
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Tsair-Fwu Lee,
National Kaohsiung University of Science and
Technology, Taiwan

REVIEWED BY

Thomas Samuel Ram,
Christian Medical College and Hospital, India
Shara Wy Lee,
Hong Kong Polytechnic University, Hong
Kong SAR, China

*CORRESPONDENCE

Kuke Ding

dingkk@chinacdc.cn

Bin Jing

bjing@ccmu.edu.cn

†These authors have contributed equally to
this work

‡These authors share senior authorship

RECEIVED 05 January 2024

ACCEPTED 01 May 2024

PUBLISHED 21 May 2024

CITATION

Yue H, Li X, You J, Feng P, Du Y, Wang R,
Wu H, Cheng J, Ding K and Jing B (2024)
Acute hematologic toxicity prediction
using dosimetric and radiomics features
in patients with cervical cancer:
does the treatment regimen matter?
Front. Oncol. 14:1365897.
doi: 10.3389/fonc.2024.1365897

COPYRIGHT

© 2024 Yue, Li, You, Feng, Du, Wang, Wu,
Cheng, Ding and Jing. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 21 May 2024

DOI 10.3389/fonc.2024.1365897
Acute hematologic toxicity
prediction using dosimetric and
radiomics features in patients
with cervical cancer: does the
treatment regimen matter?
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Ruoxi Wang2, Hao Wu2, Jinsheng Cheng1, Kuke Ding1,4*‡

and Bin Jing3*‡

1National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention,
Beijing, China, 2Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/
Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute,
Beijing, China, 3Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical
Application, School of Biomedical Engineering, Capital Medical University, Beijing, China, 4Chinese
Center for Disease Control and Prevention, Beijing, China
Background: Acute hematologic toxicity (HT) is a prevalent adverse tissue

reaction observed in cervical cancer patients undergoing chemoradiotherapy

(CRT), which may lead to various negative effects such as compromised

therapeutic efficacy and prolonged treatment duration. Accurate prediction of

HT occurrence prior to CRT remains challenging.

Methods: A discovery dataset comprising 478 continuous cervical cancer patients

(140 HT patients) and a validation dataset consisting of 205 patients (52 HT patients)

were retrospectively enrolled. Both datasets were categorized into the CRT group

and radiotherapy (RT)-alone group based on the treatment regimen, i.e., whether

chemotherapy was administeredwithin the focused RT duration. Radiomics features

were derived by contouring three regions of interest (ROIs)—bone marrow (BM),

femoral head (FH), and clinical target volume (CTV)—on the treatment planning CT

images before RT. A comprehensivemodel combining the radiomics features aswell

as the demographic, clinical, and dosimetric features was constructed to classify

patients exhibiting acute HT symptoms in the CRT group, RT group, and

combination group. Furthermore, the time-to-event analysis of the discriminative

ROI was performed on all patients with acute HT to understand the HT

temporal progression.

Results: Among three ROIs, BM exhibited the best performance in classifying

acute HT, which was verified across all patient groups in both discovery and

validation datasets. Among different patient groups in the discovery dataset,

acute HT was more precisely predicted in the CRT group [area under the curve

(AUC) = 0.779, 95% CI: 0.657–0.874] than that in the RT-alone (AUC = 0.686,

95% CI: 0.529–0.817) or combination group (AUC = 0.748, 95% CI: 0.655–

0.827). The predictive results in the validation dataset similarly coincided with

those in the discovery dataset: CRT group (AUC = 0.802, 95% CI: 0.669–0.914),

RT-alone group (AUC = 0.737, 95% CI: 0.612–0.862), and combination group

(AUC = 0.793, 95% CI: 0.713–0.874). In addition, distinct feature sets were
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adopted for different patient groups. Moreover, the predicted HT risk of BM was

also indicative of the HT temporal progression.

Conclusions: HT prediction in cervical patients is dependent on both the

treatment regimen and ROI selection, and BM is closely related to the

occurrence and progression of HT, especially for CRT patients.
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1 Introduction

Cervical cancer is the most common gynecological malignancy

with approximately 604,100 new cases and 341,800 deaths estimated

in 2020 worldwide (1). For patients diagnosed with locally advanced

cervical cancer (LACC), concurrent chemoradiotherapy (CRT) is the

established standard treatment strategy (2, 3). However, most

patients undergoing CRT will experience acute hematologic toxicity

(HT), which may compromise their tolerance to subsequent

treatment, leading to unplanned interruptions of CRT. This poses a

threat to tumor control and increases the risk of complications (4–8).

