central role in

carcinogenesis from differentiated cells. Consequently, the

knowledge of the cell of origin as a differentiated cell is presently

more useful in tailoring cancer treatment.
5 DNA damage resistance in recurrent
cancer cells

DNA damage-inducing therapies are fundamental in cancer

treatment, as evidenced by the crucial roles of chemotherapy and

radiotherapy, both of which operate by directly or indirectly

inflicting DNA damage (89). These therapies can alter the DNA

nucleotides, induce single-strand (SSBs) or double-strand breaks

(DSBs), intercalate between bases, or form crosslinks within DNA

or between DNA and proteins (90–94). Additionally, certain

compounds induce DNA damage indirectly, e.g., by inhibiting the

synthesis of deoxyribonucleotides (95, 96). Cancer cells may

develop mechanisms to increase their resistance against DNA-

damaging agents, including i) increased efflux or altered

metabolism of genotoxic compounds, ii) suppression of apoptosis,

or iii) enhanced DNA repair.

Cells harbor elaborate mechanisms to counteract various types

of DNA damage, collectively referred to as the DNA damage

response (DDR). The DDR is not a rigid pathway but rather a

dynamic collection of pathways that are mobilized based on various

factors such as type of damage, cell type, chromatin environment,

and cell cycle phase (97). Examples of these pathways include base

excision repair (BER), which corrects small lesions and certain

mismatches (98); ribonucleotide excision repair (RER), which

removes mis-incorporated ribonucleotides (99); nucleotide

excision repair (NER), which is employed to eliminate bulky and

helix-distorting adducts (100); and mismatch repair (MMR), which

corrects mismatches generated mainly during replication (101). In

the case of DSBs, cells employ either high-fidelity homologous

recombination (HR) or the more error-prone non-homologous

end-joining (NHEJ) pathway (102, 103). Importantly, the

boundaries between these pathways are flexible, and the repair of

certain lesions often involves proteins from multiple pathways

(104). Additionally, the DDR includes mechanisms to arrest the

cell cycle. This is important since DNA-damaging agents primarily

exert their cytotoxic effects during the S-phase, and quiescent cells

exhibit greater resistance to DNA-damaging drugs (105).

DNA repair plays a crucial but complex role in stem cells. It

safeguards normal stem cells and ensures the preservation of genetic

integrity as tissues regenerate. Efficient DNA repair mechanisms are

particularly prominent in normal stem and progenitor cells.

However, as cells differentiate, the tolerance for somatic mutation

increases, leading to a reduction in DNA repair activity (106, 107).

Enhanced repair of the lesions induced by a specific DNA-

damaging agent probably increases resistance to that agent in

most cells, including normal and cancer stem cells. However,
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there are exceptions to this. For example, bone marrow myeloid

progenitor cells derived from mice defective in the 3-methyladenine

DNA glycosylase Aag exhibit unexpected resistance to alkylation in

comparison to progenitor cells from wild-type mice (108). The

underlying reason for this is probably that repair intermediates in

the BER pathway (AP sites and SSBs) may be more cytotoxic than

the original base lesion it left unprocessed. Thus, balanced levels of

the factors contributing within that pathway and the availability of

redundant repair mechanisms will affect the overall outcome.

