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Immune checkpoint molecules are a group of molecules expressed on the

surface of immune cells that primarily regulate their immune homeostasis.

Chimeric antigen receptor (CAR) T cell therapy is an immunotherapeutic

technology that realizes tumor-targeted killing by constructing synthetic T

cells expressing specific antigens through biotechnology. Currently, CAR-T cell

therapy has achieved good efficacy in non-solid tumors, but its treatment of solid

tumors has not yielded the desired results. Immune checkpoint inhibitors (ICIs)

combined with CAR-T cell therapy is a novel combination therapy with high

expectations to defeat solid tumors. This review addresses the challenges and

expectations of this combination therapy in the treatment of solid tumors.
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1 Introduction

Immune checkpoints are a group of signaling pathway molecules which have the ability

to regulate the persistence of the immune response (1). The common immune checkpoints

include CTLA-4, LAG-3 and PD-1, all of which are widely distributed in solid tumors and

have a critical function in the tumor microenvironment (TME) (2–4). Tumor cells could

inhibit anti-tumor immune responses by activating the immune checkpoint pathways, but

ICIs can block the activation of this pathway, which leads to the enhancement of the

function of CAR-T cells, activating this immune response to promote tumor cell clearance

(5). In recent years, ICIs have been developed rapidly and marketed one after another, and

have been approved in a number of solid tumors such as hepatocellular carcinoma, lung

cancer, melanoma, and colon cancer (6). Although ICIs have achieved positive clinical

efficacy, some patients do not experience complete remission. For example, Chromosomal

instability (CIN) is an important factor affecting the efficacy of ICIs in cancer of unknown
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primary (CUP). CIN can increase the invasiveness of tumors,

leading to a decrease in the therapeutic effect of ICIs. Therefore,

more clinical genetic tests are needed to improve the efficacy of ICIS

for patients with ICIs resistance (7).

Although CAR-T cell therapy and ICIs belong to the same

category of immunotherapy, their mechanisms for treating tumors

are completely different. CAR refers to the construction of a specific

chimeric antigen receptor containing a single-chain variable

fragment (ScFc) that recognizes tumor antigens through

bioengineering technology, the researchers then introduced the

artificially constructed CAR into the T cells to complete the

construction of CAR-T cells (8). Artificially constructed CAR-T

cells can precisely target tumor cells, and the CAR-T cells also

release various tumor suppressor cytokines, such as IL-2, IL-12, and

IL-18, to precisely and efficiently treat tumors (9). As a result,

specific receptors loaded on CAR-T cells can bind to target antigens

independently of MHC receptors, resulting in strong T-cell

activation and powerful anti-tumor responses (10). Because of

this, CAR-T cell therapy has achieved excellent efficacy in

hematologic tumors, but has been disappointing in solid tumors.

The reasons for CAR-T therapy not achieving the desired

therapeutic effect in solid tumors are complex. On the one hand,

solid tumor cells antigen heterogeneity and the lack of tumor-

specific antigen (TSA) make it difficult for CAR-T to target tumor

cells. On the other hand, the TME of solid tumors, including

abnormal vascular structure and stromal composition, make it

difficult for CAR-T to accurately target and kill tumor cells. So

far, the development of CAR has gone through five generations

(Figure 1). However, CAR-T cell therapy still has some limitations,

such as antigen escape, off-target phenomenon and lymphokine

release syndrome (11, 12). The low cure rate and relatively high side

effects in the treatment of solid tumors have become obstacles to the

further application of CAR-T.
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However, CAR-T cell therapy in combination with ICIs can

be an effective strategy to resolve these limitations (13). ICIs can

activate the anti-tumor immune function of CAR-T cells, leading to

a decrease in the secretion of inhibitory cytokine, and also partially

rescues the inhibitory effect of the tumor microenvironment (TME)

(14). At the same time, ICIs also activates the function of tumor-

infiltrating lymphocytes (TILs) cells and enhances their anti-tumor

capacity (15, 16). Combination therapy has been shown to be more

efficacious than each drug alone in preclinical studies, supporting its

extension to clinical studies. In this review, we summarize the

current state of research centered on immune checkpoint inhibitors

in combination with CAR-T therapy.
2 Issues and challenges of CAR-T in
solid tumors