Therefore, early and accurate prediction of the risk for acute HT may

be essential to improve the clinical outcome of cervical cancer.

Previous studies have demonstrated a correlation between HT

occurrence during CRT and the dosimetric factors of pelvic bone

marrow (PBM), such as the V5, V10, V20, and V30 (9–14), which can

be employed as the predictors of acute bone marrow suppression.

Furthermore, a systematic review by Corbeau Anouk et al. (15)

revealed that the V10 (>95%–75%), V20 (>80%–65%), and V40

(>37%–28%) of PBM were significantly associated with HT in LACC

patients receiving cisplatin-based CRT. The literature also raised

concerns about the correlation between pathological features and

HT of cervical cancer (16); however, this study only identified

positive HT as grade 2 or higher. These findings indicated that

dosimetric factors are related to adverse events (e.g., HT) during

CRT, which can be combined with demographic and clinical (e.g.,

pathology) characteristics to predict the occurrence of HT. However,

these features struggle to reflect the individual differences among

patients, thus making the individualized prediction of HT

ineffective.Radiomics is a quantitative imaging technique that has

been extensively employed in personalized disease diagnosis and

prognosis prediction (17–19). Radiomics depicts both macroscopic

and microscopic characteristics for selected regions of interest (ROIs)

on the image and has shown certain relationships with genomic,

pathologic, and histologic information (20). Previous studies have

confirmed that combining dosimetric and clinical features with

radiomics could predict HT in cervical cancer patients (8, 21).

However, these studies suffer from limited sample size, potentially

leading to relatively low predictive performance. Additionally, an

overlooked latent factor in these studies is the mixing of patients who
02
underwent different combination treatment regimens for HT

prediction. For instance, some patients received CRT, while others

underwent radiotherapy (RT) alone within the focused RT duration.

CRT and RT alone may induce different treatment responses in

patients, which will potentially affect HT occurrence and prediction.

However, no study has systematically explored the discrepancies in

HT prediction among cervical cancer patients with different

treatment regimens within the focused RT duration, which was

defined as the interval spanning from 1 week prior to the initiation

of radiotherapy to 1 week after its completion.

In this study, we would fill the gap by utilizing a large sample size

of cervical cancer patients for HT prediction. Three comprehensive

models were constructed for patients with CRT, RT alone, and their

combination using the integrated clinical, dosimetric, and radiomics

features from three clinically relevant ROIs in planning CT images.

The most discriminative ROIs and the related contributing feature

sets were confirmed for each model and compared with each other.

Subsequently, the time-to-event analysis was conducted using the

predictive ROIs to understand the temporal progression for risky

patients with different treatment plans. This comprehensive study

could help to further understand the HT occurrence probability for

cervical cancer patients within the focused RT duration, which may

potentially guide the development of individualized treatment

regimens and improve the clinical treatment outcome. We infer

that patients with different treatment regimens may display unlike

HT prediction performance and contributing features.
2 Materials and methods

2.1 Patient enrollment

2.1.1 Discovery dataset
A large cohort of 574 patients diagnosed with 2018 International

Federation of Gynecology and Obstetrics (FIGO) stage IA–IVB (22)

cervical cancer treated at Beijing Cancer Hospital between September

2010 and February 2021 was included in this retrospective study.

Inclusion criteria comprised of patients who had pathologically proven

cervical carcinoma, no evidence of distant metastasis based on CT or

PET, and no history of renal, hepatic, hematologic disease, or other
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systemic diseases; and complete blood count (CBC) data within 1 week

before the start of radiation and weekly CBC during the treatment

period. Patients were excluded if they 1) had a history of pelvic

radiotherapy or systemic chemotherapy; had 2) long-term severe

anemia before radiotherapy; 3) had inconsistent prescription doses,

incomplete blood data, or severe radiation interruptions or had not

completed the full course of radiotherapy; and 4) had a history of prior

malignancies or recurrent tumors.