The activity of a distinct repair pathway must also be evaluated

in relation to the timeframe available for repairing the DNA

damage. Even if the expression of many DNA repair proteins is

cell cycle regulated and displays elevated levels in rapidly

proliferating cells (109), DNA repair processes also take place in

quiescent cells. However, the repair pathways employed may differ

between these two situations. One example of this is in the repair of

DSBs, the most deleterious form of DNA damage. Error-free repair

of DSBs via HR depends on the presence of an intact copy of the

DNA in a newly replicated sister chromatid and thus cannot occur

in post-mitotic quiescent cells. Conversely, error-prone NHEJ

operates throughout the cell cycle and is active in quiescent cells,

including stem cells (110, 111). This shift in repair mode may

potentially contribute to increased genomic instability within

dormant cancer cells, thereby promoting cancer recurrence by

enhancing drug resistance and metastatic potential.
6 Cancer stem cells

Cancer stem cells (CSCs) (112) are a subpopulation of cells

within a tumor with the ability to self-renew and generate the

diverse cell types found in the tumor. They are often considered

responsible for tumor initiation, maintenance, and resistance to

therapy (113). The proliferative activity of CSCs varies depending

on the type of cancer and the specific characteristics of the CSC

population. While some CSCs proliferate rapidly and are sensitive

to chemotherapy, others proliferate slowly and are more resistant to

such treatments, although there is no experimental evidence that

CSCs may undergo cell cycle arrest. Thus, dormant cancer cells and

CSCs should be considered separate entities (114). Nevertheless, the

link between tumor dormancy and CSCs has long been recognized

(115) along with the significance of such cells in driving metastasis

(116). Although the concept of CSCs initially emerged from

observations in acute leukemia (112), these cells have been mainly

attributed to cancers originating in cells needing long-term

proliferative hyperstimulation before reaching malignancy.

Examples include NE cells (different hormones), EPO cells (HIF)

in CCRCC, and the cells of cancer origin in the breast (estrogen),

the prostate (androgens), and melanocytes (ultraviolet irradiation).

Interestingly, in a recent study comparing the genomes at an early

stage of cancer with metastatic lesions, the differences were

particularly marked for cancers of the prostate, thyroid, CCRCC,

breast, and pancreatic NE tumors (116), all belonging to cancers

known to lead to late metastases. Tumor cells may be identified by

examining bone marrow or blood for specific markers including

nucleic acids (113). Comparing mutations in tumor cells with those
Frontiers in Oncology 05
in primary tumors, early and late metastases will allow an

estimation of the stage at which the different tumor cells

separated from each other and thus give an indication of the

mechanism behind the occurrence of late metastases (117).
7 Late metastases/dormancy

Late metastases will accordingly be expected to occur in cancers

originating in differentiated cells with a slow proliferation and little

adherence to neighboring cells (Figure 2).

Moreover, long-term stimulation of proliferation of the cell of

origin mainly by circulating hormones or paracrine substances is often

involved. Another peculiar trait of these cancers is metastases to bones

(118–124). Even NE tumors, previously thought rarely to metastasize

to bones, now are realized to do that often (125). The recognition of

bone metastases in NE tumors may be a consequence of increased

survival as well as better diagnostic tools for detecting bone metastases.

Tumor cell dormancy seems to occur particularly in the bone marrow

where both osteoblasts and osteoclasts play a role (125, 126). Late

metastases are connected to tumor cell dormancy. The common traits

of cancers showing late metastases are summarized in Table 1. In a

mouse study where prostate cancer tissue was injected subcutaneously,

cancer cells were found in most organs during the growth of the tumor

tissue, but removal of the cancer resulted in a reduction of cancer cells

in all tissues except bones where osteoblasts seemed to induce

dormancy, possibly through an adhesion kinase (127). The latter
FIGURE 2

A missense mutation in a gene involved in adherence in
differentiated cells, which normally have low adherence, may lead to
metastases of cells with rather slow proliferation, which may need
years to develop into a clinical tumor (late metastases).
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study indicates a possible treatment option in patients with bone

metastases due to prostate cancer.

Finally, single-cell genetic analysis of cancer cells is gaining

popularity and may improve the identification of cells of origin with

greater certainty as well as give information for individual

treatment. In a lineage analysis in a mouse model, basal epithelial

cells were shown to express great plasticity, and both basal and

luminal cells were shown to develop into cancer (128).
8 Conclusion

To understand carcinogenesis, it is important to identify the cell

of origin and its growth regulation, which also makes it possible to

tailor treatment. It is obvious that differentiated cells secondary to

long-term stimulation may develop into cancers. The role of cancer

stem cells in carcinogenesis has often been explained by their ability

to stop proliferation but at a later stage are highly proliferating.

There is, however, a lack of experimental evidence supporting this

idea. Conversely, differentiated cells with low adherence occurring

spread among other cell types in the normal situation may not need

great changes before being able to metastasize at a stage of minimal

alterations of other functions, including cell division. Such

metastasized slow-growing cells will naturally need a long time to

develop into a macroscopic tumor. No common new mutations

between the initial tumor and the late metastasis, in contrast,

indicate that the tumors developed separately due to a common

carcinogenic cause.
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