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Objective: Colorectal cancer (CRC) is one of the most prevalent cancers

worldwide. A considerable percentage of patients who undergo surgery with

curative intent will experience cancer recurrence. Early identification of

individuals with a higher risk of recurrence is crucial for healthcare

professionals to intervene promptly and devise appropriate treatment

strategies. In this study, we developed prognostic models for CRC recurrence

using machine learning models on a limited number of CEA measurements.

Method: A dataset of 1927 patients diagnosedwith Stage I-III CRC and referred to

Zuyderland Hospital for surgery between 2008 and 2016 was utilized. Machine

learning models were trained using this comprehensive dataset, which included

demographic details, clinicopathological factors, and serial measurements of

Carcinoembryonic Antigen (CEA). In this study, the predictive performance of

thesemodels was assessed, and the key prognostic factors influencing colorectal

cancer (CRC) recurrence were pinpointed

Result: Among the evaluated models, the gradient boosting classifier demonstrated

superior performance, achieving an Area Under the Curve (AUC) score of 0.81 and a

balanced accuracy rate of 0.73. Recurrence predictionwas shown to be feasiblewith

an AUC of 0.71 when using only five post-operative CEA measurements.

Furthermore, key factors influencing recurrence were identified and elucidated.

Conclusion: This study shows the transformative role of machine learning in

recurrence prediction for CRC, particularly by investigating the minimum

number of CEA measurements required for effective recurrence prediction.

This approach not only contributes to the optimization of clinical workflows

but also facilitates the development of more effective, individualized treatment

plans, thereby laying the groundwork for future advancements in this area. Future

directions involve validating these models in larger and more diverse cohorts.

Building on these efforts, our ultimate goal is to develop a risk-based follow-up

strategy that can improve patient outcomes and enhance healthcare efficiency.
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1 Introduction

Colorectal cancer (CRC) ranks as the third most prevalent

cancer worldwide (1). Advances in chemotherapy and increased

use of hepatic resection surgery have contributed to significant

improvements in the survival rate for patients with this type of

cancer (2). Despite these improvements, cancer recurrence remains

a prolonged challenge, and delays in detection can compromise the

effectiveness of surgical intervention (3). Studies have revealed that

approximately 85% of recurrences occur within 30 months after

surgery, with nearly all cases appearing within 5 years (4). Thus, it is

essential to maintain continuous monitoring of patients even after

successful therapeutic intervention to detect potential cancer

recurrence at the earliest possible stage.

The current guidelines for identifying recurrence involve

regular testing of CEA levels in post-operative patients (5, 6).

CEA level is a widely used clinical marker, demonstrating

associations with the occurrence and severity of CRC (7, 8).

However, studies have revealed the fact that single CEA

measurements lack strong prognostic potential for monitoring

CRC, exhibiting a balanced accuracy of 0.65 (9, 10).

In recent years, machine learning (ML) techniques have gained

significant traction in oncology (11, 12). These techniques are

applied for both diagnosis and prognosis, aiming to enhance

patient outcomes and optimize treatment strategies (13, 14).

While ML models have been employed for recurrence prediction

in CRC (see Section 2), there is a need for CRC prognostication

models that simultaneously achieve high accuracy and offer clear

explainability. This study aims to bridge this gap by employing ML

techniques to accurately prognosticate CRC recurrence and also to

identify the underlying factors contributing to it. Our contributions

are three-fold:
Fron
• In this study, we apply and evaluate four various machine

learning models, integrating demographic information,

clinicopathological factors, and CEA measurements.

Through the progressive integration of CEAs, we also

investigate the minimal number of CEA measurements

necessary to effectively predict recurrence.

• We use permutation importance method to identify the key

clinical factors influencing our model’s predictions,

providing valuable information about the variables most

impactful in CRC recurrence.

• We investigate the impact of data imputation on the

predictive performance of CRC recurrence models.
2 Related work

In recent years, CRC prognosis and diagnosis have gained

attention in clinical and research areas. Commercial tools such as

Oncotype DX Colon (15) and ColoPrint assay (16), which

incorporate gene expression profiling, have emerged as resources

for assessing the risk of recurrence. However, these tools showed a

relatively modest performance (area under the receiver operating
tiers in Oncology 02
characteristic curve (AUC) of 0.63 for ColoPrint and 0.55 for

OncoDefender-CRC) (14).