This study exclusively focused on the occurrence of HT within

the RT duration. To avoid the potential influence of pre-RT

chemotherapeutic agents on HT results, patients without

chemotherapy within 1 month prior to and 1 week following the

completion of RT were categorized as the RT-alone group. Patients

who received more than one cycle of chemotherapy within the RT

duration were defined as the CRT group. The study included 478

patients who met the aforementioned criteria, out of which 140

patients had acute HT (grade ≥ 3), which was characterized by a

white blood cell count below 1.9 × 109/L, neutrophil count below

0.9 × 109/L, platelet count below 49 × 109/L, or hemoglobin below 79

× 109/L. According to the treatment regimen, 223 and 255 patients

were divided into the RT-alone group and the CRT group,

respectively. Table 1 provides an overview of patients ’

demographical and clinical characteristics. Our study was approved

by the ethics committee of Beijing Cancer Hospital.

2.1.2 Validation dataset
To validate the generalization of the acute HT predictionmodel, a

total of 356 cervical cancer patients with FIGO stage IA–IVB who

received postoperative radiotherapy at our department from January

2015 to June 2016 were collected. The exclusion and inclusion criteria

were the same as those for the discovery dataset. Ultimately, a total of

205 patients (52 acute HT patients) meeting the inclusion/exclusion

criteria were finally selected as validation dataset, and 118 and 87

patients were classified into the CRT and RT-alone groups,

respectively. Table 1 summarizes the demographical and clinical

characteristics of these patients. The whole pipeline of the paper is

illustrated in Figure 1.
2.2 CT Simulation for radiotherapy

The simulation and irradiation procedures were conducted with

the patient in a supine position and with a relatively full bladder,

which was achieved by emptying the bowels and bladder 1 hour

before the simulation and then administering 500 mL of water. The

abdominopelvic CT was obtained using a Siemens SOMATOM

Sensation Open CT scanner (Siemens, Erlangen, Germany), with a

continuous slice thickness of 5 mm, a resolution of 512 × 512, and

uniform pixel size of 1.3 mm × 1.3 mm.
2.3 ROI definition in planning CT

This study utilized rigorous methodology to select three

treatment planning ROIs for subsequent analysis, which included
Frontiers in Oncology 03
the clinical target volume (CTV), femoral head (FH), and bone

marrow (BM). To ensure the consistency and robustness of ROI

segmentation, according to the Radiation Therapy Oncology Group

(RTOG) guidelines (23–26), all ROIs were initially segmented using

a deep learning-based automatic segmentation software, followed

by subsequent meticulous review and correction conducted by

experienced clinicians (X.G. and J.Y.) and additionally confirmed

by a senior (more than 15 years’ experience) physician (X.L.) on the

Eclipse treatment planning system (Eclipse, Varian Medical

Systems, Palo Alto, CA, USA). Specifically, the pelvic bone

marrow was defined as the entire bony structure within the range

of potential exposure, encompassing the marrow volume of the

ilium, pubis, ischium, and sacrum and the BM volume upper

bounded by the 12th thoracic to the fifth lumbar vertebrae.
TABLE 1 The clinical characteristics of all patients.

Clinical factors Discovery
dataset

Validation
dataset

Age (median, mean ±
SD, range)

59, 57.7 ± 10.0, 25–79 59, 57.8 ± 10.2, 33–77

Number 478 205

Pathological type

Squamous carcinoma 432 176

Adenocarcinoma 31 20

Adenosquamous carcinoma 5 5

Others 10 4

Chemotherapy

Yes 255 118

No 223 87

FIGO stage (n, %)

I 123 101

II 221 83

III 112 18

IV 22 2

Acute hematotoxicity

≥3 140 52

<3 338 153

Radiotherapy prescription

45/60 Gy/25 fractions 478 0

50 Gy/25 fractions 0 205

Concurrent chemotherapy

Weekly CDDP 167 71

Triweekly CDDP 58 47

None 223 87
FIGO, International Federation of Gynecology and Obstetrics; SD, standard deviation; CDDP,
cis-diamminedichloroplatinum.
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Specifically, the spatial definition criteria for three ROIs in both

validation and discovery datasets were kept the same.
2.4 RT treatment regimen

All enrolled patients underwent external beam radiation

therapy (EBRT) utilizing intensity-modulated radiation therapy

(IMRT) or volumetric modulated arc therapy (VMAT), which

was generated using the Eclipse treatment planning system

(V.13.6 or V.15.6). In addition, the treatment regimen of CRT

was determined in accordance with the guidelines established by the

National Comprehensive Cancer Network (NCCN) (27).

