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Fat fraction quantification with
MRI estimates tumor
proliferation of
hepatocellular carcinoma
Mengqi Huang, Fan Zhang, Zhen Li , Yan Luo, Jiali Li ,
Zixiong Wang, Liya Ma, Gen Chen* and Xuemei Hu*

Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,
Hubei, China
Purpose: To assess the utility of fat fraction quantification using quantitative

multi-echo Dixon for evaluating tumor proliferation and microvascular invasion

(MVI) in hepatocellular carcinoma (HCC).

Methods: A total of 66 patients with resection and histopathologic confirmed

HCC were enrolled. Preoperative MRI with proton density fat fraction and R2*

mapping was analyzed. Intratumoral and peritumoral regions were delineated

with manually placed regions of interest at the maximum level of intratumoral fat.

Correlation analysis explored the relationship between fat fraction and Ki67. The

fat fraction and R2* were compared between high Ki67(>30%) and low Ki67

nodules, and between MVI negative and positive groups. Receiver operating

characteristic (ROC) analysis was used for further analysis if statistically different.

Results: The median fat fraction of tumor (tFF) was higher than peritumor liver

(5.24% vs 3.51%, P=0.012). The tFF was negatively correlated with Ki67 (r=-0.306,

P=0.012), and tFF of high Ki67 nodules was lower than that of low Ki67 nodules

(2.10% vs 4.90%, P=0.001). The tFF was a good estimator for low proliferation

nodules (AUC 0.747, cut-off 3.39%, sensitivity 0.778, specificity 0.692). There was

no significant difference in tFF and R2* between MVI positive and negative

nodules (3.00% vs 2.90%, P=0.784; 55.80s-1 vs 49.15s-1, P=0.227).

Conclusion:We infer that intratumor fat can be identified in HCC and fat fraction

quantification using quantitative multi-echo Dixon can distinguish low

proliferative HCCs.
KEYWORDS

hepatocellular carcinoma, fat fraction, proliferation, MVI, MRI
Abbreviations: HCC, Hepatocellular carcinoma; MVI, Microvascular invasion; MRI, Magnetic Resonance

Imaging; HBV, Hepatitis B Virus; HCV, Hepatitis C Virus; tFF, Fat fraction of tumor; TR, Repetition Time;

TE, Echo Time; FOV, Field of View; ROI, Region of Interest; AUC, Area Under the Curve; ROC, Receiver
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Highlights
Fron
• The intratumor fat on MRI is commonly detected and

serves as an important ancillary feature for the diagnosis

of HCC.

• The intratumor fat can be identified in HCC with chronic

hepatitis and distinguish low proliferative HCCs which hold

promise as a prognostic predictor.
Introduction

Tumor proliferation and microvascular invasion (MVI) in

hepatocellular carcinoma (HCC) are pivotal factors leading to

early recurrence following radical therapy and portend a poor

prognosis (1). The immunohistochemical marker Ki-67 serves as

a common indicator of cell proliferation and has been established as

an independent predictor of early recurrence and poor prognosis in

surgically resected HCC (2). A preoperative evaluation of

proliferation and MVI may furnish additional insights for

treatment strategies, such as limitation of ablation and liver

transplantation, neoadjuvant and adjuvant therapeutics. However,

determining proliferation and MVI is currently confined to

specimens, limiting their broader clinical application.

The intra-tumoral fat is commonly identified in HCC,

manifesting in various degrees of differentiation (3). Fatty change

is known to be a marker of transformation from dysplastic nodule

to HCC. It is more prevalent in well-differentiated HCC, with focal

fatty changes observed in larger tumors. In clinical practice, poorly

differentiated HCC often exhibits focal fatty change. A prevalent

hypothesis for intra-tumoral fatty change involves reduced blood

flow due to porta l tract destruct ion and inadequate

neovascularization (4, 5), which exposes the HCC to a hypoxic

environment. Concurrently, upregulation of hypoxia-related

signaling pathways promote the proliferation and migration of

cancer cells (6). Therefore, quantifying fatty changes may serve as

an indicator of HCC proliferation. Additionally, the invasiveness of

HCC is corelated with increased tumor vascularity, and the HCC

with diffuse fat tends to grow slowly and with lower risk of MVI (7),

leading to favorable prognosis (8). Nevertheless, the relationship

between the risk of MVI and the fat quantification in HCC with

focal fat and chronic hepatitis remains unclear.