2.1 Lack of tumor-specific antigens
(antigenic heterogeneity)

Currently, CAR-T cell therapy has made a revolutionary

breakthrough in hematologic malignancies due to the specificity

of targets for hematologic malignancies (17, 18). Six CAR-T Cell

Therapy drugs approved for marketing by FDA, including four that

targeting CD19 and two that targeting BCMA (Table 1) (19, 20, 22–

25). TSAs are antigens that are specific to tumor cells and are

expressed only in tumor cells and not in any normal cells. Tumor-

associated antigens (TAAs) are antigenic components that are not

specific to tumor cells. TAAs can be present in small amounts in

normal cells, but can be abnormally expressed in tumorigenic

organisms. Hematological tumors have TSA such as CD19 and

CD20, while solid tumors have high heterogeneity, making it
FIGURE 1

The development of the five generations of CAR. 1st:ITAM area containing only CD3. 2nd:On the basis of the first generation, a co-stimulatory region
(CD28 or 4-1BB) was introduced. 3rd: On the basis of the second generation, two co-stimulatory regions (CD28 and 4-1BB) were introduced. 4th:
Introducing the regulation of CAR-T cell structure, such as cytokines and chemokine receptors. 5th: Creating allogeneic CAR-T cells by knocking out
endogenous T cell receptors (TCRs) and leukocyte antigen class I molecules (HLAs).
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difficult to obtain ideal TSA for CAR-T cell therapy (26). Thus, the

targets of CAR in solid tumors are diverse, such as GPC3 in

hepatocellular carcinoma, HER-2 in glioblastoma, CLDN18.2 in

pancreatic cancer, and PSMA in prostate cancer (27–29). Therefore,

CAR-T cell therapy for solid tumors could only be designed to

target such non-specific TAAs. Because of the lack of TSA, CAR-T

cell therapy faces the dilemma of “off-target effects” by attacking

normal cells (30). For example, HER-2 is highly expressed on the

surface of colorectal cancer cells, but is also expressed to a small

extent in normal cardiopulmonary tissues. A patient with colon

cancer developed acute respiratory distress only 15 minutes after

receiving a higher-dose infusion of HER-2 CAR-T cells and died 5

days after treatment (31).

Furthermore, the killing capacity of CAR-T cells is not only

related to the number of tumor cells expressing the target antigen in

solid tumors, it is also related to the intensity of tumor surface

antigen expression (32). On the one hand, in solid tumors, the

expression intensity of target antigens of CAR-T is inherently much

lower than that of hematologic malignancies. On the other hand, in

solid tumors, infusion of specifically targeted CAR-T cells for

treatment may lead to down-regulation of target antigen

expression, which prevents CAR-T cells from recognizing tumor

cells, thus leading to therapeutic failure (33). The results of the

clinical experimental study by Fry et al. also suggest that relapse

after treatment with infusion of CAR-T cells targeting CD22 in

patients with B-ALL is associated with a decrease in the density of

the CD22 locus (34).
2.2 Low efficiency of tumor infiltration
(physical barrier)

In hematologic malignancies, CAR-T cells can directly contact

tumor cells in blood vessels, thereby exerting their effects (32).

However, this is not the case in solid tumors, the CAR-T cells need

to overcome multiple barriers to bind to surface antigens of solid

tumor cells. The CAR-T cells need to cross this physical barrier in

multiple steps, each of which is interconnected and tightly coupled.

The whole process includes rolling, adhesion, wandering (amoebic

movement), and chemotaxis. And it also requires the assistance role

of cell adhesion molecules (CAM) and chemokines (35, 36).

In addition to the multiple barriers that CAR-T cells themselves

need to traverse. Solid tumor cells also resist CAR-T cell entry in

multiple ways. Some of these mechanisms include:1. Abnormal
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expression of adhesion molecules in the vasculature system reduces

CAR-T cell attachment and migration (37–39). 2. Down-regulates

the expression of various chemokines (CCL5, CXCL9 and

CXCL10). CAR-T cells are dependent on the transport of these

chemokines to tumor tissues (40, 41). 3. Dense tumor extracellular

matrix prevents CAR-T cells from entering.

Stromal cells such as fibroblasts and macrophages play a key

role in the formation of dense extra-tumor stroma. Methylmalonic

acid (MMA) secreted by tumor cells further promotes the

proliferation of fibrous or connective tissues, while proliferating

stromal cells in turn secrete more collagen, proteoglycans,

fibronectin, laminin, and so on. These substances form a non-

cellular three-dimensional macromolecular network, the tumor-

associated extracellular matrix (ECM), which prevents the

infiltration of CAR-T cells (42). For example, significantly

increased hyaluronic acid (hyaluronic acid) content in TME of

pancreatic cancer, which directly affects the pathological type and

biological behavior of pancreatic cancer (43–45). Furthermore,

fibroblasts secrete fibroblast activation protein (FAP), which can

form dense mesenchymal cell tissues to prevent CAR-T cells from

entering. ELLEN Pure et al.’s study confirmed that removing the

dense mesenchyme of tumors can allow CAR-T cells to directly

enter the core of solid tumors. The solid tumors in mouse animal

models rapidly regressed and CAR-T cells showed enhanced anti-

tumor immune effects (46).
2.3 Suppression of the tumor immune
microenvironment (immune barrier)

The tumor immune microenvironment (TIME) is a complex

and dynamic ecosystem, which is closely related to tumor

development, progression and metastasis. The TIME is filled with

various immune cells and cytokines. In order to recognize and

resolve tumor cells, CAR-T cells must continuously infiltrate the

tumor tissue in order in order to achieve antigen-specific binding on

the tumor cell surface, thereby exerting a killing effect on tumor

cells. While the normal immune microenvironment is balanced

between promoters and suppressors, a large number of

immunosuppressive cells and cytokines are present in the TIME.