For the discovery dataset, EBRT was administered with two

dose levels simultaneously: 60.0 Gy and 45.0 Gy to lymph node

gross tumor volume (GTVnd) and CTV, respectively, 25 fractions,

and 10-MV photon, a single fraction per day. In the validation

dataset, patients received EBRT with a prescribed dose of 50.0 Gy to

CTV at 25 daily fractions. Moreover, a portion of patients received

an intrauterine brachytherapy boost utilizing the iridium-192

approach in 3 to 5 weeks after the first fraction of the EBRT.

Notably, the equivalent dose in 2 Gy (EQD2), calculated under the

assumption of an a/b ratio of 10, was maintained within a range of

80 Gy to 85 Gy, referencing point A. The biologically effective dose

was calculated considering both internal and external exposures, as

well as the treatment interruption caused by acute HT (28, 29).
2.5 Dosimetric factors

Two types of dosimetric factors were extracted, namely, mean

dose and volume-based metrics such as Vx, where Vx represents

the tissue receiving × Gy or above. In order to comprehensively

assess the influence of dosimetry on the occurrence of HT,

multiple ROIs were collected including BM, FH, and CTV.
Frontiers in Oncology 04
Within the BM region, three detailed subregions were further

analyzed: iliac marrow (IM), sacral marrow (SM), and vertebral

marrow (VM). Specifically, the mean dose (14, 30) and V5, V10,

V15, V20, V25, V30, V35, V40, V45, and V50 were extracted from

the BM, IM, SM, and VM. For the FH region, mean dose and V10,

V20, V25, V30, and V35 were considered. Notably, only the mean

dose was considered for CTV. To facilitate ROI volume and

dosimetric factor extraction, C#-based scripts were developed

using the Eclipse Scripting Application Programming Interface

(ESAPI) research mode provided by the Eclipse Treatment

Planning System (TPS) version 15.6.
2.6 Chemotherapy

The concurrent chemotherapy consisted of two main regimens:

1) weekly single-agent cisplatin repeated at 7-day intervals for four

to six cycles or 2) triweekly combination regimen repeated at 21-day

intervals for one to three cycles. All patients underwent a blood

routine examination before each cycle of chemotherapy. The

chemotherapy was postponed if the neutrophil count was less

than 1.5 × 109/L or the platelet count was less than 100 × 109/L.
2.7 Acute HT endpoints

The grading of HT adhered to the standardized criteria provided

by the Common Terminology Criteria for Adverse Events (CTCAE

v5.0) (23). Specifically, patients with a grade of 3 or higher for

leukopenia, neutropenia, anemia, or thrombocytopenia within the

focused RT duration were considered to have experienced acute HT.

Moreover, in order to access the temporal progression of HT, the

occurrence time of HT was also recorded and defined as between the

initiation of radiotherapy and the point at which the patient exhibited

the most severe HT symptoms within the focused RT duration (24).
FIGURE 1

The workflow of the study. CC, cervical cancer; RT, radiotherapy; CRT, chemoradiotherapy; HT, hematologic toxicity; FIGO, International Federation
of Gynecology and Obstetrics; Dis, discovery dataset; Val, validation; CTV, clinical target volume.
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2.8 Radiomics feature extraction

The original CT images were first resampled into a voxel size of

[1 1 1]. After that, a total of 1221 radiomics features were extracted

using Pyradiomics software (v3.1.0) (25) on treatment planning CT

images for each of the defined three ROIs. The calculated radiomics

features include the first-order features (e.g., image intensity),

shape-based features (e.g., volume), and high-order features (e.g.,

texture features), which were simultaneously calculated in original

images, wavelet filtered images, and Laplacian of Gaussian filtered

images (see Supplementary Tables 1, 2 for the list of all features).

Specifically, the high-order feature sets contain four types of texture

features, including the Gray-Level Co-occurrence Matrix (GLCM),

Gray-Level Run Length Matrix (GLRLM), Gray-Level Size Zone

Matrix (GLSZM), and Gray-Level Dependence Matrix (GLDM).
2.9 Feature selection and classification
model for HT