MRI with multi-echo Dixon and chemical shift encoded

technique possesses a unique advantage in evaluating intra-

cellular fat, as it can distinguish signals of water, triglyceride (9),

and iron (10), which provide a non-invasive and quantitative

evaluation. The quantitative multi-echo Dixon enables iron

correction and accurate detection of fat, as well as MRI

spectroscopy (11, 12). The intra-tumoral fat on MRI is an

important ancillary feature for diagnosing HCC (13) and a

potential biomarker for favorable performances after treatment

(14). Thus, we hypothesize that the quantitative multi-echo Dixon

may enable preoperative, non-invasive, and comprehensive
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assessment of cell proliferation and MVI, which may guide clinical

treatment selection. Hence, this study aims to estimate the diagnostic

value of fat fraction quantification based on MRI quantitative multi-

echo Dixon for tumor proliferation and MVI in HCC.
Materials and methods

This retrospective study was approved by the institutional ethics

committee and the requirement of informed written consent

was waived.
Patients

We enrolled 203 consecutive patients who were suspected or

known of hepatocellular carcinoma clinically or at previously

performed ultrasonography or computed tomography underwent

dynamic enhanced liver MRI and quantitative multi-echo Dixon

from August 2021 to March 2023 in this study. We excluded

patients who (1) had undergone non-surgical treatments (n=67);

(2) has previous treated HCCs (n=18); (3) had histopathologically

proven non-HCC (n=31); (4) encountered analysis difficulties due

to small lesion size (n=10) or apparent artifacts in fat fraction

mapping and R2* mapping(n=11). A final cohort of 66 patients with

66 lesions were analyzed. The study flowchart of patient selection is

presented in Figure 1.

Clinical information including demographics, causes of liver

disease and laboratory data (total bilirubin, alanine transaminase,

aspartate transaminase, albumin, serum alpha-foetoprotein)

were collected.
MRI protocol

All MRI examinations were performed using the same protocol

at 3.0T (MAGNETOM Skyra, Siemens, Germany) with an 18-

channel phased-array coil and the spine coil with feet first and

supine position. After conventional MRI sequences include the

coronal T2-weighted Half-Fourier acquisition single-shot turbo

spin-echo sequence (HASTE), the axial T1-weithted dual-echo

sequence, the quantitative multi-echo Dixon was acquired in a

single 20-second breath-hold. The detailed scanning parameters

were as follows: repetition time (TR) = 9.00 msec, echo time (TE)

=1.05/2.46/3.69/4.92/6.15/7.38msec, field of view (FOV) =

450mm × 450 mm; slice thickness = 3.5mm, voxel size = 1.4 × 1.4

× 3.5mm; Flip angle= 4°; matrix size=160 ×95, bandwidth=1080Hz/

Px, and an acceleration technique of CAIPIRINHA was employed

with the acceleration factor was 2. A Levenberg-Marquardt

nonlinear fitting was then utilized to fit the magnitude of the

complex signal of the multi-echo data. Inline reconstruction was

performed by addressing confounding factors that included

magnetic field inhomogeneity, eddy currents, T1 bias, T2* decay,

and spectral complexities.
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FIGURE 1

Patient selection. We enrolled 203 consecutive patients who were suspected or known of hepatocellular carcinoma clinically or at previously
performed ultrasonography or computed tomography underwent dynamic enhanced liver MRI and quantitative multi-echo Dixon from August 2021
to March 2023 in this study. Patients who had undergone non-surgical treatments (n=67), had previous treated HCCs (n=18), had histopathologically
proven non-HCC (n=31), encountered analysis difficulties due to small lesion size (n=10) or apparent artifacts in fat fraction mapping and R2*
mapping(n=11) were excluded. And a final cohort of 66 patients with 66 lesions were enrolled.
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Imaging analysis