Previous studies have demonstrated that CAR-T cell metabolism

is strongly inhibited in the TIME (47–49). The formation of tumor

microenvironment mainly originates from the abnormal activation of

oncogenes in tumors, resulting in the abnormal expansion of
TABLE 1 FDA approved CAR-T cell therapy products.

CAR-T Name Target Indications Time to market Reference

Kymriah CD19 BCR-AL/rr DLBCL 2017.08.30 Maude Slet al. (19)

Yescarta CD19 rr DLBCL/rr FL 2017.10.18 Locke FL et al. (20)

Tecartus CD19 rr MCL 2020.07.24 Wang M et al. (21)

Breyanzi CD19 rr DLBCL 2021.02.05 Abramson JS et al. (22)

Abecma BCMA rr MM 2021.03.26 Berdeja JG et al. (23)

Carvykti BCMA rr MM 2022.02.28 Munshi NC et al. (24)
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suppressive immune cells and the massive secretion of

immunosuppressive factors. Among the cells that make up the

immune microenvironment, tumor associated macrophages

(TAMs) is a relatively abundant cell subpopulation with a highly

plastic phenotype and function. For example, the mutation of P53 can

lead to the differentiation of M1-type TAMs to M2-type, and K-Ras

(12D) in melanoma can induce the proliferation of CD11 myeloid

cells with immunosuppressive function. These T regulatory (Treg)

cells and TAMs cells also release reactive oxygen species (ROS),

which significantly inhibit the killing response of NK cells and T cells

(50). At the same time, fibroblasts secrete higher amounts of

metalloproteinases, leading to the shedding of ligands attached to T

cells and NK cells (18). All these confirm that immunosuppressive

cells severely affect the killing effect of T cells and NK cells. In

addition to tumor immunosuppressive cells, suppressor cytokines

also play an extremely important role (51). For example, mutations in

the BRAF600E gene in melanoma can reduce the production of

chemokines CCL3 and CCL4, thereby reducing the ability of tumor

killing cells, M2-type TAMs mediate immune escape by secreting

TNF-a and IL-10 in order to promote PD-L1 expression, thereby

suppressing anti-tumor T cell function. Many other studies have

shown that Tregs in tumors inhibit anti-tumor immune responses by

suppressing the production of inhibitory cytokines (e.g., IL-10, TGF-

b, IL-35) and suppressing anti-tumor immune responses (52, 53).

A number of studies have similarly confirmed this view, Miriam

Merad et al. produced CAR-T cells targeting TAMs, destroyed

immunosuppressive cells to enhance CAR-T cell function,

significantly prolonged progression of solid tumors and enhanced

tumor immunity in animal experiments (54). In addition, there are

also CAR-T cells made that target Treg cells to disrupt the over-

activation of regulatory T cells, and as the Treg cells are reduced, the

tumors in the mice are progressively reduced (55). Jiali Yu at al.

showed that radio therapy (RT) could reduce the number of hepatic

myeloid cells, thereby increasing the infiltration of hepatic T cells,

promoting the release of cytokines such as Ki67+, interferon-g (IFN-
g)+, and significantly improving the immune microenvironment

(56). Similarly, Smith EL et al. have also demonstrated that RT

destroys immunosuppressive cells such as Tregs, CAFs, thereby

synergizing with CAR-T cells and reducing T cells exhaustion (57).

In summary, suppressive immune cells and immunosuppressive

factors are closely linked and interact with each other, together

constituting the immunosuppressive microenvironment (58).
3 CAR-T cells exhaustion

3.1 CAR-T cells exhaustion mechanisms

CAR-T cells in the TME are chronically exposed to antigens and

gradually enter a state of malfunction, which is called CAR-T

exhaustion (59, 60). Many studies have already shown that CAR-

T cells exhaustion is involved in a range of tumor development

processes, such as drug resistance of tumor immunotherapy, tumor

recurrence and metastasis (34). CAR-T cells exhaustion is mainly

characterized by loss of effector functions, such as reduced release of

cytokines IFN-g and TNF-a, and loss of proliferative capacity (61).
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It has been shown that CD8+ T cells in malignant tumors all have

significant enrichment of genes associated with TCR signaling (Bat-

f, Egr2, Ezh2, Irf4, Nfatc1, Nfatc2, Nr4a1, Nr4a2 and Nr4a3) (62–

66), confirming the involvement of persistent antigenic stimulation

in leading to high PD-1/PD-L1 expression, which directly

contributes to CAR-T cells exhaustion. Kelly Kersten et al.

showed that CD8+ T cells depletion is directly correlated with

macrophage abundance in the TME, revealing in detail the

spatiotemporal co-evolution of CD8+ T cells lymphocytes and

macrophages in the immune microenvironment (67).

