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Background: Artificial intelligence (AI) models, clinical models (CM), and the

integrated model (IM) are utilized to evaluate the response to neoadjuvant

chemotherapy (NACT) in patients diagnosed with gastric cancer.

Objective: The objective is to identify the diagnostic test of the AI model and to

compare the accuracy of AI, CM, and IM through a comprehensive summary of

head-to-head comparative studies.

Methods: PubMed, Web of Science, Cochrane Library, and Embase were

systematically searched until September 5, 2023, to compile English language

studies without regional restrictions. The quality of the included studies was

evaluated using the Quality Assessment of Diagnostic Accuracy Studies-2

(QUADAS-2) criteria. Forest plots were utilized to illustrate the findings of

diagnostic accuracy, while Hierarchical Summary Receiver Operating

Characteristic curves were generated to estimate sensitivity (SEN) and

specificity (SPE). Meta-regression was applied to analyze heterogeneity across

the studies. To assess the presence of publication bias, Deeks’ funnel plot and an

asymmetry test were employed.

Results: A total of 9 studies, comprising 3313 patients, were included for the AI

model, with 7 head-to-head comparative studies involving 2699 patients. Across

the 9 studies, the pooled SEN for the AI model was 0.75 (95% confidence interval

(CI): 0.66, 0.82), and SPE was 0.77 (95% CI: 0.69, 0.84). Meta-regression was

conducted, revealing that the cut-off value, approach to predicting response,

and gold standard might be sources of heterogeneity. In the head-to-head

comparative studies, the pooled SEN for AI was 0.77 (95% CI: 0.69, 0.84) with SPE

at 0.79 (95% CI: 0.70, 0.85). For CM, the pooled SEN was 0.67 (95% CI: 0.57, 0.77)

with SPE at 0.59 (95% CI: 0.54, 0.64), while for IM, the pooled SEN was 0.83 (95%

CI: 0.79, 0.86) with SPE at 0.69 (95% CI: 0.56, 0.79). Notably, there was no

statistical difference, except that IM exhibited higher SEN than AI, while
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maintaining a similar level of SPE in pairwise comparisons. In the Receiver

Operating Characteristic analysis subgroup, the CT-based Deep Learning (DL)

subgroup, and the National Comprehensive Cancer Network (NCCN) guideline

subgroup, the AI model exhibited higher SEN but lower SPE compared to the IM.

Conversely, in the training cohort subgroup and the internal validation cohort

subgroup, the AI model demonstrated lower SEN but higher SPE than the IM. The

subgroup analysis underscored that factors such as the number of cohorts,

cohort type, cut-off value, approach to predicting response, and choice of gold

standard could impact the reliability and robustness of the results.

Conclusion: AI has demonstrated its viability as a tool for predicting the response

of GC patients to NACT Furthermore, CT-based DL model in AI was sensitive to

extract tumor features and predict the response. The results of subgroup analysis

also supported the above conclusions. Large-scale rigorously designed

diagnostic accuracy studies and head-to-head comparative studies

are anticipated.

Systematic review registration: PROSPERO, CRD42022377030.
KEYWORDS

gastric cancer, neoadjuvant chemotherapy, deep learning, radiomics, artificial
intelligence, meta-analysis
1 Introduction

Gastric cancer (GC) stands as the second leading cause of

cancer-related deaths globally, positioning it among the most

prevalent malignant tumors in Asia (1, 2). In 2018 alone, there

were over 1 million new cases of GC, resulting in approximately

784,000 deaths worldwide (1). Surgery remains the primary

treatment for locally advanced GC, yet the 5-year survival rate

post curative resection hovers between 20% to 30% (3).

Unfortunately, the majority of patients (80-90%) are diagnosed at

advanced stages (4, 5). In China, the prognosis for patients with

locally advanced GC is particularly poor (6, 7).

In recent years, neoadjuvant chemotherapy (NACT) has

demonstrated effectiveness in treating GC patients, exhibiting

potential to enhance prognosis and elevate the 5-year survival

rate to over 35% (8, 9). Nevertheless, NACT carries certain

limitations, including toxic reactions in patients (10–13),

suboptimal responses in some cases, missed treatment

opportunities, and nearly 30% of patients developing resistance to

chemotherapy (14). The evaluation of a patient’s response to NACT

currently relies on invasive histopathological tests conducted post-

surgery, providing limited guidance for clinical practice.

Computed tomography (CT) is widely employed for assessing the

response to NACT in GC patients. However, the current method of

extracting image features through visual assessment or quantitative
02
imaging parameters is deemed unreliable. In contrast, radiomics

emerges as a rapidly evolving tool that predicts the response of GC

patients to NACT by analyzing high-throughput quantitative images

and extracting effective prognostic features. Accurate delineation of

the tumor is crucial for feature extraction and model building, but

limitations arise from the variability in physician experience,

impacting the empirical results of tumor delineation.The

combination of radiomics with clinical features has demonstrated

outstanding performance in predicting the response to NACT. DL,

an emerging approach rooted in artificial intelligence, autonomously

learns key disease features from clinical images and extracts accurate

features relevant to specific needs (15–18). DL has showcased

superior performance in capturing tumor features and predicting

prognosis across various cancer types (19–24).

Several studies have explored the utility of CT-based DL and

CT-based radiomics in predicting the response to NACT in GC

patients. However, these studies have produced inconsistent or

conflicting results concerning diagnostic accuracy when compared

to the gold standard. Additionally, these studies have reported the

diagnostic accuracy of clinical models (CM) and integrated models

(IM) in reference to the gold standard. Notably, there is currently a

lack of reviews analyzing the diagnostic accuracy of DL and

radiomics in predicting the response to NACT in GC patients.