The fat fraction mapping and R2* mapping was automatically

calculated without the need for further post-processing. The region

of interest (ROI) of the tumor, peritumoral regions, and liver were

manually drawn. The ROI of the tumor was delineated in the

maximum plane of the intatumoral fat or the maximum plane of

tumor if no significant fat was depicted in fat fraction mapping and

was delineated in the T1WI and copied to the fat fraction mapping

and R2* mapping (Figure 2). The ROI of the peritumor liver was

delineated in the peritumoral region of the tumor with a circle of

about 1cm2 which avoided the main vessels and bile duct. The fat

fraction of liver was the average of 3 different ROIs randomly

delineated in the liver with 3 circles of about 3cm2, and avoided the

main vessels and bile duct.
Histopathological analysis

Data of tumor pathologic factors including size, tumor

differentiation based on Edmondson-Steiner grade, MVI, satellite

nodule and expression of Ki67 were obtained from pathology

reports. MVI was defined as the presence of tumor cells in the

vessels of surrounding liver tissue which were lined by the

endothelium that was visible only on microscopy. The positive

cellular index of Ki67 was evaluated by a trained pathologist and

described according to the presence of nuclear staining regardless of

the intensity of staining. The percentage of Ki67 was determined by

counting 1000 cells/slide at 100x magnification in five randomly

selected fields.
Statistical analysis

Continuous variables were reported as means and standard

deviations or medians and interquartile ranges. Categorical variables
Frontiers in Oncology 03
were displayed as percentages and numbers. The differences between

groups were assessed usingMann-Whitney U test or Chi-squared test

becausedatawerenon-normallydistributed. The relationshipbetween

MRI parameters and Ki67 was assessed through nonparametric

Spearman correlation coefficients. ROC analysis was performed if

the MRI parameters showed statistically significant differences

between the two Ki67 groups. A two-sided P-value less than 0.05

was considered statistically significant. All statistical analyses, utilizing

SPSS software (version 26.0) and R statistical software (version 4.1.2),

included t-tests, paired t-tests, and Mann–Whitney U tests for

continuous variables, and the chi-square test for categorical

variables. ROC analysis was performed using the “pROC” and

“ggplot2” packages.
Results

Clinical characteristics

Of the 66 patients (mean age, 55.59 ± 8.99 years, 55(83.33%)

males), 60 patients were infected with HBV, while 4 patients were

infected with HCV and 2 patients have pathology proved chronic

hepatitis change and no history of HBV, HCV, ASH, NASH and

alcohol abuse. Furthermore, 18 (27.27%) HCCs were well-

differentiated, while 17 (25.76%) patients had moderately

differentiated HCCs and 31 (46.97%) HCCs were poorly

differentiated. More details of patients are given in Table 1.
Fat fraction and R2* of tumor and liver

The HCCs have a median intratumor fat fraction (tFF) of 5.24%

(IQR 1.88% - 8.52%) and was higher than the median fat fraction of

peritumor liver (5.24% vs 3.51%, P=0.012). Of the 66 HCCs, 42

(63.64%) had an tFF of less than 5%, 13 (19.69%) had an intratumor

fat fraction of more than 5% and less than 10%, and 11 (16.67%)
frontiersin.org

https://doi.org/10.3389/fonc.2024.1367907
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2024.1367907
TABLE 1 Characteristics of the study population.

All Ki67%<=30 Ki67>30 P

Number 66 39 27

Age a 55.59(8.99) 56.23(8.56) 54.67(9.67) 0.492

Sex 0.737*

Female 11 7 4

Male 55 32 23

HBV 53 35 25 0.692*

HCV 4 2 2 0.703*

TB(umol/L) b 11.95(8.57-14.95) 12.70(8.32-15.80) 13.40(9.20-14.90) 0.514**

ALT(U/L) b 22.50(16.75-33.75) 22.00(18.00-30.50) 25.00(14.00-38.00) 1.000**

AST(U/L) b 24.50(20.00-34.50) 23.00(18.00-33.00) 26.00(21.00-37.00) 0.855**

ALB(g/L) a 39.24(3.08) 38.89(2.87) 39.74(3.34) 0.278

sAFP(ng/ml) b 80.63(6.73-661.55) 9.40(3.85-260.60) 301.80(77.70-1210.00) 0.012**

Diam(mm) b 43(24-83) 42.50(21.00-77.00) 46.00(25.00-96.00) 0.324**

Differentiation 0.001*

Well 18(27.27%) 16(24.24%) 2(3.03%)

Moderately 17(25.76%) 12(18.18%) 5(7.58%)

poorly 31(46.97%) 11(16.67%) 20(30.30%)

MVI <0.001*

Positive 18 3 15

Negtive 48 36 12

Satellite 0 0 0
F
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Except where indicated, data are absolute frequencies.
aData are means (standard deviation).
bData are medians (interquartile range).
HBV, hepatitis B virus; HCV, hepatitis C virus; TB, total bilirubin; ALT, alanine transaminase; AST, aspartate transaminase; ALB, albumin; sAFP, serum alpha-foetoprotein; Diam, diameter.
*Chi-squared test.
**Mann-Whiney U test.
FIGURE 2