In this discovery dataset, radiomics features (n = 1,221) of every

ROI were combined with dosimetric (n = 51), demographic (n = 3),

and clinical features (n = 4) together to construct the classification

model for HT. Notably, models were generated for different cervical

cancer treatment regimens: RT-alone group, CRT group, and their

combination. The feature selection procedures were only conducted

in the training dataset, and any information about the testing

dataset was not leaked during the model training. Considering

possible correlations between features, pairs of features with a

correlation value greater than 0.90 were screened out, retaining

the one with more significant between-group differences and

discarding the other. A subsequent feature selection procedure

was performed on the remaining radiomics features in the

training dataset by conducting a two-sample t-test between

patients with and without HT. Because no optimal p threshold

can be confirmed at this moment, a set of p-values for the t-test was

compared from 0.01 to 0.15 with an interval of 0.01, and the selected

feature sets with the best classification performance on the testing

dataset were reported. Finally, the widely used Support Vector

Machine-Recursive Feature Elimination (SVM_RFE) (26, 31) with

the linear kernel was adopted to determine the optimal feature sets

on the training dataset, which was used to construct the

classification model for HT. Of note, the strategy that used the

optimal p threshold as the final model performance would not

result in the data leak risk because every feature set was adopted for

model construction, and the performance had been further

validated with separate datasets.

According to the TRIPOD guidelines, the non-random split-

sample development and validation were used in the discovery

dataset, and another separate dataset was adopted for additional

testing. In the discovery dataset, 80% of the total patients were

selected as the training dataset with the remaining 20% patients for

internal testing. Specifically, the training/testing samples were

stratified to have a similar HT occurrence ratio. Considering the

imbalance between positive and negative sample sizes, the synthetic

minority over-sampling technique (SMOTE) was applied in the
Frontiers in Oncology 05
training process (32). Moreover, the validation dataset was used as a

separate testing dataset to assess the model generalization. The

model performance was evaluated according to the accuracy,

sensitivity, specificity, and area under the curve (AUC). Every

ROI formed a classification model for each group of the

population, and the models were compared with each other to

identify the most sensitive ROIs by DeLong’s test on AUC and

representative feature sets. Furthermore, the models constructed

with only radiomics features from BM were also constructed

for comparison.
2.10 Time-to-event analysis for patients
with HT

ROI displaying the best model classification was further used to

study the temporal progression of HT using time-to-event analysis

(33, 34). The model prediction probability of discriminative ROIs

was used as HT risk indicators. The median of risk scores was

applied to stratify patients into high- and low-risk groups illustrated

by the Kaplan–Meier plot. Once the time-to-event model was

significant, high-risk scores were assigned to patients with severe

HT according to the log-rank test.
3 Results

Table 2 summarizes the HT classification performance of three

ROIs on the RT-alone group, CRT group, and combination group

in the discovery dataset. The ROIs of BM achieved the best

predictive performance in the three patient groups (Accuracy =

0.773, 0.778, and 0.729), and FH obtained the suboptimal results in

the three groups (Accuracy = 0.750, 0.667, and 0.664). The CTV

obtained relatively low HT classification accuracies (Accuracy =

0.591, 0.667, and 0.617). When only using radiomics features for

model construction, the ROI of BM was selected for testing, and its

performance was lower than that of the previous comprehensive

model in the three groups (Accuracy = 0.682, 0.730, and 0.710).

When the best models obtained in the discovery dataset were tested

on the validation dataset, BM also exhibited the highest

performance in three patient groups (Accuracy = 0.770, 0.839,

and 0.854), while the FH consistently achieved the suboptimal

performance (Accuracy = 0.770, 0.771, and 0.654), demonstrating

the generalization, meaning the ability of a trained model to

accurately make predictions on new, unseen data, of the HT

classification model based on aforementioned two ROIs.

However, the classification performance of CTV on validation

datasets (Accuracy = 0.678, 0.619, and 0.624) was lower than that

of the previous two ROIs.

In the discovery datasets, BM exhibited the highest AUC values

of 0.686 (95% CI: 0.529–0.817), 0.779 (95% CI: 0.657–0.874), and

0.748 (95% CI: 0.655–0.827) for the RT-alone group, CRT group,

and combination group, respectively. In the validation datasets,

similar trends were observed for BM achieving superior

performance with AUC values of 0.737 (95% CI: 0.612–0.862),

0.802 (95% CI: 0.6690–0.914), and 0.793 (95% CI: 0.713–0.874) for
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the three patient groups. The AUC values of FH and CTV were

consistently lower than those of the BM, which are illustrated in

Figure 2 and Table 3. DeLong’s test revealed that there were

significant differences (p < 0.05) in AUC between BM and CTV

in the combination and RT-alone groups of the validation dataset as

well as between BM and FH in the combination and CRT groups of

the validation dataset.