Therefore, this meta-analysis was conducted to offer a

comprehensive analysis of the available literature.
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2 Methods

2.1 Protocol

The protocol was registered on the International Prospective

Register of Systematic Reviews (PROSPERO) (CRD42022377030)

and performed according to Preferred Reporting Items for Systemic

Reviews and Meta-Analysis (PRISMA) guidelines (25).
2.2 Search strategy

The following search interests were considered when

constructing the strategy: (1) terms related to GC; (2) terms

related to AI; (3) terms related to neoadjuvant therapy. The

online databases PubMed, Web of Science, Cochrane Library, and

Embase were searched prior to September 5, 2023. Additionally,

during the full-text review phase, the reference lists of all included

articles and retained systematic reviews were manually screened to

identify any studies that may have been missed in the initial search.

Free words adjusted by the different databases and theme words

were combined to form the search. The search strategies used for

PubMed can be found in the Supplementary Material.
2.3 Eligibility criteria

Only studies that met the following criteria were included in this

analysis: (a) the patient population consisted of individuals with

histologically (biopsy-) confirmed gastric adenocarcinoma; (b) CT

scans were performed prior to neoadjuvant chemotherapy; (c) an AI

algorithm was used to predict the response of GC; (d) a reference

standard was available and reported in detail; (e) the study data

could be extracted and organized into a standard 2×2 table; and (f)

the study design was either a comparative study or a randomized

controlled trial. Any studies that met the following exclusion criteria

were not considered: (a) studies with duplicate data (only the study

with the most comprehensive data was selected); (b) case reports,

letters, reviews, comments, meeting records, or protocol studies; (c)

animal studies; or (d) publications on diseases other than GC.
2.4 Study selection

Two reviewers, Du and Bao, independently selected studies. During

the title and abstract review phase, all potentially relevant studies were

retrieved. Then, the full texts were reviewed based on inclusion and

exclusion criteria. Any discrepancies were resolved through mutual

discussion until a consensus was reached or by involving a third author

(Zheng) who was kept blind to the study details.
2.5 Quality assessment

The Quality Assessment of Diagnostic Accuracy Studies-2

(QUADAS-2) tool was utilized to evaluate the methodological
Frontiers in Oncology 03
quality of the included articles. This tool consists of four domains:

patient selection, index test, reference standard, and flow and

timing. Each domain was assessed for high, low, or unclear risk

of bias, and the first three domains were also evaluated for high, low,

or unclear concerns regarding applicability (26). To generate the

summary figure of the methodological quality evaluation, Review

Manager version 5.4.1 (Review Manager for Windows 7, Nordic

Cochrane Centre) was employed.
2.6 Data extraction

The data were collected and independently verified by two

reviewers (Du, Bao). Any discrepancies were resolved through

mutual discussion until a consensus was reached or by involving

a third author (Zheng) who was kept blind to the study details. The

relevant data included the following: (a) baseline characteristics

such as title, first author, publication year, region, study design,

sample size, cohorts, pathological and clinical type, diagnosis

method, type of CT, CT phase, and NAC regimen; (b) diagnostic

accuracy information, including the gold standard, cut-off value,

type of AI algorithm, the number of good response (GR) or no-GR

to NAC, and diagnostic performance indices of the AI algorithm,

CM, and IM (which include sensitivity (SEN), specificity (SPE),

positive predictive value (PPV), negative predictive value (NPV),

positive likelihood ratio (PLR), negative likelihood ratio (NLR),

diagnostic odds ratio (DOR), or accuracy); and (c) methodological

evaluation information. Some studies have multiple cohorts, so

before conducting the meta-analysis, the standard 2×2 tables of all

cohorts in each article need to be consolidated.
2.7 Data synthesis and analysis

Forest plots were used to analyze the diagnostic accuracy of

each test, along with a 95% confidence interval (CI), using Stata 14

(Stata Corporation, College Station, TX, USA). Hierarchical

summary receiver operating characteristic (HSROC) curves were

constructed to estimate and compare SEN and SPE. Meta-

regression was applied to assess the source of heterogeneity. To

evaluate the presence of publication bias, Deeks’ funnel plot and an

asymmetry test were used. Statistical significance was indicated by a

p-value < 0.05. Heterogeneity was evaluated using I2 statistics and

standard c2-testing, where I2 > 50% or p < 0.05 indicated notable

heterogeneity. The test performance was computed using a

random-effects coefficient binary regression model, unless a fixed-

effects coefficient binary regression model was applicable (27).

Subgroup analysis was performed as follows: (a) cut-off value

(determined by analyzing Receiver Operating Characteristic (ROC)

or not reported); (b) location of cancer (GC or esophagogastric

junction cancer); (c) number of cohorts (1 or more than 1); (d) type

of cohorts (training, internal validation, or external validation); (e)

approach of predicting response (CT-based deep learning or CT-

based radiomics); (f) gold standard (National Comprehensive

Cancer Network (NCCN) guidelines or others). Generally,

diagnostic accuracy was higher in the training cohort compared
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to the validation cohort, particularly the external validation cohort.

We conducted pairwise comparisons among the three cohorts to

assess whether the test performance varied across cohorts. The

presence of publication bias was assessed using Deeks’ funnel plot

and an asymmetry test (28).
3 Results

3.1 Study selection

Five databases were searched, resulting in a total of 3596

articles. The EndNote software was then used to remove

duplicates, leaving 2628 articles. After screening the titles and

abstracts, 177 studies were selected for full-text reading. Finally, 9

studies, comprising 23 cohorts, were included for assessing the

diagnostic accuracy of AI algorithms in predicting the response of

GC to neoadjuvant chemotherapy (29–37). Out of these, 7 head-to-

head studies were analyzed to compare the diagnostic accuracy of

AI, CM, and IM. Please refer to Figure 1 for the flowchart depicting

the screening process.
3.2 Study characteristics

All studies were conducted in Asia, with one study from Japan

and the remaining studies originating from China. All studies were

retrospective in nature. A total of seven head-to-head comparative

studies were included, involving 2709 patients. The pathological

types of all studies were adenocarcinomas. The AI algorithms used

in these studies included convolutional neural networks, support

vector machine, extremely randomized tree, the least absolute

shrinkage and selection operator, random forest, naive Bayes,

logistic regression, and extreme gradient boosting. The response

of GC to neoadjuvant chemotherapy was determined using the

NCCA as the gold standard in five studies, Tumor Regression

Grading in two studies, Response Evaluation Criteria in Solid

Tumors in one study, and reference to other literature as the

gold standard in one study. The quality assessment of the nine

studies was rated as moderate. Table 1 and Figure 2 provide an

overview of the characteristics of the included studies and the

quality evaluation.
3.3 Diagnostic test accuracy of
AI algorithm

Due to significant heterogeneity in the pooled analyses, a

random-effects coefficient binary regression model was utilized.