Currently, researchers have demonstrated that CD38 is a

signature molecule for CAR-T cells exhuastion (68, 69). They

found that inhibition of CD38 resulted in a significant increase in

intracellular NAD+ levels, which in turn led to an increase in SIRT

expression and acetylase activity. Activation of the CAD38-NAD+-

SIRT1 pathway resulted in a decrease in HIF-1 stability, thereby

inhibiting glucose metabolism in CAR-T cells. In addition, the use

of small molecule inhibitors targeting CD38 significantly enhanced

the persistence of CAR-T cells (70). Similarly, a large number of

tumor cell metabolites in the TME are also involved in this process.

For example, tumor cells in AML patients can release large amounts

of kynurenine, which can significantly inhibit CAR-T cell activity

(71). In addition, many tumor metabolites (mitochondrial ROS,

adenosine) contribute to CAR-T cell exhaustion (72, 73). In

conclusion, metabolic disturbances in the TME play an important

role in the CAR-T depletion process.

CAR-T cells exhaustion does not occur suddenly, and involves a

complex process of differentiation. The transition of effector T cells to

an exhausted state is accompanied by significant epigenetic

reorganization and distinct transcriptional features. T-cell fctor-1

(TCF-1), a central transcription factor in early CAR-T cells

exhaustion (74, 75). The study shows that Chromatin peaks

containing TCF family transcription factor motifs shut down

during the transition from a plastic to a dysfunctional stationary

state, with a corresponding decrease in TCF-1. Apart from this, there

are many common features observed in T-cell exhaustion, where

CAR-T cells are functionally exhausted concurrently with and often

characterized by high surface expression of inhibitory receptors

(CTLA-4, PD-1, TIM-3, LAG-3, and 2B4) on CAR-T cells (61, 76).
3.2 Association of ICIs with CAR-T
cells exhaustion

During the preparation process of CAR-T cells, it was found

that the expression level of PD-1 on the patient’s T cells affects the

killing function of the prepared CAR-T cells. Additionally, it was

found that PD-1 were highly expressed on many exhausted CAR-T

cell epitopes (77). Yamaguchi et al. found that M2-type TAMs in

TME induced CAR-T to overexpress PD-1, thereby affecting the

PD-1/PD-L1 pathway to reduce the activity of CAR-T cells. Besides,

the use of atezolizumab (a PD-L1 inhibitor) led to M2-type TAMs

apoptosis, which improved the anti-tumor activity of CAR-T cells

(78). Therefore, ICIs not only block the PD-1/PD-L1 axis to

enhance CAR-T cell function, but also improve the immune

microenvironment and reduce CAR-T cell exhaustion (79–81).
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Early animal experiments showed that PD-1 inhibitor

combined with CAR-T resulted in a significant decrease in the

percentage of myeloid derived suppressor cells (MDSC) in the

tumor microenvironment of mice (82). In a phase I clinical trial

for the treatment of malignant pleural mesothelioma, researchers

injected pembrolizumab (a PD-1 inhibitor) after an infusion of

CAR-T targeting mesothelin. After 12 weeks of pembrolizumab

treatment, the researchers were able to detect CAR-T cells in the

patients’ peripheral blood, and the rate of exhausted CAR-T cells

was significantly lower (83). Kersten K et al. found that single-target

CAR-T therapies gradually produce off-target effects, so CAR-T cell

therapy needs to be combined with other immunotherapies (57). In

clinical care, patients with relapsed and refractory diffuse large B-

cell lymphoma (DLBCL) have disease progression after CAR-T

therapy, and patients can achieve remission after receiving

additional PD-1 inhibitor therapy (84). Meanwhile, PD-1

inhibitor combined with CAR-T has also achieved impressive

therapeutic effects in phase I clinical trials for solid tumors (83).

Therefore, a variety of experiments have demonstrated that the PD-

1/PD-L1 pathway may play a key role in CAR-T therapy. It was

suggested that CAR-T cell therapy combined with ICIs may be a

more effective treatment for solid tumors (Figure 2).
4 Strategies for the clinical application
of CAR-T cell therapy in combination
with ICIs

4.1 Exogenous ICIs combined with CAR-T
cell therapy

The strategy for this type of research is to directly combine

exogenous ICIs with CAR-T cell therapy. This treatment model
Frontiers in Oncology 05
involves administering CAR-T cell therapy alone to the patient,

followed by injection of ICIs after 1-2 months of clinical

observation (85, 86). Back in 2018, there was a new breakthrough

in the treatment of malignant brain tumors with CAR-T combined

with PD-1/CTLA-4 antibodies. Researchers used two different

treatment methods for invasive brain cancer glioblastoma (GBM):