In the time-to-event analysis, BM displayed significant log-rank

test in three patient groups in both the discovery and validation

datasets (Figure 3), indicating that BM is highly related to the

occurrence time of HT. In addition, the hazard ratio for each group

was also calculated, and all of them were larger than 3, implying that

BM is a reliable risk factor for HT. For the optimal feature sets in the

comprehensive model, different patient groups adopted distinct

feature sets. In the RT-alone group, a total of 21 radiomics

features (see Supplementary Table 3) were ultimately used but

without any other types of features. In the CRT group, V5 and

V10 of iliac marrow; V40, V45, and V15 of vertebral marrow; V20

of BM; and pathology were finally selected along with 104 radiomics

features (see Supplementary Table 4). In the combination group, the

mean dose of iliac marrow, V50 of BM, and V30 and V20 of FH, as

well as V40 and V20 of vertebral marrow, were ultimately utilized

along with other 36 radiomics features (see Supplementary Table 5).

To visually represent the feature sets in the classification model, the

10 most representative radiomics features together with

discriminative dosimetric and demographic features are illustrated

for three patient groups in Figure 4.
4 Discussion

In this study, we constructed HT prediction models for cervical

cancer patients with comprehensive demographic, clinical,

dosimetric, and radiomics features from three ROIs in different

patient groups including the RT-alone group, CRT group, and

combination group. The results revealed that BM was the most

predictive ROI for HT prediction in all three groups compared to

CTV and FH, which had been validated in both the discovery

dataset and validation dataset. In addition, BM was also effective in

stratifying the low-risk and high-risk patients during the HT

progression. At last, distinct feature sets were adopted for

different patient groups, and the dosimetric factors were related

to HT occurrence, especially in the chemoradiotherapy patients.

Although several studies have reported the HT prediction using

CT imaging radiomics features in LACC patients undergoing CRT,

the study of Ren et al. (8) demonstrated that the integration of

radiomics and clinicopathological parameters in a prediction model

significantly enhanced the predictive capability for leukopenia in

patients with LACC, resulting in an improved AUC of 0.699

compared to 0.564 and 0.551 achieved by clinical or radiological

models alone. The study conducted by Le et al. (21) demonstrated

that combining two clinical features (FIGO and postoperative

chemotherapy cycles) with radiomics scores significantly improved

the prediction of acute hematologic toxicity (grade ≥ 3) in LACC

patients, achieving an impressive AUC of 0.88. This integrated model

outperformed models utilizing either clinical or radiomics features
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alone. However, these studies did not selectively categorize subjects

based on their treatment regimen. Our study first demonstrated that

HT prediction in cervical cancer patients is dependent on the

treatment regimen within the focused RT duration, and

the diagnostic performance (Figure 2 and Table 3) of the

comprehensive model that combined demographic, clinical,

dosimetric, and radiomics features was higher in the CRT patients

than the RT-alone patients. Moreover, the results were attained using

a large sample size and verified in the discovery and validation

dataset. In addition, when two patient groups were combined

together, the HT prediction model performed slightly lower than

the model in the CRT patients but better than the model in the RT-

alone patients. These results consistently indicate that the HT
Frontiers in Oncology 07
occurrence in the RT-alone group may be regulated by some other

latent factors in addition to the radiomics and dosimetric factors [e.g.,

radiomics of 3D dose distribution (35, 36) or MRI-based radiomics

(37, 38)], which needs to be investigated in the future.

Although the comprehensive model could effectively predict

HT in cervical cancer patients, the results were dependent on the

ROI choice. Our results revealed that BM is the most sensitive ROI

than FH and CTV, while CTV performed the worst in all patient

groups. Additionally, BM could also effectively predict the

progressive endpoint for HT patients in the time-to-event

analysis. Therefore, we infer that the occurrence of HT may be

closely related to the status of BM prior the radiotherapy in cervical

cancer patients. Furthermore, the performance of different ROIs in
TABLE 3 The comparison of AUC in different groups of discovery and validation datasets.