Among the 9 studies that reported AI diagnostic accuracy

(I2 = 87.37%), when comparing to the gold standard, the pooled

weighted values were as follows: SEN 0.75 (95% CI: 0.66, 0.82), SPE

0.77 (95% CI: 0.69, 0.84), PLR 3.30 (95% CI: 2.40, 4.50), NLR 0.32

(95% CI: 0.23, 0.44), DOR 10.00 (95% CI: 6.00, 17.00), and the areas

under the ROC curve [Area Under Curve (AUC)] 0.83 (95% CI:

0.79, 0.86). The forest plot can be seen in Figure 3. In sensitivity
Frontiers in Oncology 04
analyses, the results analyzed by fixed effects model were

inconsistent with those by random effects model, which indicated

that results were not robust.

We also conducted a Fagan nomogram to explore the clinical

application of AI. Assuming a 50% response rate to NACT in GC

patients, the Fagan nomogram indicates a posteriori probability of a

response rate of 77% if the test is positive and 24% if the test is

negative, as shown in Figure 4.

Additionally, we performed subgroup analysis based on pre-

designed factors with a random-effects coefficient binary regression

model. In terms of the cut-off value factor, the ROC analysis

subgroup had a lower pooled SPE than the not reported subgroup

(0.69 [95% CI: 0.57, 0.81] vs. 0.81 [95% CI: 0.74, 0.88], P=0.00), but

there was no significant difference in SEN (0.74 [95% CI: 0.61, 0.87]

vs. 0.76 [95% CI: 0.66, 0.86], P=0.11). Regarding the approach of

predicting response factor, the CT-based radiomics subgroup was

more specific than the CT-based deep learning subgroup (0.80 [95%

CI: 0.72, 0.88] vs. 0.72 [95% CI: 0.60, 0.84], P=0.02), but had

equivalent SEN (0.69 [95% CI: 0.60, 0.78] vs. 0.83 [95% CI: 0.76,

0.90], P=0.40). Lastly, concerning the gold standard factor, the

NCCN guideline subgroup was inferior to the other subgroups, with

a lower pooled SPE (0.76 [95% CI: 0.66, 0.85] vs. 0.79 [95% CI: 0.68,

0.90], P=0.04), but was comparable in SEN (0.78 [95% CI: 0.69,

0.87] vs. 0.71 [95% CI: 0.58, 0.85], P=0.37). The results of the

subgroup analysis are presented in Table 2. These findings suggest

that the cut-off value, approach of predicting response, and gold

standard may be potential sources of heterogeneity. In sensitivity

analyses, the results analyzed by fixed effects model were consistent

with those by random effects model, which indicated that results

were robust.
3.4 Comparison of Diagnostic Test
Accuracy of AI, CM and IM

In head-to-head comparison studies, a random-effects

coefficient binary regression model was employed to account for

significant heterogeneity. The pooled weighted values for AI were as

follows: SEN 0.77 (95% CI: 0.69, 0.84), SPE 0.79 (95% CI: 0.70,

0.85), PLR 3.60 (95% CI: 2.60, 5.10), NLR 0.29 (95% CI: 0.22, 0.39),

DOR 12.00 (95% CI: 8.00, 20.00), and AUC 0.85 (95% CI: 0.81,

0.87). For CM, the pooled weighted values were as follows: SEN 0.67

(95% CI: 0.57, 0.77), SPE 0.59 (95% CI: 0.54, 0.64), PLR 1.60 (95%

CI: 1.30, 2.00), NLR 0.55 (95% CI: 0.40, 0.77), DOR 3.00 (95% CI:

2.00, 5.00), and AUC 0.64 (95% CI: 0.60, 0.68). Lastly, for IM, the

pooled weighted values were as follows: SEN 0.83 (95% CI: 0.79,

0.86), SPE 0.69 (95% CI: 0.56, 0.79), PLR 2.60 (95% CI: 1.80, 3.80),

NLR 0.24 (95% CI: 0.19, 0.31), DOR 11.00 (95% CI: 6.00, 19.00),

and AUC 0.85 (95% CI: 0.82, 0.88). In sensitivity analyses, the

results analyzed by fixed effects model were inconsistent with those

by random effects model, which indicated that results were not

robust. The forest plots and HSROC curves can be seen in Figure 5

and Figure 6, respectively. Table 3 presents the results of a pairwise

comparison between the three models, revealing no significant

difference in diagnostic accuracy, except for a statistical difference

in SEN between AI and IM.
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In the ROC-analysis cut-off subgroup, AI outperformed IM in

assessing the response of GC to NACT, with a notably higher

pooled SEN (0.80 [95% CI: 0.71, 0.87] vs. 0.79 [95% CI: 0.72, 0.85],

P=0.00), but a lower pooled SPE (0.70 [95% CI: 0.65, 0.74] vs. 0.72

[95% CI: 0.67, 0.76], P=0.00). Conversely, in the not reported cut-off

subgroup, IM performed better than AI in assessing the response of

GC to NACT, with a higher pooled SEN (0.87 [95% CI: 0.81, 0.92]