Previous studies on CRC prognosis applied ML through

retrospective analyses on diverse data types, mainly as a single

modality, including clinical, epidemiological, and genetic data (11,

12). Through the analysis of genetic data, Grudner et al. (17)

predicted diverse clinical outcomes, including cancer recurrence.

Their model demonstrated a stratification between recurrence and

non-recurrence patients, surpassing the effectiveness of sub-

categorization based on prior literature, reporting an accuracy of

0.71 for their predictions. In (11), the authors explored the

feasibility of using ML models, mainly decision-tree-based

learning algorithms, to predict recurrence in Stage IV CRC

patients. The reported AUC score for their top-performing model

was 0.76. Elsewhere, Castellanos et al. (12), employed an ensemble

model to predict recurrence in Stage II-III CRC patients. Their

dataset included gene expression data, protein-protein interaction

details, and tumor suppressor and driver mutation information.

Their experimental results showed superior predictive capabilities

on molecular data compared to clinical data alone. Their most

effective model achieved an AUC of 0.79. In (13), the authors

applied a range of ML models on a relatively small dataset with 904

CRC patients to predict recurrence. Their best-performing model, a

support vector machine (SVM), applied to the structured data

yielded an AUC of 0.83.
3 Methods

3.1 Data collection

This study used a dataset of patients diagnosed with Stage I-III

CRC who were referred to Zuyderland Hospital for surgery with

curative intent and follow-up of the primary tumor between 2008 to

2016. This study was approved by the Medical Ethics Committee,

and informed consent was not obligatory. The dataset is composed

of static and time-series (dynamic) features. The static features

consist of 24 predictor variables that are associated with recurrence,

such as demographic information, comorbidities, tumor

characteristics, and treatment parameters. As shown in Figure 1,

the dynamic features contain 40 CEA measurements. Patients were

followed up post-operatively according to the Dutch National

Guidelines, every 3 to 6 months on average (for a detailed

description of all included predictor variables, see Table 1).
3.2 Data preprocessing

Comprehensive data preprocessing steps were performed to

ensure the integrity of the dataset. Initially, 13 patients who

presented inconsistencies in their data with the time of data

collection appearing in descending order contrary to the expected

chronological progression post-surgery were excluded. CEA

measurements obtained before surgery were disregarded for the

remaining patients. Missing data were then imputed using data

imputation techniques based on each feature type. In line with
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https://doi.org/10.3389/fonc.2024.1368120
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mohammadian Rad et al. 10.3389/fonc.2024.1368120
previous studies (13), missing entries within each binary and

categorical feature (e.g., smoking status) were imputed using the

most frequent value present in that particular feature (See

Supplementary Table S1 in Supplementary Material for the

number of missing values in each static feature). For continuous
Frontiers in Oncology 03
values (e.g., CEA measurements), median value-based imputation

was employed, effectively maintaining the overall distribution

characteristics. Then, categorical features were encoded using the

one-hot encoding scheme, resulting in 67 features for subsequent

modeling. Quantile transform was applied to features to mitigate
TABLE 1 An overview of the different variables used for the colorectal cancer recurrence prediction model.

Category Variable (Type) Description

Demographics

Age (con)
Smoking status (cat)

Age at time of surgery
Divided into three classes: never, past, or current smokers

Sex (bin) Male or female

Comorbidity

Irritable Bowel Syndrome (bin)
Inflammatory Bowel
Disease (bin)

Gastrointestinal tract functional disorder characterized by chronic abdominal pain and altered bowel habits
Chronic auto-inflammatory condition of the gastrointestinal tract

Diabetes (bin) Absolute or relative insulin deficiency

Familial Adenomatous
Polyposis (bin)

Presence of familial adenomatous polyposis; rare inherited disease causing extensive polyp formation

Lynch (bin) Presence of hereditary nonpolyposis colorectal cancer (HNPCC, or Lynch syndrome)

Cardiac disease (bin) Cardiac disease present (e.g., congestive heart failure, ischemic heart disease)

Tumor Characteristics

Organ (bin)
Synchronic metastasis (bin)
Location (bin) cTNM stage
(cat) ycTNM (cat)

Location of tumor (colon/rectum)
Presence of metastasis detected at or before diagnosis of the primary tumor
Location of metastasis (liver/other location)
Clinical TNM (5th edition)
Clinical TNM after neoadjuvant therapy

p(y)TNM (cat) Pathological TNM (5th edition)

Tumor type (cat) Tumor type (adenocarcinoma, mucinous carcinoma, or other)