Imaging analysis. The fat fraction mapping and R2* mapping was automatically calculated with the liver automatically delineated (closed yellow curve).
The ROI of tumor (green circle) was delineated in the maximum plane of the intatumoral fat or the tumor if no significant fat was depicted in fat fraction
mapping, and was delineated in the T1WI (A) and copied to fat fraction mapping (B) and R2* mapping (C). The ROI of the peritumor liver (green circle)
was delineated in the peritumoral region of the tumor with a circle of about 1cm2, which avoided the main vessels and bile duct. ROI: region of interest.
ersin.org
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had an intratumor fat fraction of more than 15%. The fat fraction of

peritumor was not significantly different from fat fraction of liver

(3.51% vs 3.54%, P =0.739). Of the 66 patients, 9 (13.64%) had fatty

liver with a liver fat fraction of more than 5% (15). The fat fraction

of tumor had no significant difference between the fatty liver

patients and nonfatty liver patients (4.32% vs5.38%, P=0.502).

The median R2* of HCC was 38.55s-1 (IQR 26.40-47.81 s-1)

while that of the peritumor liver was 51.40 s-1(IQR 42.75-69.82 s-1).

The R2* of the tumor was significantly lower than that of the

peritumor liver (38.55s-1 vs 51.40s-1, P<0.001).
Relationship of fat fraction and R2* with
the Ki67

The spearman’s correlation analysis indicated that the tFF was

negatively correlated with the expression of Ki67 (r=-0.306,

P=0.012). The correlation analysis showed that the fat fraction of

the liver, R2* of the tumor and R2* of the liver were not significantly

correlated with the Ki67 of the tumor (P>0.05), as shown in Table 2.

The median Ki67 of the 66 HCCs was 27.5% (IQR 10.0%-

50.0%), with 39 HCCs had less than 30.0%. The tFF was higher in

the Ki67<=30% group than the Ki67>30% group (4.90% vs 2.10%,

P=0.001), and the R2* of the liver was higher in the Ki67<=30%

group than the Ki67>30% group (56.90 s-1 vs 49.60 s-1, P=0.003), as

shown in Table 3 and Figure 3. The ROC analysis demonstrated

that the tFF could distinguish the Ki67<=30% group with an AUC

was 0.747(95%CI 0.628-0.867) and a cut-off of 3.39% (sensitivity

77.8%, specificity 69.2%), as shown in Figure 4. The R2* could not

be used to distinguish the Ki67<=30% group (AUC 0.553, 95%CI

0.409-0.697, P=0.469).
Relationship of fat fraction and R2* with
the MVI

Of the 66 patients, 48 (72.73%) had no MVI in the peritumoral

liver, while 18 (27.27%) had MVI in at least one vessel in the

peritumoral region. The fat fraction and R2* of the tumor in MVI

negative group were not significantly different from those in the

MVI positive group (4.05% vs 2.25%, P=0.087; 36.60s-1 vs 39.05s-1,

P=0.194). The fat fraction and R2* of the liver in the MVI negative

group were also not significantly different from those in the MVI

positive group (3.00% vs 2.90%, P=0.784; 55.80s-1 vs 49.15s-1,

P=0.227), as shown in Table 4. The frequency of MVI was not
Frontiers in Oncology 05
significantly different between the high tFF HCCs and the low tFF

HCCs (25.00% vs 30.00%, P=0.650).
Discussion

This study estimated the relationship between the proliferation

marker Ki67 of HCC and the fat fraction of the tumor, as

determined by the MRI quantitative multi-echo Dixon.

Furthermore, the ROC analysis highlighted the fat fraction of the

tumor as a good discriminator of HCCs with Ki67<=30%. Thus, we

have successfully validated the fat fraction as an accurate,

noninvasive, and in vivo biomarker of proliferation for HCCs.

The tumor proliferation of HCC can be non-invasively

evaluated with MRI. Chen at al. reported a strong relationship of

Ki67 with Gd-EOB-DTPA-enhanced MRI in HCC (16). And Jing at

al. indicated that the expression of Ki67 was associated with

apparent diffusion coefficients (17). Gd-EOB-DTPA-enhanced

MRI and apparent diffusion coefficient is an advanced MRI

technique, which needs special contrast media and advanced

post-operative software. And these two techniques were used to

evaluate the tumor proliferation from the perspective of uptake of

specific contrast agents and tissue microstructure. Furthermore, Hu

et al. estimated the value of viscoelasticity measured by MRI

elastography for prediction of Ki67 expression (18). Our study

revealed similar result that the MRI quantitative multi-echo Dixon

was a good discriminator of Ki67, which is a completely different

MRI technique that mainly reflects fatty changes within the tumor.