vs. 0.77 [95% CI: 0.69, 0.85], P=0.00) and a similar pooled SPE (0.68

[95% CI: 0.53, 0.83] vs. 0.80 [95% CI: 0.68, 0.91], P=0.91). The

variations in the statistical significance of SPE suggest that the cut-

off value may be a source of heterogeneity. In the two subgroups

relating to the location of cancer, IM was more effective than AI in

predicting the response of GC to NACT, with a higher pooled SEN

(esophagogastric junction cancer: 0.88 [95% CI: 0.80, 0.97] vs. 0.79

[95% CI: 0.66, 0.91], P=0.03; GC: 0.81 [95% CI: 0.77, 0.86] vs. 0.78

[95% CI: 0.74, 0.83], P=0.00). These findings indicate that the

location of the cancer was not the cause of heterogeneity. In more

than one cohort subgroup, IM preceded AI in predicting the

response of GC to NACT, with a higher SEN (0.84 [95% CI: 0.78,
Frontiers in Oncology 05
0.90] vs. 0.78 [95% CI: 0.71, 0.85], P=0.00), but a comparable SEN

in the one-cohort subgroup (0.86 [95% CI: 0.75, 0.97] vs. 0.78 [95%

CI: 0.65, 0.91], P=0.09). The variations in the significance of SEN

suggest that the number of cohorts might be a source of

heterogeneity. In the training cohort subgroup, IM outperformed

AI in assessing the response of GC to NACT, with a higher SEN

(0.88 [95% CI: 0.82, 0.94] vs. 0.80 [95% CI: 0.72, 0.88], P=0.00), but

a lower SPE (0.77 [95% CI: 0.69, 0.85] vs. 0.81 [95% CI: 0.74, 0.88],

P=0.03). Similarly, in the internal validation cohort subgroup, IM

was more effective than AI in assessing the response of GC to

NACT, with a higher SEN (0.84 [95% CI: 0.78, 0.89] vs. 0.80 [95%

CI: 0.74, 0.86], P=0.00), but a lower SPE (0.73 [95% CI: 0.68, 0.79]

vs. 0.76 [95% CI: 0.70, 0.81], P=0.00). However, in the external

validation cohort subgroup, IM and AI demonstrated similar

performance in assessing the response of GC to NACT, indicating

that diagnostic accuracy varied depending on the cohort type. In the

CT-based deep learning subgroup, AI proved to be superior to IM

in assessing the response of GC to NACT, with a higher SEN (0.83

[95% CI: 0.77, 0.88] vs. 0.81 [95% CI: 0.76, 0.87], P=0.00), but a
FIGURE 1

Flow diagram of the selection process for the studies.
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T4b (59, 8.21%); N0 (80,
11.13%); N1 (109, 15.16%);
N2(205, 28.51%); N3
(192, 26.70%)

ROC
analysis

CNNs
CT-

deep l

Wenpeng
Huang
2022

China 73 19

advanced
esophagogastric

junction
adenocarcinoma

histopathologically
confirmed

T2-3 (40, 43.48%); T4 (52,
56.52%); N0-1 (55, 59.78%);
N2-3 (37, 40.22%)

NR
naive
Bayes

C
ba

radi

Kun
Xie 2022

China 92 32
locally advanced

gastric
adenocarcinoma

histopathologically
confirmed

T2-3 (61, 49.19%); T4 (63,
50.81%); N0 (18, 14.52%);
N1 (28, 22.58%); N2(39,
31.45%); N3(39, 31.45%)

NR SVM
C
ba

radi
b
e

o

o

b
e

o

b
e

o

o
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lower SPE (0.72 [95% CI: 0.68, 0.76] vs. 0.74 [95% CI: 0.70, 0.78],

P=0.00). Conversely, in the CT-based radiomics subgroup, IM

outperformed AI in SEN (0.85 [95% CI: 0.80, 0.1] vs. 0.71 [95%

CI: 0.62, 0.80], P=0.00), but showed similar SPE (0.63 [95% CI: 0.44,

0.83] vs. 0.80 [95% CI: 0.67, 0.94], P=0.62). In the gold standard

factor analysis, the performance of the NCCN guideline subgroup

mirrored that of CT-based DL, but the details are not provided. The

variations in the significance of SEN suggest that the approach to

predicting response and different gold standards may be sources of

heterogeneity. The results of the subgroup analysis can be found in

Table 4. In sensitivity analyses, the results analyzed by fixed effects

model were consistent with those by random effects model, which

indicated that results were robust.
3.5 Comparison among cohorts in
three models

We conducted pairwise comparisons of three cohorts on the

same test with a random-effects coefficient binary regression model

to determine if there were differences in performance across the

cohorts, as depicted in Table 5. In sensitivity analyses, the results

analyzed by fixed effects model were inconsistent with those by

random effects model, which indicated that results were not robust.

In the AI model, the accuracy differed between the training

cohort and the internal validation cohort. The pooled SEN was

lower in the training cohort (0.80 [95% CI: 0.71, 0.88]) compared to

the internal validation cohort (0.81 [95% CI: 0.72, 0.90]), with a

statistically significant P-value of 0.03. However, the pooled SPE

was higher in the training cohort (0.80 [95% CI: 0.74, 0.85])

compared to the internal validation cohort (0.76 [95% CI: 0.70,

0.83]), with a statistically significant P-value of 0.00.

In the IM model, the training cohort exhibited superior

performance in terms of pooled SEN (0.88 [95% CI: 0.84, 0.91])

compared to the internal validation cohort (0.84 [95% CI: 0.78,

0.89]), with a statistically significant P-value of 0.00. However, they

demonstrated similar performance in terms of pooled SPE (0.77 [95%

CI: 0.70, 0.84] vs. 0.71 [95% CI: 0.61, 0.80]), with a non-significant P-

value of 0.10. Additionally, the training cohort displayed higher pooled

SEN (0.88 [95% CI: 0.83, 0.94]) compared to the external validation

cohort (0.81 [95% CI: 0.74, 0.88]), with a statistically significant P-value

of 0.04. They exhibited similar performance in terms of pooled SPE

(0.77 [95% CI: 0.65, 0.90] vs. 0.61 [95% CI: 0.47, 0.76]), with a non-

significant P-value of 0.77. In sensitivity analyses, the results analyzed

by fixed effects model were consistent with those by random effects

model, which indicated that results were robust.
3.6 Risk-of-bias assessment

The results of the Deeks’ funnel plot asymmetry test

demonstrated that no significant evidence of publication bias was

observed in the analysis of the AI model (P=0.91) and IM analysis

(P=0.87). However, the CM analysis revealed compelling evidence

of publication bias (P=0.04). The Deeks’ funnel plot, which

showcases these findings, is presented in Figure 7.
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4 Discussion