CAR-T cell therapy alone and combination therapy. Encouragingly,

CAR-T cell therapy in combination with PD-1/CLTA4 antibody

showed much higher anti-cancer efficacy than CAR-T therapy alone

(87). In addition to this, oncolytic viruses (Ovs) combined with CAR-

T cell therapy has achieved promising efficacy in GBM. For example,

oncolytic Herpes Simplex Virus HSV-1 (oHSV-1) can significantly

increase the release of T-cells and IFN-g from GBM, which enhances

the therapeutic effect of CAR-T. In addition, wang et al. combined

CXCL11-loaded oncolytic virus (oAds-CXCL11) with CAR-T cell

therapy and found an increase in T-cell and NK infiltration, as well as

a significant decrease in M2-type macrophages in mouse GBM

model. In September 2021, in a phase I//IIA clinical trial, CAR-T

cell infusion followed by the use of Pembrolizumab (a PD-1

inhibitor) in the treatment of refractory B-cell lymphoma produced

better clinical efficacy. Twelve patients were evaluated, one in

complete remission (CR) and two in partial remission (PR). The

experiments also demonstrated that activation and proliferation of

CAR-T cells increased (88). In November 2021, Prasad S Adusumilli

Prasad S Adusumilli et al. published the results of a phase I clinical

trial. This is a clinical trial of CAR T cell therapy in combination with

the pembrolizumab in patients with malignant pleural disease, the

clinical trial data showed that patients treated with this combination

had a median survival of 23.9 months, with a one-year survival rate of

83%, which was much higher than the 17.7 months, 74% one-year

survival rate for single CAR-T cell therapy (83).

In a clinical trial of neuroblastoma, researchers have found that

CAR-T cell therapy in combination with ICIs showed better T-cell
B CA

FIGURE 2

The principle of CAR-T cell therapy combined with ICIs. (A) Challenges of CAR-T in solid tumors. (B) Mechanisms of CAR-T exhaustion. (C)
Mechanisms underlying enhanced antitumor activity of PD-1 disrupted CAR-T cells.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1368732
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lv et al. 10.3389/fonc.2024.1368732
persistence and anti-tumor efficacy than CAR-T cell therapy in

combination with chemotherapeutic agents (89). In addition, the

combination of ICS with CAR-T has been clinically tested in

various solid tumors such as melanoma, non-small cell lung

cancer (NCLC) and ovarian cancer.

The advantage of combination therapy is that it can improve the

objective remission rate of advanced patients (90–92). However,

there are some limitations to this combined treatment strategy.

First, the blocking effect of PD-1 inhibitors is transient and requires

repeated administration. Second, PD-1 inhibitor can be captured by

TAMs before reaching the surface of CAR-T cells, thereby

eliminating their ability to block PD-1/PD-L1 pathway. Third,

systemic application of ICIs produces strong systemic side effects.

Common adverse reactions in patients treated with PD-1 inhibitors

include rash, diarrhea, and thyroid dysfunction. Other more serious

immune complications associated with ICIs include cardiac

complications, neuromuscular disease, and pneumonia (93–96).

As a result, many patients do not achieve the desired results

with CAR-T therapy followed by anti-PD-1 therapy. Moreover,

some studies have shown higher relapse rates in patients after

using ICIs. What’s more, Minagawa, K et al.’s study showed that

the role of PD-1 in lung cancer is exactly the opposite, as blocking

PD-1 actually promotes tumor cell proliferation (97, 98).

Therefore, due to the ineffectiveness and relatively high number

of side effects of this treatment, researchers are actively seeking

alternative treatments.
4.2 CAR-T therapy with auto endocrine
immune checkpoint antibodies

The design idea of this study is to allow CAR-T cells to express

the CAR while allowing the T cells to additionally express the PD-1/

PD-L1 antibody scFv. In this way the CAR-T cells are allowed to

secrete the PD-1/PD-L1 antibody to block the immune cell PD-1

and the tumor cell PD-L1. Compared to the combination of

exogenous ICIs and CAR-T cell therapy, this CAR-T cell that can

secrete ICIs on its own has two advantages. On the one hand, PD-1

antibodies secreted by CAR-T cells can break through the

limitations of the immune microenvironment of solid tumors,

reduce the depletion of CAR-T cells, and play a cooperative role

in killing tumors. On the other hand, systemic PD-1 monoclonal

antibodies in combination with CAR-T can produce various side

effects such as immune pneumonitis, cytokine storm, etc (99).
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However, CAR-T cell therapy with endocrine immune checkpoint

antibodies is able to precisely hit tumors and secrete ICIs only at the

tumor site, avoiding toxic side effects at other sites.

In October 2018, Rafiq S et al. transformed CAR-T cells to

successfully secrete PD-1-blocking single-chain variable fragments

(scFv). Researchers construct mouse solid and hematologic tumor

models. It was found to increase the anti-tumor activity of CAR-T

cells while significantly reducing immunotoxicity compared to the

effects of combination therapy with CAR-T cells and ICIs (100).

