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model for endometrial
cancer based on WGCNA and
machine learning algorithms
Shanshan Lin1†, Changqiang Wei2†, Yiyun Wei2

and Jiangtao Fan1*

1Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University,
Nanning, Guangxi, China, 2Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi
Medical University, Nanning, Guangxi, China
Background: Endoplasmic reticulum (ER) stress arises from the accumulation of

misfolded or unfolded proteins within the cell and is intricately linked to the initiation

and progression of various tumors and their therapeutic strategies. However, the

precise role of ER stress in uterine corpus endometrial cancer (UCEC) remains unclear.

Methods: Data on patients with UCEC and control subjects were obtained from

The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)

databases. Using differential expression analysis and Weighted Gene Co-

expression Network Analysis (WGCNA), we identified pivotal differentially

expressed ER stress-related genes (DEERGs). Further validation of the

significance of these genes in UCEC was achieved through consensus clustering

and bioinformatic analyses. Using Cox regression analysis and several machine

learning algorithms (least absolute shrinkage and selection operator [LASSO],

eXtreme Gradient Boosting [XGBoost], support vector machine recursive feature

elimination [SVM-RFE], and Random Forest), hub DEERGs associated with patient

prognosis were effectively identified. Based on the four identified hub genes, a

prognostic model and nomogramwere constructed. Additionally, a drug sensitivity

analysis and in vitro validation experiments were performed.

Results: A total of 94 DEERGs were identified in patients with UCEC and healthy

controls. Consensus clustering analysis revealed significant differences in

prognosis, typical immune checkpoints, and tumor microenvironments

between the subtypes. Using Cox regression analysis and machine learning,

four hub DEERGs, MYBL2, RADX, RUSC2, and CYP46A1, were identified to

construct a prognostic model. The reliability of the model was validated using

receiver operating characteristic (ROC) curves. Decision curve analysis (DCA)

demonstrated the superior predictive ability of the nomogram in terms of 3- and

5-year survival, compared with that of other clinical indicators. Drug sensitivity

analysis revealed increased sensitivity to dactinomycin, docetaxel, selumetinib,

and trametinib in the low-risk group. The expressions of RADX, RUSC2, and
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CYP46A1 were downregulated, whereas that of MYBL2 was upregulated in UCEC

tissues, as demonstrated by reverse transcription-quantitative polymerase chain

reaction (RT-qPCR) and immunofluorescence assays.

Conclusion: This study developed a stable and accurate prognostic model based

onmultiple bioinformatics analyses, which can be used to assess the prognosis of

UCEC. This model may contribute to future research on the risk stratification of

patients with UCEC and the formulation of novel treatment strategies.
KEYWORDS

endometrial cancer, endoplasmic reticulum stress, machine learning, WGCNA,
prognostic model
1 Introduction

Uterine corpus endometrial cancer (UCEC) is one of the most

prevalent and lethal gynecological malignancies worldwide. The

global incidence of UCEC in 2020 was approximately 417,000, with

a mortality rate of approximately 97,000. Furthermore, UCEC is the

sixth most common cancer in women (1). In the United States alone,

66,200 new UCEC cases and 13,030 deaths are projected to be

reported for 2023 (2). Chinese cancer statistics indicate that UCEC

is the second most prevalent gynecological malignant tumor (3). The

primary treatment modality for UCEC is comprehensive surgery

including total hysterectomy and bilateral salpingo-oophorectomy

(4). The latest National Comprehensive Cancer Network® (NCCN)

Clinical Practice Guidelines for Uterine Oncology (2023) suggest that

the preferred treatment regimen for endometrial cancer is carboplatin

combined with paclitaxel. Trastuzumab is also required in patients

with advanced or recurrent HER2-positive disease. Other

recommended regimens include carboplatin/docetaxel and

carboplatin/paclitaxel/bevacizumab (5). The 5-year relative survival

rate of patients with UCEC across all stages is approximately 81%.

Nevertheless, despite advancements in UCEC treatment, the

prognosis of patients with distant metastasis remains poor, with a

5-year relative survival rate as low as 17% (6). The low survival rates

reflect the limited availability of effective treatment options for

patients with recurrent and metastatic UCEC. Hence, the

identification of novel and effective biomarkers is of paramount

importance for targeted therapy and prognostic assessment of UCEC.