4.1 Principal findings

To the best of our knowledge, this review represents the first

attempt to comprehensively summarize the diagnostic accuracy of

CT-based deep learning or radiomics in predicting the response of

GC to NACT. This study consists of two main parts: first, we

evaluated the diagnostic accuracy of AI models; and second, we

compared the accuracy of AI, CM, and IM models in head-to-head

studies. The review showed that AI is an effective tool for predicting

the response of GC patients to NACT. It has been observed that

when AI is combined with clinical features, it becomes more

sensitive than the AI model alone. However, in the ROC analysis

subgroup, the CT-based DL subgroup, and the NCCN guideline
Frontiers in Oncology 08
subgroup, the AI model was more sensitive than IM. Subjects can be

categorized according to heterogeneous factors, with a higher

degree of homogeneity across subjects within the group.

Therefore, the results of subgroup analysis are more reliable. In

conclusion, AI is most sensitive for predicting the response of GC

patients to NACT when assessing tumor grade with reference to the

NCCN guidelines, extracting tumor characteristics using a CT-

based DL approach, and determining the cut-off value of the test

using ROC curve.

The threshold effect, resulting from the use of different

diagnostic cut-off values in various studies, has led to inconsistent

findings with high SEN and low SPE, and vice versa (38). To address

this, we conducted a subgroup analysis based on cut-off values

reported in the literature. We found a statistically significant

difference in SPE between two subgroups when analyzing AI
B

A

FIGURE 2

Methodological quality of all 9 included studies. (A) quality summary; (B) quality graph.
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studies using different reporting methods for cut-off values (ROC

analysis: 0.69 vs. not reported: 0.81). Furthermore, the conclusions

for SEN were opposite in head-to-head comparisons, and the

statistical significance of SPE differed when comparing AI and

IM. These findings confirm our hypothesis about the threshold

effect and suggest that the heterogeneity observed in subgroup

analysis may be attributed to variations in cut-off values.

It has been reported that NACT improves 5-year overall survival

and progression-free survival in patients with esophagogastric

junction cancer (39). However, it is worth noting that this study

included two articles on esophagogastric junction cancer, which may

have affected the reliability of the results due to the different types of

diseases analyzed. Interestingly, our analysis showed no difference

between subgroups in AI studies when considering tumor location.

Additionally, the diagnostic accuracy of pairwise comparisons did not

change significantly before and after subgroup analysis, indicating

that tumor location did not contribute to heterogeneity or affect the

robustness of the results.

To assess the exact performance of AI algorithms, it is

recommended to conduct external validation using independent

datasets (40). Consequently, the majority of the included studies (5

out of 7) performed external validation to ensure the authenticity

and generalizability of their findings. Our hypothesis considered

that variations in test intervals and populations might result in

different test performances across various cohorts. We categorized

the cohorts into training cohorts, internal validation cohorts, and

external validation cohorts based on their number and type. No

significant difference was observed between subgroups in AI
FIGURE 3

Forest plots of SEN and SPE with corresponding 95% CIs of AI.
FIGURE 4

Fagan normogram of AI for the predicting response to NACT.
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analysis when considering the number of cohorts. However, in

head-to-head comparisons, the diagnostic accuracy of AI and IM

showed inconsistency between the two subgroups. Depending on

the cohort type, AI performed better in internal validation cohorts

in terms of sensitivity but exhibited lower specificity compared to

the training cohorts in predicting the response to NACT. Moreover,

in head-to-head comparisons, IM outperformed AI with higher

sensitivity but lower specificity in both training and internal

validation cohorts. These findings highlight the influence of the

number and type of cohorts on the results and emphasize the

importance of exploring heterogeneity.

Both DL and radiomics are rapidly advancing and promising

approaches that can predict patient outcomes after diagnosis and

treatment (41–44). However, in radiomics, manual delineation of

tumors is required, whereas in DL, no human involvement is

necessary. Our analysis showed that in the AI model, the subgroup

using CT-based radiomics exhibited higher pooled SPE compared to

the subgroup using CT-based DL. In head-to-head comparisons, the

conclusions for SEN were opposite when comparing AI with IM in

the two subgroups. That is to say, in the CT-based DL subgroup, IM

performed better than AI with higher specificity.

The NCCN guideline are widely accepted and referenced for

evaluating tumor regression grade (45). However, some studies have

used other criteria to assess tumor regression grade (46–48). In certain

subgroups, other guidelines have shown higher pooled SPE than the

NCCN guidelines when using AI models. In head-to-head

comparisons, the SEN conclusions were contradictory when

comparing AI with IM in two subgroups. Additionally, in the NCCN

guideline subgroup, IM exhibited superiority over AI with higher

specificity. The variability observed in predicting response and the

selection of guidelines may contribute to the identified heterogeneity.
4.2 Practical implications

Preoperative evaluation of GC patients scheduled for NACT is

conducive to clinical decision making. The prognosis of GC patients
Frontiers in Oncology 10
is poor and missed diagnosis of patients may bring serious

consequences. Moreover, NACT is effective in the treatment of

GC patients. Therefore, in practice, we should choose a method of

higher SEN, as much as possible to find suspicious patients. In

conclusion, it is best to construct CT-based DL model of AI rather

than CT-based radiomics to predict the response of GC patients to

NACT because of a higher SEN. When evaluating GC regression

grade, the NCCN guideline should be referenced, because of a

higher SEN, and in the NCCN subgroup, AI model was more

sensitive than IM and CM. By analyzing preoperative CT images of

patients, AI can avoid the harm caused by pathological examination

and reduce the medical burden. AI has demonstrated a level above

that of clinicians and imaging physicians. In later practice, AI can be

used more widely as an assistant tool for clinicians. If we can

conduct rigorously designed diagnostic accuracy studies and head-

to-head comparative studies, the conclusions of SEN and SPE will

be more accurate.