In February 2021, Qian et al. used autocrine PD-1 antibody

combined with CAR-T for the first time in the treatment of

advanced refractory ovarian cancer. The results showed that, this

CAR-T cells not only possesses the function of killing tumor cells,

but also triggers the local immune effect of the tumor, and improves

the TIME. The progression-free survival (PFS) and overall survival

(OS) of the patients reached 5, 17 months (101). In March 2023.

The PD-1 nanobody-targeted mesothelin CAR-T cell injection

(BZD1901) formally entered the phase I and II clinic trial.

In August 2023, Chen et al. found that autocrine PD-1 antibody

combined with CAR-T cell-targeted delivery of single-chain

antibody could enhance the anti-tumor efficacy of colorectal

cancer in mice (102).

Therefore, the research of autocrine PD-1 CAR-T cells is unique

and has achieved better efficacy in isolated experiments and mouse

animal models. However, more clinical trials are still needed to

verify its efficacy.

Cl in ical t r ia l s reg is tered in Cl inical t r ia l .gov and

www.Chictr.org.cn, using PD-1 expression on CAR-T cells for

cancer treatment are summarized in Table 2.
4.3 Immune checkpoint genes disrupted
CAR-T cells

4.3.1 PD-1/PD-L1 axis
PD-1/PD-L1 is an important signaling pathway in the tumor

immune response (103). Es ther Schoutrop et al. showed that CAR-

T cells in ovarian cancer had high expression of PD-1 and LAG-3,

while the expression of the corresponding receptor PD-L1 was up-

regulated in tumor cells. In addition, it has been shown that folate

receptors (FR) are overexpressed in more than 90% of ovarian

cancers (104). Consequently, researchers have been developed three

generations of anti-aFR CAR constructs; anti-aFR.CD3z, anti-
aFR.CD28.CD3z, and anti-aFR.CD28.4-1BB.CD3z. Compared to
TABLE 2 List of registered clinical trials expression ICIs CAR-T cells/T cells to treat cancer.

NCT number CAR-T
product

Target
antigen

Disease Clinical trial phase Status Location

NCT03179007 CTLA-4 and PD-1 MUC-1 Solid Tumor 1 Recruiting Ningbo China

NCT03182816 CTLA-4 and PD-1 EGFR NCLC 1 Recruiting Ningbo China

NCT02862028 PD-1 EGFR NCLC 1/2 Recruiting Shanghai China

NCT03615313 PD-1 MSLN Solid Tumor 1/2 Recruiting Shanghai China

NCT03030001 PD-1 MSLN Solid Tumor 1/2 Recruiting Ningbo China
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the other two CAR designs, NK92 cells expressing aFR28BBz
exhibited greater antigen specificity and proliferation, and their

antigen-induced apoptosis rate was significantly reduced (105).

After blocking the PD-1-L1 axis, more functional CAR-T cells

generated (106). Elaine Lau et al. showed that CAR-T cells with

PD-1 knocker-out (KO) exhibited a lower depletion phenotype and

dysfunction, along with longer survival time in situ tumor model

mice with B-cell malignancy (107). Zhu et al. showed that CAR-T

cells with PD-1 KO exhibited enhanced killing ability in an animal

glioma model of the brain (108). In August 2018, Guo et al. found

that infusion of PD-1 KO CAR-T cells showed stronger killing

ability of hepatocellular carcinoma in animal tumor models (109).

Therefore, several studies have proved that blocking the PD-1/PD-

L1 axis can effectively enhance the function of CAR-T cells, and

clinical trials of CAR-T cell therapy targeting PD-1 have been

conducted one after another.

Elaine Lau et al. developed a class of allogeneic CAR-T cells with

PD-1 KO (CB-010). CB-010 demonstrates superior performance in

the treatment of relapsed/refractory Hodgkin lymphoma. These

allogeneic CAR-T cells have the advantage of reduced cost and

elevated number of applicable patients, but there is a risk of graft-

versus-host disease (GvHD). Therefore, CB-010 was prepared by

knocking out the TRAC gene to reduce the risk. In May 2022,

results from a Phase I clinical trial showed that after 16 patients with

relapsed or refractory lymphoma were treated with CB-010 (PD-1

knockout CAR-T therapy), 11 were in complete remission (CR) and

4 were in partial remission (PR). The overall remission rate (ORR)

was 94% (107).

Clinical studies on blocking the PD-1/L1 axis are mainly

conducted through PD-1 KO. However, some researchers are

against PD-1 KO, arguing that cells cannot expand or grow after

complete removal of the PD-1 gene, while CAR-T cells with silence

of PD-1 are able to expand well in vitro without affecting the anti-

tumor properties of CAR-T cells.