The endoplasmic reticulum (ER) is a multifaceted organelle

responsible for the synthesis and modification of proteins, anabolic

steroids, and lipids. Under stress conditions, such as hypoxia, nutrient

deprivation, oxidative stress, lactic acidosis, and Ca2+ depletion,

substantial accumulation of unfolded and misfolded proteins occurs

in the ER lumen, intensifying the load on the ER and inducing stress

(7). Mild ER stress can reinstate homeostasis via signal sensors,

facilitating cellular adaptation, while severe ER stress can activate

inflammasomes and apoptosis-associated genes, resulting in cell death

(8). ER stress has been intricately linked to the onset and progression
02
of malignant tumors including glioblastoma, multiplemyeloma, breast

cancer, gastric cancer, esophageal cancer, and liver cancer (9, 10).

Sustained, high-level activation of ER signaling sensors (PERK, ATF6,

and IRE1a) was detectable in these cancer tissues, whichmay promote

tumor cell proliferation, migration, invasion, vascularization, drug

resistance, and immunosuppression (11).

Abnormal activation of ER stress sensors and their downstream

signaling pathways is a crucial regulator of cancer development,

metastasis, and response to various treatments (8). Ongoing

research is investigating the relationship between ER stress and

UCEC. ER stress-related proteins are reported to be closely

associated with apoptosis in UCEC (12). Another study suggests

that transcription factors induced by ER stress can promote the

growth of UCEC through macrophage recruitment (13).

Furthermore, ER stress is closely associated with the promotion

of UCEC proliferation, invasion, and chemical resistance (14).

In summary, these findings indicate that ER stress plays a

crucial role in UCEC, and ER stress intervention is expected to be

a novel clinical treatment direction in the future. Consequently,

comprehensive exploration of the relationship between ER stress

and UCEC is imperative.
2 Materials and methods

2.1 Datasets and patient selection

A flowchart of this study is shown in Figure 1. We acquired

TCGA-UCEC from The Cancer Genome Atlas (TCGA) database

and GSE17025, GSE63678, GSE115810, and GSE106191 from the

Gene Expression Omnibus (GEO) database. GSE17025, GSE63678,

and GSE115810 were merged into a new dataset for further analysis,

and GSE106191 served as an external validation set (Table 1). ER

stress-related genes (ERGs) were obtained from the GeneCards

database (https://www.genecards.org/). ERGs with relevance scores

of >5 were chosen for this study, and comprehensive information

on these genes is provided in Supplementary Table 1.
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Next, 20 UCEC and 20 normal endometrial tissue samples were

obtained from the Department of Obstetrics and Gynecology of the

First Affiliated Hospital of Guangxi Medical University. The UCEC

stage was assessed according to the Federation International of

Gynecology and Obstetrics (FIGO) 2009 guidelines, and the

diagnosis was made by experienced pathologists. Normal

endometrial tissues obtained from patients who underwent

hysterectomies for unrelated endometrial diseases were used as

controls. None of the patients received systemic therapy before

surgery. The clinical data of patients diagnosed with UCEC are

presented in Table 2. The study adhered to the principles of the

Declaration of Helsinki, and ethical approval was obtained from the

Research Ethics Committee of the First Affiliated Hospital of Guangxi

Medical University (No. 2023-S033-01). All the patients included in

the study provided written informed consent before surgery.
2.2 Differential expression analysis and co-
expression network analysis

Differential expression analysis was performed using the

“limma” R package (15). For the TCGA-UCEC dataset,
Frontiers in Oncology 03
the screening criterion was set to |log2 FC| > 2, and the adjusted

p-value was <0.05. For the GEO dataset, the “sva” and “limma” R

packages were used to perform data merging and batch correction

for GSE17025, GSE63678, and GSE115810. The screening criterion

for differential expression analysis was |log2 FC| > 1, and the

adjusted p-value was <0.05.

The “WGCNA” R software package was used to construct the

co-expression network for the TCGA-UCEC and merged GEO data

sets (16). This approach demonstrated the correlation of gene

networks with clinical features. The minimum number of

modular genes was set to 90, and the genes were clustered to

categorize them into distinct modules. Finally, the clinical

information was integrated with the modules, and genes in the

top three modules that were most relevant to UCEC were selected

for subsequent analysis. The results of the gene differential

expression analysis and Weighted Gene Co-expression Network

Analysis (WGCNA) intersected with the ERGs, and common genes

were identified as differentially expressed ER stress-related

genes (DEERGs).
2.3 Consensus clustering

To identify UCEC subtypes related to DEERGs, consensus

clustering was performed through the “ConsensusClusterPlus” R

package (17). To ensure the robustness and reproducibility of the

results, 1000 repetitions were executed, and the PACmethod was

used to determine the optimal number of clusters within the range

of k = 2–10. The outcomes of this process are represented through

clear cluster plots using the pheatmap function in the R software.