In policy, governments should consider investments not only in

acquiring computer equipment and providing personnel training

for hospitals but also in supporting scientific research that enhances

the accuracy of these diagnostic tests. Future research endeavors

should prioritize updating AI technology and augmenting its

intelligence to achieve even greater precision in predicting

patients’ responses to NACT. It is recommended that the

threshold determination method be indicated in the publication

when studying the diagnostic accuracy of a test. In the process of

validation, external validation cohort using independent datasets

is recommended.
4.3 Limitations

There were several limitations in the review. Firstly, the limited

number of included studies impacted the reliability and

generalizability of the results. Specifically, there was a lack of

head-to-head comparative studies. Secondly, the overfitting of the

AI algorithm could lead to an excessive adaptation to the training
TABLE 2 Subgroup analysis of AI for predicting response to NACT.

Factor Subgroups No. pSEN [95%CI] P value pSPE [95%CI] P value

Cut-off value
ROC analysis 3 0.74 [0.61 - 0.87] P = 0.11 0.69 [0.57 - 0.81] P = 0.00*

NR 6 0.76 [0.66 - 0.86] 0.81 [0.74 - 0.88]

Location of cancer
esophagogastric junction cancer 2 0.75 [0.59 - 0.92] P = 0.31 0.84 [0.73 - 0.94] P = 0.49

gastric cancer 7 0.75 [0.66 - 0.84] 0.74 [0.66 - 0.82]

Cohorts (No.)
one 2 0.79 [0.60 - 0.97] P = 0.62 0.83 [0.68 - 0.98] P = 0.69

more than one 7 0.75 [0.66 - 0.83] 0.76 [0.68 - 0.84]

Approach of predicting response
CT-based deep learning 3 0.83 [0.76 - 0.90] P = 0.40 0.72 [0.60 - 0.84] P = 0.02*

CT-based radiomics 6 0.69 [0.60 - 0.78] 0.80 [0.72 - 0.88]

Gold standard
NCCN guideline 5 0.78 [0.69 - 0.87] P = 0.37 0.76 [0.66 - 0.85] P = 0.04*

Other guidelines 4 0.71 [0.58 - 0.85] 0.79 [0.68 - 0.90]
fro
AI, artificial intelligence; NACT, Neoadjuvant chemotherapy; pSEN, pooled sensitivity; pSPE, pooled specificity; ROC, Receiver Operating Characteristic; NR, not reported; CT, computed
tomography; NCCN, National Comprehensive Cancer Network; *indicated statistical significance.
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dataset, hindering accurate predictions for new datasets (40).

Therefore, it is crucial to ensure that the selected target

population is representative. In this review, there were three times

as many male participants as female participants, and all the articles

were sourced from Asia. This skewed representation may result in a

matching model that is more suitable for a specific population

cohort, introducing bias. Thirdly, variations in the baselines of the
Frontiers in Oncology 11
articles, such as cut-off values, number and type of cohorts, and gold

standard, among others, necessitated numerous subgroup analyses

to evaluate their impact on the stability of the conclusions. Fourthly,

none of the included articles reported the cut-off value, and most

did not provide an explanation for how the cut-off value was

determined. This lack of information affects the reliability of the

diagnostic conclusions. Fifthly, in selection and data extraction
A

B

C

FIGURE 5

Forest plots of SEN and SPE with corresponding 95% CIs of AI, CM and IM. (A) AI; (B) Clinical model; (C) Integrated model.
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FIGURE 6

Pairs of observed values of sensitivity and specificity for AI, CM and IM to predict response.
TABLE 3 Pairwise comparison of three models for pSEN and pSPE.

Model No. pSEN [95%CI] P value pSPE [95%CI] P value

AI vs. Clinical model 7 0.78 [0.70 - 0.85] vs. 0.67 [0.58 - 0.77] P = 0.30 0.75 [0.69 - 0.81] vs. 0.59 [0.51 - 0.66] P = 0.64

Integrated vs. Clinical model 7 0.84 [0.79 - 0.88] vs. 0.65 [0.58 - 0.73] P = 0.28 0.68 [0.60 - 0.77] vs. 0.59 [0.49 - 0.68] P = 0.63

AI vs. Integrated model 7 0.78 [0.72 - 0.84] vs. 0.84 [0.79 - 0.89] P = 0.00* 0.76 [0.68 - 0.85] vs. 0.68 [0.58 - 0.79] P = 0.28
F
rontiers in Oncology
 12
 fro
pSEN, pooled sensitivity; pSPE, pooled specificity; AI, artificial intelligence; *indicated statistical significance.
TABLE 4 Pairwise comparison of three models for pSEN and pSPE in subgroup analysis.

Factors Subgroups Model No. pSEN [95%CI]
P
value

pSPE [95%CI]
P
value

Cut-off value

ROC analysis

AI
VS CM

2
0.80 [0.73-0.87] vs. 0.63
[0.53-0.73]

P = 0.82
0.69 [0.64-0.74] vs. 0.59
[0.53-0.65]

P = 0.17

IM
VS CM

2
0.79 [0.73 - 0.85] vs. 0.63
[0.55 - 0.71]

P = 0.41
0.71 [0.66 - 0.77] vs. 0.59
[0.52 - 0.65]

P = 0.32

AI
VS IM

2
0.80 [0.71 - 0.87] vs. 0.79
[0.72 - 0.85]

P = 0.00*
0.70 [0.65 - 0.74] vs. 0.72
[0.67 - 0.76]

P = 0.00*

NR
AI
VS CM

5
0.76 [0.65 - 0.88] vs. 0.71
[0.58 - 0.84]

P = 0.43
0.78 (0.70 - 0.86) vs. 0.59
(0.48 - 0.70)

P = 0.86

(Continued)
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TABLE 4 Continued

Factors Subgroups Model No. pSEN [95%CI]
P
value

pSPE [95%CI]
P
value

IM
VS CM

5
0.87 [0.81 - 0.92] vs. 0.68
[0.56 - 0.79]