Cancer staging (cat) Cancer stage according to pTNM

lymph invasion (bin) Presence of lymph invasion

Angioinvasion (bin) Presence of angio invasion

Treatment parameters

Neoadjuvant therapy (cat) Radiotherapy (5x5 Gray), chemotherapy, or radiochemotherapy

Adjuvant chemotherapy (bin) Use of any form of adjuvant chemotherapy

Adjuvant radiotherapy (bin) Use of any form of adjuvant radiotherapy

Treatment outcome Resection marge free (bin) Surgical outcome in achieving complete tumor removal

Tumor marker CEA measurements (con) Tumor marker used for detection recurrence
The variables are ordered based on their category. The variable types and descriptions are provided. Con, continuous; Cat, categorical; Bin, binary; TNM, TNM-classification; CEA,
Carcinoembryonic antigen; HNPCC, Hereditary Non-Polyposis Colorectal Cancer; 5x5 Gray, 5x5 rectal cancer radiation protocol.
FIGURE 1

The percentage of CEA measurements (non-missing values) in each time point over all patients.
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the impact of outliers and non-normality in the original data. The

final preprocessed dataset consisted of 1927 patients (See

Supplementary Table S2 in Supplementary Material for the

distribution of patients by cancer stage). The dataset was

imbalanced, with the positive class (recurrence) constituting

approximately 15% of the total dataset which equates to

285 patients.
3.3 Experimental setup

3.3.1 Experiment 1 (prognostic models using
static features)

This experiment aims to investigate the influence of static

clinical data on the accuracy of recurrence prediction in patients

with CRC. We evaluated four diverse classifiers: 1) logistic

regression (LR), a linear classifier; 2) support vector machine

(SVM) with a radial basis function kernel, a non-linear classifier;

3) random forest (RF), a decision-tree-based classifier; and

4) gradient boosting (GB), an ensemble model of decision-tree

based classifiers. Furthermore, to identify the key clinical factors

contributing to the recurrence prediction, we applied the

permutation importance technique (18), a model-agnostic

method for assessing feature importance, on the static features

using our top-performing classifier.

3.3.2 Experiment 2 (prognostic models using
static features and step-wise incorporation of
CEA measurements)

This experiment aims to assess the impact of incorporating

CEA measurements alongside static features for recurrence

prediction. We evaluated the performance of the classifiers

introduced in Experiment 3.3.1 using a limited number of CEA

measurements after surgery. In this context, we progressively

incorporated CEA measurements with static features. This

iterative process involved gradually adding individual CEA

measurements at a time to the existing set of static features,

incrementally building a comprehensive set of combined features.

Subsequent to each inclusion of a new CEA measurement, we

trained ML models, outlined in Experiment 3.3, with the updated

input for the prediction. As depicted in Figure 1, by moving beyond

the first 10 CEA measurements, the percentage of measurements

(non-missing values) in each time point over all the patients

significantly decreases. Consequently, we have restricted our

analysis to these initial 10 CEA measurements. This selection

ensures a more reliable and complete dataset, with less than 50%

missing values.

3.3.3 Experiment 3 (the impact of
data imputation)

Considering the presence of missing values in our dataset and

the use of imputation as a preprocessing step, this experiment

examines the impact of data imputation on recurrence prediction.

This is achieved by comparing the performance of the best-

performing classifier, which was applied to the imputed data, with

that of the Histogram-based Gradient Boosting (HGB) classifier.
Frontiers in Oncology 04
Unlike all classifiers used in this study, the HGB classifier can

handle missing values without data imputation. By using the HGB

classifier, we aim to evaluate the impact of its missing value-

handling capabilities on the predictive accuracy of our recurrence

prediction task. Through a comparative analysis, we can assess the

benefits of incorporating the HGB classifier’s missing value-

handling mechanism in our prediction model.

All classifiers were implemented using the Sklearn library (19).

To tackle the challenge of data imbalance, a weighted training

approach was adopted, wherein class weights were set to be

inversely proportional to their frequencies in the dataset.

Hyperparameters for these classifiers were optimized using a grid

search algorithm, which was applied to a validation set to ensure

optimal model performance and generalizability.
3.4 Evaluation

In this study, the samples were randomly divided into training

and testing sets at a ratio of 8:2. All the experiments were repeated

10 times to evaluate the variability in performances and ensure

reliable estimates of the model’s performance. For each repetition,

the following evaluation metrics were calculated to measure the

classification performance:
• Area Under the Curve (AUC): This metric measures the

model’s discriminative power, reflecting its ability to

differentiate between the posit ive and negative

classes accurately.