To our knowledge, it was the first to evaluate the proliferation of

HCC using the fat quantification of MRI.

The intra tumoral fat is an important feature of HCC (19) and

represents focal hypoxia due to the transition of blood supply from

portal vein to hepatic artery with insufficient neovascularization.

Intra tumoral fat was found in both early stage and progressed

HCCs. Our study demonstrated that 13 (19.69%) patients had an

intratumor fat fraction of more than 5% and less than 10%, and 11

(16.67%) had an intratumor fat fraction of more than 15%, with

most patients having chronic HBV and HCV infection, which

suggested that intra tumoral fat was not only found in patients

with fatty liver. Furthermore, our study reveals a negative

correlation between fat fraction and Ki67, suggesting that intra-

tumoral fat serves as a marker of tumor proliferation. The most
TABLE 3 Comparison of MRI between the low Ki67 and high
Ki67 groups.

Ki67%<=30 Ki67>30 P a

Number 39 27

tFF (%) 4.90(2.50-10.50) 2.10(1.60-3.30) 0.001

FF (%) 3.00(1.35-4.80) 3.00(2.10-3.60) 0.634

tR2* (s
-1) 39.20(26.60-49.10) 38.30(25.80-47.60) 0.469

R2* (s
-1) 56.90(41.20-69.80) 49.60(42.90-69.90) 0.003
Data are medians (interquartile range).
aMann-Whiney U test.
tFF, fat fration of tumor; FF, fat fraction of peritumoral liver; tR2*, R2* of tumor.
TABLE 2 Spearman’s correlation analysis of MRI and Ki67.

r P

tFF -0.306 0.012

FF 0.037 0.770

tR2* 0.132 0.290

R2* 0.007 0.954
tFF, fat fration of tumor; FF, fat fraction of peritumoral liver; tR2*, R2* of tumor.
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possible hypothesis may be that the intra tumoral fat was caused by

dysregulated lipogenesis that was due to clonal proliferation in

proliferative HCCs (20). And the intracellular lipid droplets broke

down if energy was deficient in proliferative tumors (21). Hence, the

intra tumoral fat can also be found in proliferative HCCs and the fat

fraction may be less than that in less proliferative HCCs. Previous

studies have also suggested that poorly differentiated HCC is prone
Frontiers in Oncology 06
to have focal steatosis (5), which may explain the relative low-fat

fraction observed in high Ki67 group in our quantitative

measurement study. This study provides a quantitative method

for measuring fat fraction and demonstrates its potential as an

imaging marker of tumor proliferation.

Some studies have reported that increased fat content may

correlated with improved prognosis (14, 22). The mild

accumulation of fat may reflect changes in the microenvironment

of hepatocellular carcinoma tumors that reduce tumor

aggressiveness. Tani et al. also demonstrated that the peritumoral

fat content, as identified by MRI, correlates with prognosis of breast

cancer (23). This study demonstrates the potential of fat fraction as

an imaging marker of tumor proliferation, which is a prognostic

factor in HCC. Consequently, the fat content in hepatocellular

carcinoma may affect the response to treatment, such as resection,

chemotherapy, or radiation therapy (22). In summary, fat content is

associated with outcomes in patients with HCC and has important

clinical implications. Through further research and validation, we

can better use this indicator of fat fraction based on MRI to guide

the treatment and management of HCC patients, and it may also

have application prospects in other types of cancer.
B C

D E

A

FIGURE 3

Comparison analysis. (A) The tFF of the high Ki67 was lower than that of the low Ki67 group (2.10% vs 4.90%, P=0.001). (B) The R2* of the high Ki67
was lower than that of the low Ki67 group (49.60 s-1 vs56.90 s-1, P=0.003). (C) The tFF in MVI negative group had no significant difference from that
of the MVI positive group (4.05% vs 2.25%, P=0.087). (D) The R2* of the tumor in MVI negative group had no significant difference from that of the
MVI positive group (36.60s-1 vs 39.05s-1, P=0.194). (E) The ROC analysis demonstrated that the tFF of the tumor can distinguish the Ki67<=30%
group with an AUC of 0.747(95%CI 0.628-0.867) and cut-off of 3.39% (sensitivity 77.8%, specificity 69.2%). tFF, the fat fraction of the tumor; MVI,
microvascular invasion; ROC, receiver operating characteristic; AUC, area under the curve.
TABLE 4 Comparison of MRI between the negative and positive
MVI groups.