P = 0.83
0.68 [0.55 - 0.81] vs. 0.59
[0.45 - 0.73]

P = 0.89

AI
VS IM

5
0.77 [0.69 - 0.85] vs. 0.87
[0.81 - 0.92]

P = 0.00*
0.80 [0.68 - 0.91] vs. 0.68
[0.53 - 0.83]

P = 0.91

Location of cancer

esophagogastric
junction cancer

AI
VS CM

2
0.74 [0.53 - 0.95] vs. 0.67
[0.43 - 0.92]

P = 0.89
0.84 [0.74 - 0.93] vs. 0.64
[0.49 - 0.79]

P = 0.63

IM
VS CM

2
0.85 [0.79 - 0.90] vs. 0.65
[0.56 - 0.74]

P = 0.71
0.74 [0.65 - 0.82] vs. 0.64
[0.53 - 0.74]

P = 0.47

AI
VS IM

2
0.79 [0.66 - 0.91] vs. 0.88
[0.80 - 0.97]

P = 0.03*
0.81 [0.73 - 0.89] vs. 0.73
[0.64 - 0.82]

P = 0.14

gastric cancer

AI
VS CM

5
0.78 [0.72 - 0.85] vs. 0.66
[0.57 - 0.75]

P = 0.29
0.69 [0.64 - 0.73] vs. 0.57
[0.52 - 0.63]

P = 0.23

IM
VS CM

5
0.81 [0.76 - 0.87] vs. 0.65
[0.56 - 0.74]

P = 0.44
0.66 [0.56 - 0.76] vs. 0.55
[0.44 - 0.66]

P = 0.97

AI
VS IM

5
0.78 [0.74 - 0.83] vs. 0.81
[0.77 - 0.86]

P = 0.00*
0.72 [0.61 - 0.83] vs. 0.67
[0.55 - 0.78]

P = 0.36

Cohorts (No.)

one

AI
VS CM

2
0.78 [0.65 - 0.91] vs. 0.85
[0.75 - 0.96]

P = 0.08
0.82 [0.72 - 0.91] vs. 0.53
0.41 - 0.66]

P = 0.24

IM
VS CM

2
0.86 [0.75 - 0.97] vs. 0.85
[0.75 - 0.96]

P = 0.32
0.76 [0.54 - 0.98] vs. 0.52
[0.24 - 0.80]

P = 0.29

AI
VS IM

2
0.78 [0.65 - 0.91] vs. 0.86
[0.75 - 0.97]

P = 0.09
0.84 [0.66 - 1.00] vs. 0.76
[0.53 - 0.99]

P = 0.69

more than 1

AI
VS CM

5
0.78 [0.71 - 0.85] vs. 0.62
[0.52 - 0.72]

P = 0.73
0.73 [0.67 - 0.80] vs. 0.60
[0.52 - 0.69]

P = 0.52

IM
VS CM

5
0.83 [0.79 - 0.87] vs. 0.61
[0.55 - 0.67]

P = 0.41
0.67 [0.58 - 0.75] vs. 0.61
[0.51 - 0.70]

P = 0.38

AI
VS IM

5
0.78 [0.71 - 0.85] vs. 0.84
[0.78 - 0.90]

P = 0.00*
0.74 [0.65 - 0.83] vs. 0.66
[0.56 - 0.77]

P = 0.34

Type of cohorts

T

AI
VS CM

5
0.79 (0.69-0.90) VS 0.68
(0.55-0.82)

P = 0.73
0.81 (0.74-0.87) vs.0.63
(0.54-0.72)

P = 0.68

IM
VS CM

5
0.88 [0.84 - 0.92] 0.63
[0.57 - 0.69]

P = 0.67
0.77 [0.69 - 0.84] vs.0.64
[0.54 - 0.73]

P = 0.52

AI
VS IM

5
0.80 [0.72 - 0.88] vs. 0.88
[0.82 - 0.94]

P = 0.00*
0.81 [0.74 - 0.88] vs. 0.77
[0.69 - 0.85]

P = 0.03*

I

AI
VS CM

6
0.81 [0.71 - 0.90] vs. 0.63
[0.50 - 0.75]

P = 0.85
0.76 [0.71 - 0.81] vs. 0.64
[0.58 - 0.70]

P = 0.07

IM
VS CM

6
0.84 [0.76 - 0.92] vs. 0.63
[0.50 - 0.76]

P = 0.65
0.73 [0.67 - 0.79] vs. 0.64
[0.58 - 0.70]

P = 0.06

AI
VS IM

6
0.80 [0.74 - 0.86] vs. 0.84
[0.78 - 0.89]

P = 0.00*
0.76 [0.70 - 0.81] vs. 0.73
[0.68 - 0.79]

P = 0.00*

E

AI
VS CM

7
0.80 [0.70-0.91] vs. 0.61
[0.46-0.77]

P = 0.65
0.65 [0.54-0.76] vs. 0.58
[0.46-0.70]

P = 0.75

IM
VS CM

7
0.84 [0.74 - 0.93] vs. 0.60
[0.45 - 0.76]

P = 0.44
0.61 [0.47 - 0.76] vs. 0.58
[0.43 - 0.73]

P = 0.77

AI
VS IM

7
0.80 [0.69 - 0.92] vs. 0.84
[0.74 - 0.94]

P = 0.09
0.65 [0.52 - 0.79] vs. 0.61
[0.47 - 0.76]

P = 0.68

Approach of
predicting response

CT-based deep learning
AI
VS CM

3
0.83 [0.78 - 0.88] vs. 0.62
[0.54 - 0.70]

P = 0.74
0.73 [0.69 - 0.77] vs. 0.58
[0.53 - 0.63]