• Balanced Accuracy (BAC): This metric assesses the

overall accuracy of a classification model, considering

both sensitivity and specificity (20). Unlike traditional

accuracy, which may be misleading in the presence of

imbalanced datasets, BAC is useful when the dataset is

imbalanced. BAC inherently encompasses both specificity

and sensitivity, crucial metrics often employed in evaluating

clinical assay performance. Therefore, in line with prevalent

ML practices (13), while we prioritize models with superior

AUC scores, we also value models with high BAC scores.
4 Results

Table 2 shows that the LR classifier achieved the best

performance of all the ML models trained on the static data, with

an AUC of 0.65 and a BAC of 0.60. Furthermore, the results

indicated a boost in classifiers’ performance upon adding CEA

measurements. Up until the inclusion of the first 7 CEA

measurements, performance enhancements were observed for GB,

RF, and SVM models (AUC and BAC increased by approximately

12–17% and 7–11%, respectively). Conversely, the performance

improvement of the LR model was comparatively more gradual

within the same range of measurements (both AUC and BAC

increased 5%). The improvement rate diminished after the

inclusion of the first 7 CEA measurements.
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As illustrated in Figure 2, for the first 3 post-operative post-

operative CEA measurements, the LR model showed the highest

performance in terms of AUC. Among the employed models, GB

and RF classifiers outperformed other ML classifiers when applied
Frontiers in Oncology 05
to the combination of static and CEA measurements. GB trained on

the combined static data and 10 CEA measurements performed the

best, achieving the highest performance with an AUC score of 0.81

and BAC of 0.73. Furthermore, our results showed that using only

the first 5 post-operative CEA measurements in combination with

static data, the GB model was able to predict recurrence with an

AUC of 0.71. Although this marked a reduction of around 10%

from the final model’s performance, which used the entire dynamic

data, the performance demonstrated an incremental enhancement

with the inclusion of more time points.

Furthermore, the results of permutation importance method

depicted in Figure 3 identified tumor characteristics and

demographic information as key determinants. As expected, p(y)

TNM was the most important feature, demonstrating a substantial

effect on the prediction of recurrence. While p(y)TNM and cancer

stadium are measurements for advanced tumor stages, p(y)TNM

provides a more detailed account of tumor size and metastasis. In

contrast, cancer stadium is a more compressed or simplified version

of the p(y)TNM classification. This simplification is primarily

evident in stage III cancer, where we did not differentiate between

sub-stages A, B, and C but rather considered it as a single stage.

Thus, our analyses suggested that p(y)TNM remains the most

detailed and informative variable for inclusion in the model,

mainly because of its comprehensive detail ing of the

extensiveness of tumor growth and spread. Among other features,

age also showed a significant influence on recurrence prediction,

reinforcing its importance as a prognostic factor (21–24).

As an alternative solution to data imputation, one can use

HGB, which offers a mechanism to handle missing values directly

without the need for data imputation. By comparing the results of

HGB with the best-performing model, GB, which requires data

imputation, we observed that HGB achieved comparable

performance without the additional step of data imputation (see

Figure 4). Using HGB can streamline the modeling pipeline and

simplify the data preprocessing, ultimately leading to more efficient

and reliable predictions.
TABLE 2 AUC and BAC measures of four ML models when trained on
static data, and combination of static data and 10 CEA measurements.

Models Experiment BAC AUC

LR
Static
Static+10 CEA

0.60 ± 0.00
0.64 ± 0.00

0.65 ± 0.00
0.70 ± 0.00

SVM
Static
Static+10 CEA

0.54 ± 0.02
0.68 ± 0.01

0.58 ± 0.02
0.74 ± 0.01

RF
Static
Static+10 CEA

0.58 ± 0.01
0.71 ± 0.02

0.62 ± 0.00
0.77 ± 0.01

GB
Static
Static+10 CEA

0.59 ± 0.02
0.73 ± 0.01

0.60 ± 0.01
0.81 ± 0.02
The values indicating higher performance are highlighted in bold.
FIGURE 2

The mean AUC scores of four ML models on combination of static
features and CEA measurements taken after the date of surgery.
FIGURE 3

GB feature importance via permutation importance method.
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5 Discussion