RT alone CRT combination

ROI Dataset AUC (95% CI) AUC (95% CI) AUC (95% CI)

BM
Discovery 0.686 (0.529–0.817) 0.779 (0.657–0.874) 0.748 (0.655–0.827)

Validation 0.737 (0.612–0.862) 0.802 (0.669–0.914) 0.793 (0.713–0.874)

FH
Discovery 0.697 (0.540–0.826) 0.621 (0.490–0.740) 0.615 (0.516–0.708)

Validation 0.719 (0.594–0.843) 0.603 (0.4467–0.739) 0.590 (0.500–0.679)

CTV
Discovery 0.559 (0.402–0.708) 0.673 (0.543–0.786) 0.681 (0.584–0.768)

Validation 0.663 (0.537–0.789) 0.642 (0.515–0.769) 0.607 (0.514–0.699)
BM, bone marrow; FH, femoral head; CTV, clinical target volume; RT, radiotherapy; CRT, chemoradiotherapy; AUC, area under the curve.
FIGURE 2

The ROC analysis for three ROIs in the discovery and validation dataset. BM, bone marrow; CTV, clinical target volume; FH, femoral head; ROC,
receiver operating characteristic; ROIs, regions of interest.
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the validation dataset was similar to that in the discovery dataset,

indicating the generalization of the ROI dependence in

HT prediction.

The most representative features in the comprehensive model

were also dependent on the patient groups. There were only 21

features adopted to construct the model for RT-alone patients,

while there were respectively 111 and 42 features for the

chemoradiotherapy and combination groups. In the RT group, no

dosimetric factor was related to HT occurrence, and all features

were radiomics features. This finding was consistent with our

previous study on rectal cancer patients who underwent

preoperative radiotherapy without any concurrent chemotherapy

during the focused RT duration (39). Furthermore, the limited

number of features may be a possible reason for the low model

performance in the RT-alone group, although more selected

features do not always lead to better model performance. In

contrast, the CRT group showed substantial features as well as

the best model performance. Moreover, the selected feature number

in the model may be influenced by the feature selection manner;

therefore, the final features may not be minimal for HT prediction.

Specifically, there were more dosimetric factors in the CRT group

than in the RT-alone group, indicating that the concurrent

chemotherapy may make the patients more sensitive to the

dosimetric strength. In comparison, in the previous two studies

(8, 21) that predicted HT in cervical patients, there were no

dosimetric features that have been selected in the final model.

Additionally, pathology is also an indicator of HT occurrence in
Frontiers in Oncology 08
the CRT group, so we speculate the underlying mechanism of HT in

the group may be complex based on the interaction of multiple

factors. At last, the combination group adopted 42 features in all,

and it is interesting that most of these features were different from

those of either the RT-alone group or CRT group (feature overlap

number = 3), again demonstrating the necessity of partitioning the

whole cervical cancer patients into different treatment

regimen groups.

There are several limitations in the study. First, the effective

sample size in the study was not estimated, although it is within an

acceptable range. In addition, all patients in the study may be

influenced by the treatment interruption or blood transfusions,

which will be explored in the future. Second, the neighborhood

gray-tone difference matrix (NGTDM) features were not included

in the study in order to simplify the subsequent analysis. Third,

hormone therapy may have impacts on the bone marrow status,

which may affect the model performance. Fourth, it is not easy to

reveal the detailed explanation and clinical significance of every

selected feature. At last, cross-validation may be more robust for

uncovering the data heterogeneity than the non-random split-

sample manner used in the study, which can be verified in

future studies.

However, building an HT prediction model for real-world

models is still challenging, and several factors may affect the

model’s performance. For instance, the HT status can be

promptly relieved, such as blood transfusions and administration

of oral whitening medications (HT grade = 1) or consecutive 3-day
FIGURE 3

Time-to-event analysis of bone marrow for three patient groups in the discovery and validation datasets. p-Values were calculated using the log-
rank test. HR, hazard ratio.
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injections of granulocyte colony-stimulating factor (HT grade = 2

or 3). However, it remains uncertain whether the constructed model

would also exhibit efficacy in cases of recurrent HT. Second, there is

still uncertainty regarding how administering chemotherapy 1

month prior to radiotherapy affects the occurrence of HT within

the focused RT duration, highlighting the need for more refined

grouping strategies in future studies. At last, future studies can use

some advanced deep learning models to replace machine learning

models on multi-center datasets, which may improve the model

performance and generalization.
5 Conclusion

In the study, the comprehensive model that used demographic,

clinical, dosimetric, and radiomics features together could effectively
Frontiers in Oncology 09
predict the HT within the RT duration in cervical cancer patients

before radiotherapy, and BM is the most predictive ROI for HT

occurrence and also useful in the detection of HT progression.

Specifically, the model performances were obviously superior in the

chemoradiotherapy patients than in the radiotherapy-alone patients.
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