P = 0.29

(Continued)
F
rontiers in Oncology
 13
 fron
tiersin.org

https://doi.org/10.3389/fonc.2024.1363812
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Bao et al. 10.3389/fonc.2024.1363812
phases, although the reviewers were trained beforehand and a third

reviewer was involved in the discussions, bias was inevitable due to

staff subjectivity. We included only English language literature,

which was also a source of bias. Reporting bias should be checked

if a study has multiple outcome indicators but only reports
Frontiers in Oncology 14
statistically significant results, but this was not the case in this

study. Additionally, factors that could potentially affect the accuracy

estimates, such as the clinical stage of cancer, type of AI, and NACT

regimen, were not thoroughly explored due to insufficiently detailed

data or the lack of a basis for grouping.
TABLE 4 Continued

Factors Subgroups Model No. pSEN [95%CI]
P
value

pSPE [95%CI]
P
value

IM
VS CM

3
0.81 [0.77 - 0.86] vs. 0.62
[0.56 - 0.69]

P = 0.34
0.74 [0.69 - 0.79] vs. 0.58
[0.51 - 0.64]

P = 0.56

AI
VS IM

3
0.83 [0.77 - 0.88] vs. 0.81
[0.76 - 0.87]

P = 0.00*
0.72 [0.68 - 0.76] vs. 0.74
[0.70 - 0.78]

P = 0.00*

CT-based radiomics
AI
VS CM

4
0.71 [0.57 - 0.85] vs. 0.74
[0.60 - 0.88]

P = 0.25
0.79 [0.68 - 0.90] vs. 0.60
[0.46 - 0.75]

P = 0.71

IM
VS CM

4
0.87 [0.80 - 0.95] vs. 0.73
[0.60 - 0.87]

P = 0.91
0.63 [0.47 - 0.80] vs. 0.61
[0.44 - 0.77]

P = 0.76

AI
VS IM

4
0.71 [0.62 - 0.80] vs. 0.85
[0.80 - 0.91]

P = 0.00*
0.80 [0.67 - 0.94] vs. 0.63
[0.44 - 0.83]

P = 0.62

Gold standard

NCCN guideline
AI
VS CM

3
0.83 [0.78 - 0.88] vs. 0.62
[0.54 - 0.70]

P = 0.74
0.73 [0.69 - 0.77] vs. 0.58
[0.53 - 0.63]

P = 0.29

IM
VS CM

3
0.81 [0.77 - 0.86] vs. 0.62
[0.56 - 0.69]

P = 0.34
0.74 [0.69 - 0.79] vs. 0.58
[0.51 - 0.64]

P = 0.56

AI
VS IM

3
0.83 [0.77 - 0.88] vs. 0.81
[0.76 - 0.87]

P = 0.00*
0.72 [0.68 - 0.76] vs. 0.74
[0.70 - 0.78]

P = 0.00*

Other guidelines
AI
VS CM

4
0.71 [0.57 - 0.85] vs. 0.74
[0.60 - 0.88]

P = 0.25
0.79 [0.68 - 0.90] vs. 0.60
[0.46 - 0.75]

P = 0.71

IM
VS CM

4
0.87 [0.80 - 0.95] vs. 0.73
[0.60 - 0.87]

P = 0.91
0.63 [0.47 - 0.80] vs. 0.61
[0.44 - 0.77]

P = 0.76

AI
VS IM

4
0.71 [0.62 - 0.80] vs. 0.85
[0.80 - 0.91]

P = 0.00*
0.80 [0.67 - 0.94] vs. 0.63
[0.44 - 0.83]

P = 0.62
fron
pSEN, pooled sensitivity; pSPE, pooled specificity; AI, artificial intelligence; CM, clinical model; IM, integrated model; ROC, Receiver Operating Characteristic; NR, not reported; T, training
cohort; I, internal validation cohort; E, external validation cohort; CT, computed tomography; NCCN, National Comprehensive Cancer Network; *indicated statistical significance.
TABLE 5 Pairwise comparison of three cohorts for pSEN and pSPE.

AI Clinical model Integrated model

pSEN [95%CI] pSPE [95%CI] pSEN [95%CI] pSPE [95%CI] pSEN [95%CI] pSPE [95%CI]

T VS I 0.80 [0.71 - 0.88] 0.80 [0.74 - 0.85] 0.68 [0.55 - 0.82] 0.62 [0.55 - 0.70] 0.88 [0.84 - 0.91] 0.77 [0.70 - 0.84]

0.81 [0.72 - 0.90] 0.76 [0.70 - 0.83] 0.63 [0.48 - 0.78] 0.64 [0.56 - 0.72] 0.84 [0.78 - 0.89] 0.71 [0.61 - 0.80]

P = 0.03* P = 0.00* P = 0.73 P = 0.07 P = 0.00* P = 0.10

T VS E 0.79 (0.66-0.92) 0.81 (0.74-0.89) 0.67 (0.53-0.82) 0.63 (0.51-0.75) 0.88 [0.83 - 0.94] 0.77 [0.65 - 0.90]

0.80 (0.70-0.91) 0.65 (0.56-0.75) 0.62 (0.49-0.75) 0.58 (0.48-0.69) 0.81 [0.74 - 0.88] 0.61 [0.47 - 0.76]

P = 0.17 P = 0.73 P = 0.71 P = 0.67 P = 0.04* P = 0.77

I VS E 0.80 [0.70 - 0.91] 0.77 [0.69 - 0.85] 0.63 [0.46 - 0.80] 0.63 [0.52 - 0.75] 0.84 [0.76 - 0.93] 0.70 [0.54 - 0.85]

0.81 [0.72 - 0.90] 0.65 [0.57 - 0.73] 0.62 [0.47 - 0.76] 0.58 [0.48 - 0.68] 0.82 [0.74 - 0.89] 0.61 [0.47 - 0.75]

P = 0.09 P = 0.39 P = 0.67 P = 0.69 P = 0.06 P = 0.90
pSEN, pooled sensitivity; pSPE, pooled specificity; AI, artificial intelligence; T, training cohort; I, internal validation cohort; E, external validation cohort; *indicated statistical significance.
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5 Conclusion

AI is a highly effective tool for accurately predicting the

response of GC patients to NACT. Furthermore, CT-based DL

model in AI is sensitive to extract tumor features and predict the

response. It is critical to conduct rigorously designed, high-quality

diagnostic accuracy studies to validate the conclusions.
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