In this study, we proposed the application of ML for recurrence

prediction in patients with CRC using a combination of

longitudinal CEA measurements with clinical information,

including demographic data, tumor staging, and treatment

parameters. Our best-performing classifier, GB, achieved

remarkable AUC and BAC scores. In summary, the model’s

predictive ability for recurrence, based on limited and early post-

surgical CEA measurements, suggests the potential for devising

personalized monitoring schedules. In addition, our analysis

underscored the significance of demographic information,

including age and sex, as well as tumor attributes such as p(y)

TNM in predicting the risk of recurrence. These findings are

consistent with earlier studies, highlighting a high risk of

recurrence in older patients (21–24) and align with evidence of

an association between advanced tumor stages and an increased risk

of recurrence (21, 25). Furthermore, the analysis suggested that the

impact of comorbidities on recurrence prediction was less

pronounced when compared to these other factors. Furthermore,

we showed that using the HGB model can remove the need for data

imputation while preserving the model’s performance.

One of the major strengths of this study is the large sample size

and the availability of data on a wide range of variables. Our dataset

comprises 1927 patients representing a significant increase in size

compared to datasets used in prior studies (13, 14). The ample

sample size in our dataset supports the application of deep learning.

Considering the presence of temporal information in the

longitudinal CEA measurements, recurrent neural networks are

considered suitable candidates for recurrence prediction in

future studies.

Despite the promising results, this study has several limitations.

We evaluated our models using data collected from a single hospital

while the heterogeneity of patient demographics, disease

presentations, and treatment protocols across different hospitals

and geographic locations can significantly influence model

performance. To address this critical aspect of our research and

ensure the robustness and generalizability of our models, we need to

further validate the developed models on a broader range of patient
Frontiers in Oncology 06
data, reflecting diverse demographic and clinical characteristics.

While the outcomes highlighted in this study are promising, it is

worth noting that these achievements have been obtained by

directly applying ML models to the raw data without involving

any feature extraction processes. This shows the potential inherent

in the original data to contribute to the predictive capabilities of the

models. In future work, we will investigate the advantages of

incorporating feature extraction methods from clinical data. This

could encompass manually curating features that align with domain

knowledge or deploying advanced techniques that enable the

models to learn informative features automatically. Furthermore,

all the analyses were conducted retrospectively. Consequently, the

performance of the model in predicting cancer recurrence on new,

yet-to-be-observed data could not be directly assessed or validated

in real-time. The ability of the model to accurately predict cancer

recurrence in future patients remains to be tested through

prospective studies. By developing an application (26) to

frequently capture patient symptoms in short intervals after

surgery, we can bridge the gap between real-time patient

experiences and medical interventions. Such a system facilitates

timely prediction and management of recurrence and promotes

a patient-centric approach by allowing individuals to participate

in their care actively. The adoption of such platforms has the

potential to revolutionize recurrence prediction and overall

patient management.

Additionally, in future work, we aim to explore integrating

multi-modal healthcare data, recognizing its potential to enhance

the prediction of CRC recurrence. This approach will involve

diverse data types, such as molecular prognostic factors (27) and

incorporation of radiomic analysis (28), each contributing unique

information about the disease’s progression and the prognosis of

the patient. The inclusion of molecular prognostic markers, offers a

deeper understanding of the tumor’s biological behavior. These

markers can provide information about the aggressiveness of the

cancer, its likelihood of recurrence, and potential response to

therapy. Incorporating radiomic analysis into our model can

enhance our understanding of the tumor’s characteristics and its

interaction with surrounding tissues, further refining our

predictions of recurrence risk.
6 Conclusion

CRC remains a significant global health challenge, with a notable

percentage of patients experiencing recurrence after curative surgery.

This study showed the value of CEA as a non-invasive and

efficient marker for recurrence prediction. Through the

application of ML, specifically GB classifier, we demonstrated an

accurate recurrence prediction using comprehensive clinical data

combined with CEA measurements, even when limited to early

CEA measurements. We further showed that age and tumor

characteristics are the most important factors influencing the

risk of recurrence. Finally, we showed that HGB yields

performance comparable to GB for this particular dataset while

eliminating the need for data imputation. As healthcare moves

towards more patient-centric models, the integration of web-based
FIGURE 4

Performance comparison between GB with data imputation and
HGB without data imputation.
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platforms and real-time symptom monitoring will be crucial. The

findings of this study highlight the need for further prospective

studies and show the transformative potential of ML in

revolutionizing patient centered care in CRC management.
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