Wei et al. showed that PD-1 may play an important role in

maintaining the normal proliferation and differentiation of T cells,

and PD-1 KO may weaken the anti-tumor function of T cells by
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inhibiting their proliferative activity (110). R S Kalinin et al. found

that PD-1 KO resulted in faster terminal differentiation of CAR-T

cells as well as accelerated exhaustion of CAR-T cells, while

proliferative viability was significantly decreased compared to PD-

1 silence. Moreover, PD-1 KO was significantly accompanied by

upregulation of the exhaustion marker TIGIT (111).

In conclusion, the PD-1/PD-L1 pathway plays an important

role in CAR-T cell depletion, proliferation, and apoptosis. However,

whether to silence or Knock-out PD-1 in the preparation of CAR-T

cells is still controversial, more research is still needed.

Cl in ical t r ia l s reg is tered in Cl inical t r ia l .gov and

www.Chictr.org.cn, using PD-1 knockout CAR-T cells for cancer

treatment are summarized in Table 3.

4.3.2 Other immune checkpoints
Compared to CAR-T cell therapy without immune checkpoint

disturbed, CAR-T cells with LAG-3 blockade did not positively

affect CAR-T cells function in vitro experiments, and the same

experimental results were also presented in animal models (112).

Sangya Agarwal et al. showed that the CD28 signaling pathway

could be inhibited by knocking-out the CTLA4 gene in CAR-T cells.

In addition, it also enhanced the anti-tumor activity and CAR

expression of CAR-T cells. CAR-T cells with CTLA4 blockade

exhibited higher proliferative capacity and better anti-tumor

efficacy compared to CAR-T cells with PD-1 blockade (113).

In addition to this, Julia Carnevale et al. explored a novel

immune checkpoint gene (RASA2), which promotes T cells

activation and enhances their antigenic sensitivity, as well as their

proliferative capacity and effector function in a variety of

immunosuppressive settings. Removal of RASA2 prolonged

survival in mice with liquid or solid tumors in a variety of

preclinical T-cell receptor models and CAR - T cell therapy.

RASA2 exhibits superior performance compared to other

immune checkpoint blockers (PD-1) (114).

Although the blockade of immune checkpoints such as CTLA4

and RASA2 in CAR-T cells has achieved better results in cells, there

is still a lack of clinical trials to validate their efficacy.
TABLE 3 List of registered clinical trials using PD-1 gene disturbed CAR-T cells/T cells to treat cancer.

NCT number CAR-T
product

Target
antigen

Disease Clinical trial phase Status location

NCT03525782 PD-1KO CAR-T MUC1 NCLC 1/2 Recruiting Guangzhou
China

NCT05812326 PD-1KO CAR-T MUC1 Breast Cancer 1/2 Recruiting Guangzhou
China

NCT03706326 PD-1KO CAR-T MUC1 Esophageal Cancer 1/2 Recruiting Guangzhou
China

NCT03545815 PD-1/TCR KO MSLN Solid Tumor 1 Recruiting Beijing
China

NCT05732948 PD-1 Silence
CAR-T

PSMA/PSCA Prostate Cancer 1 Recruiting Suzhou
China

NCT03747965 PD-1 KO CAR-T MSLN Solid Tumor 1 Recruiting Beijing
China
fr
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4.3.3 Multi-target blockade
Huang RY et al. found that when PD-1 were individually

blocked in metastatic ovarian cancer cells, other immune

checkpoints (LAG-3, CLTA-4) were upregulated accordingly

(115).Because of this negative feedback mechanism of immune

checkpoints, some researchers believe that research can be

explored in the direction of multi-target blockade (116). Lee YH

et al. evaluated CAR-T Cell therapy in the context of four different

checkpoint combinations blockade: PD-1/TIM-3, PD-1/LAG-3,

PD-1/CTLA-4, and PD-1/TIGIT. The study showed that PD-1/

TIGIT down-regulated CAR - T cells were found to have a unique

synergistic anti-tumor effect. Importantly, functional experiments

and phenotypic analyses indicated that PD-1 down-regulation

enhanced short-term effector function, while TIGIT down-

regulation was primarily responsible for maintaining the hypo-

differentiated state, providing a potential mechanism for the

observed synergistic effect (116). There are also studies showing

that CAR-T cells with blockade of CTLA-4 and LAG-3 exhibit

stronger anti-tumor activity in various experimental animal models.

In addition to this, CAR-T cells will express CAR on their surface

for a longer period of time, its proliferative capacity will also be

enhanced (112, 113). CAR-T cells with multi-target blockade

undoubtedly show better prospects. At present, there is still a lack

of clinical trials to confirm the effectiveness of CAR-T cell therapy

with multi-target blockade.
4.4 New delivery systems

CRISPR-Cas9 is a common method to facilitate precise

integration of target se quences (117, 118). The usual CRISPR

gene editing system uses guide RNA (guide RNA) to mediate the

cleavage of genome-specific loci by Cas enzymes. Previous CRISPR-

Cas9 technologies typically use lentiviral packaging methods to

insert CAR sequences randomly into the cellular genome,

potentially affecting normal gene expression and increasing the

risk of oncogenic insertion mutagenesis. Specific responses to DNA

of viral origin often impede CAR expression (119–122), and virus

manufacturing is often costly (123).