MVI (-) MVI (+) P a

Number 48 18

tFF (%) 4.05(2.02-9.58) 2.25(1.75-5.70) 0.087

FF (%) 3.00(1.46-4.74) 2.90(2.05-3.66) 0.784

tR2* (s
-1) 36.60(24.03-48.72) 39.05(31.94-47.58) 0.194

R2* (s
-1) 55.80(43.62-71.10) 49.15(41.02-59.82) 0.227
Data are medians (interquartile range).
aMann-Whiney U test.
MVI, microvascular invasion; tFF, fat fration of tumor; FF, fat fraction of peritumoral liver;
tR2*, R2* of tumor.
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Additionally, our study finds that the fat fraction of the tumor

does not significantly differ between patients with fatty liver and

non-fatty liver, despite a previous study indicating a higher median

fat fraction in HCCs with liver steatosis (3). It’s worth noting that

steatotic and steatohepatitic HCCs, which often exhibit diffuse fat in

the mass (24), are closely associated with underlying fatty liver

disease and metabolic syndrome (25). Most of the patients with

fatty liver or without fatty liver in this study were accompanied by

chronic HBV or HCV infection. Chronic hepatitis is suggested to

have an influence on metabolic changes (26), potentially leading to

fatty liver development. Therefore, the observed fatty liver in our

study may be attributed to chronic hepatitis rather than non-

alcoholic fatty liver disease or metabolic syndrome, explaining the

lack of significant differences in tumor fat fraction between the

two groups.

Numerous studies have been devoted to the preoperative

prediction of MVI and the results are still uncertain. In our

present study, the fat fraction determined by MRI quantitative

multi-echo Dixon did not exhibit significant difference between

the MVI-negative and MVI-positive groups. Some researchers

have indicated that the intra tumoral fat may suggest a lower risk

of MVI (7), which was partially explained by the relationship of

intra tumoral fat and lower histological grades. However, not

all studies support this finding (27). Further investigations,

such as subclassification analysis of MVI number and location

(28), or advanced analyses of intra-tumoral fat using texture

analysis or radiomics (29), may enhance our understanding of

this relationship.

This study has some limitations. First, it was a retrospective,

single-center research with a small number of HCC patients
Frontiers in Oncology 07
accompanied with HBV, HCV infection or pathology proved

hepatitis. However, the present study was the first to evaluate the

proliferation of HCC using the fat quantification of MRI. Therefore,

it will be necessary to confirm the results through prospective,

multicenter study with a larger number of patients. Second, the Ki-

67 index has traditionally served as a biomarker indicating tumor

proliferation, while recent studies has classified HCC proliferation

through diverse molecular analyses and genomic profiling. Third,

we did not assess the influence of ROI sampling strategies on

measurement and reproducibility of quantitative multi-echo Dixon.

Previous studies have indicated that the reproducibility and

repeatability of measurements were improved as much area of the

ROI (30). Therefore, the ROI of the tumor was delineated in the

maximum plane of the intatumoral fat or tumor in this study. And

the fat fraction based on MRI has been extensively explored in the

literature and is considered a stable and non-invasive tool compared

to pathology. Forth, the fat fraction in the maximum plane of the

intatumoral fat or tumor was used to analyze, and the distribution

of intra tumoral fat was not evaluated. As the distribution of fat is

another important feature for the diagnosis of steatotic or

steatohepatitic HCCs, we hypothesize that the quantification and

distribution of fat could offer greater clinical insight for prognosis

and treatment. Thus, we intent to investigate further how fat

quantification and radiomic or machine learning features will

influence patient prognosis and treatment outcomes in

subsequent studies. Lastly, this study did not investigate how fat

quantification affects patient outcomes due to the limited follow-up

time. Previous studies have shown that fat sparing in solid mass was

potential marker to evaluate the survival with favorable

performance and discriminator of complete response under
FIGURE 4

Relationship of fat fraction and R2* with the Ki67. (A-C) Patient with focal fat and high expression of Ki67. (D-F). Patient with diffuse fat in mass and
low expression of Ki67. (G-I) Patient with diffuse fat in small lesion and low expression of Ki67.
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TACE treatment (14). Therefore, a further validation study is

needed to confirm the prognostic value of fat fraction.
Conclusion

In conclusion, fat fraction quantification based on quantitative

multi-echo Dixon can effectively differentiate low-proliferation

HCCs, although it may not be suitable for diagnosing MVI. Fat

fraction quantification holds promise as a potential prognostic

predictor of treatment option.
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