Li et al. used CRISPR-Cas9-mediated homology directed repair

(HDR) to precisely knock out PD-1, and then used HDR technology

to insert exogenous CAR into the original PD-1 locus. CAR-T cells

constructed by this gene editing method (PD-119BBZ) do not carry

the risk of exogenous CAR insertion. Besides, this allows precise

insertion without the use of viral vectors. Such CAR-T cells (PD-1

19bbz) showed more powerful and longer-lasting killing power

compared with lentivirus-infected CAR-T cells (LV-19BBZ). The

complete remission rate in patients with relapsed refractory

lymphoma was 87.5%, and the objective remission rate reached

100%, by far the best clinical results in global CAR-T cell therapy for

refractory relapsed lymphoma with the highest remission rate and

low toxicity (124).

In addition, Jennifer Doudna et al. improved Cas9 specificity

using a CRISPR hybrid RNA-DNA (chRDNA). The case is guided

to recognize genome-specific loci by a heterogeneous sequence of

DNA and RNA sequences spliced together. This RNA-DNA
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heteroduplex sequence significantly reduces off-target gene editing

by the gene editing system. This approach provides new ideas for

making CAR-T using chRNAs in the clinic (125). The CAR-T cells

injection(CB-010) developed by Elaine Lau et al. were edited using

chRDNA. The drug performed well in a Phase I clinical trial in

refractory B-cell non-Hodgkin’s lymphoma, with an overall

remission rate (ORR) of 94% and a complete remission (CR) rate

of 69% in treated patients (107).

Michaael Mitchell et al. developed a lipid nanoparticle platform

(LNP) that delivers both CAR-mRNA and siRNA targeting PD-1 to

T cells. In this way, they generated CAR-T cells with transient CAR

expression and PD-1 interference, without altering the overall

activation state of the T cells. This delivery method, which can

restore the expression of immune checkpoints, can significantly

reduce autoimmune risk (126).

Thus, precise gene editing systems are always advancing, and

the improvement of gene editing technology has greatly increased

the chances of breakthroughs in solid tumors.
4.5 Other novel immune
combination therapies

Although CAR-T combined with ICIs has achieved a promising

clinical outcome, other new immunologic combination therapy

strategies have also achieved surprising clinical results. For

example, CAR-T combined with Ovs, CAR-T combined with

interleukin, and so on. In 2022 Apr, Richard Gvile et have linked

two immunotherapeutic approaches, CAR-T and OVs. The

researchers loaded the OVs directly onto CAR-T cells, they found

that Ovs can activate the CAR-T through the TCR on the CAR-T,

and the CAR-T cells can bring the Ovs to the tumor, thus exerting a

synergistic effect to kill the tumor. The experiment showed that the

addition of OVs dramatically increased the proliferative capacity of

CAR-T in mice, and the number of CAR-T cells in spleen, tumor

and blood increased dramatically. In addition, animal studies have

shown that this combination of treatments extends the lifespan of

mice with intracranial gliomas (127). In 2022 Jul, the results of

Lushun Chalise et al. also demonstrated that this treatment can

significantly arrest the growth of GBM and significantly improve

the survival rate of mice (7). There is no doubt that this

combination therapy has achieved impressive efficacy in animal

experiments, however, it has not yet been carried out in humans. Its

effectiveness still needs to be supported by extensive clinical

trial data.
5 Conclusion

CAR-T cell therapy has proven to be a highly effective strategy

for the treatment of hematologic malignancies. However, this

treatment method does not perform well in solid tumors, this is

mainly due to the fact that solid tumors are characterized by

an t i g e n i c h e t e r o g e n e i t y a n d immuno s u p p r e s s i v e

microenvironment, which can damage the tumor-killing function

of CAR-T cells. With all these factors, CAR-T cells will eventually
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go to exhaustion. Among the various strategies to enhance the

function of CAR-T cells, CAR-T cell therapy combined with ICIs is

a more promising option. This combined treatment strategy is

highly theoretically feasible and has achieved good therapeutic

results in both animal and clinical trials. However, it has not yet

been applied to clinical treatment on a large scale. Therefore, more

advanced CAR-delivery systems (non-viral plasmids, electro

transfer, LNP) in combination with multiple immune checkpoints

(PD-1, CLTA-4, LAG-3, etc.) disturbed can be used, and then

multi-center clinical trials can be conducted. We believe that this

treatment strategy will have a transformative impact on the

treatment of solid tumors in the future.
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