Subsequently, the “limma” package was employed to conduct

principal component analysis (PCA) and differential expression
FIGURE 1

Main flowchart of study design.
TABLE 1 Baseline characteristics of GEO datasets used in this study.

Dataset Platforms Sample size

GSE17025 GPL570
103 (91 UCEC samples and 12
control samples)

GSE63678 GPL571 12 (7 UCEC samples and 5 control samples)

GSE115810 GPL96 27 (24 UCEC samples and 3 control samples)

GSE106191 GPL570
97 (64 UCEC samples and 33
control samples)

TCGA-
UCEC

TCGA
579 (544 UCEC samples and 35
control samples)
TABLE 2 The clinical data of patients diagnosed with UCEC.

Clinical parameters N

Age
<60 13

≥60 7

Grade
G1-G2 14

G3-G4 6

Differentiation
Low and Middle 12

High 8

Invasion depth
Superficial 6

Deep 14

Lymphatic metastasis
No 15

Yes 5

Vascular invasion
No 19

Yes 1

Distal metastasis
No 20

Yes 0
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analysis between clusters. This method facilitated clear visualization

of the sample distribution. The outcomes of the inter-cluster

analysis were then visually presented using the “scatterplot3d,”

“reshape2,” and “ggpubr” packages.

Immune cell infiltration analysis was performed using the

CIBERSORT algorithm to assess differences in the infiltration

levels of 22 immune cells between clusters (18). The conditions

were set to perm = 1000 and p < 0.05, and the results were visualized

via the “vioplot” package.

Differential expression analysis of several typical immune

checkpoint genes and human leukocyte antigen (HLA)-related genes

was performed using the “limma” package. This process revealed the

distinct expression patterns of immune checkpoints and HLA-related

genes among the different clusters. Lastly, we evaluated the tumor

microenvironment (TME) with the “estimate” package, offering robust

support for a comprehensive understanding of UCEC characteristics.
2.4 Cox regression model and
machine learning

To identify DEERGs with prognostic value, the correlation between

each gene and survival status in the TCGA-UCEC dataset was initially

evaluated using Cox regressionmodeling. Patients with survival times of

<30 days were excluded to enhance reliability and robustness. For

prognosis-relatedDEERGs, fourmachine learning algorithmswere used

to screen for genes that were important to UCEC. Least absolute

shrinkage and selection operator (LASSO) regression analysis

employed the “glmnet” package (19), while support vector machine

recursive feature elimination (SVM-RFE) analysis utilized the “e1071,”

“kernlab,” and “caret” packages (20). Random Forest (21) and eXtreme

Gradient Boosting (XGBoost) (22) algorithms were executed via the

“randomForest” and “xgboost” packages, respectively. The results of the

four algorithms were intersected, and common genes were identified as

hubDEERGs. Prognostic impact was analyzed using K-Mplotter curves,

and hub gene expression was validated using the external validation

set GSE106191.
2.5 Construction and validation of the risk
score model

Utilizing the “caret” package, the TCGA-UCEC dataset was

randomly partitioned into a training set and a test set at a 7:3 ratio.

Subsequently, a prognostic model was constructed in the TCGA-

train set based on the expression of hub DEERGs using LASSO Cox

regression, and the risk score was calculated as follows: risk score =

∑ (Xi * Yi) (X: coefficient, Y: gene expression level). TCGA-train

patients were stratified into low- and high-risk groups according to

the median risk score, and Kaplan-Meier analysis was used to

compare overall survival (OS) between the two groups.

To further validate the performance of the model, receiver

operating characteristic (ROC) curve analyses were performed at

1, 3, and 5 years using the “survival,” “survminer,” and “timeROC”
Frontiers in Oncology 04
R packages (23). The TCGA test and data were used for model

validation. In this validation process, gene expression normalization

was achieved through the “scale” function, and risk scores were

computed using the same formula as that in the TCGA-train

cohort. The patients in the validation set were similarly

categorized into low- or high-risk groups to confirm the accuracy

of the model.
2.6 Independent prognostic analysis

We acquired the clinical information (age, tumor stage, grade,

and BMI) of patients in the TCGA-UCEC cohort, which was

considered potentially relevant to patient survival status.

Subsequently, this information was integrated with the risk score

in our regression model for a comprehensive analysis. Using the

Kaplan-Meier “survival” package, a univariate Cox regression

model analysis was initially performed. The association of each

clinical variable with OS was individually assessed to evaluate their

independent roles in survival prognosis. Next, a multivariate Cox

regression model analysis that considered all relevant clinical

variables was performed. This helped determine the independent

effect of each variable on survival prognosis while considering other

factors. Thus, we gained a more comprehensive understanding of

the importance of each clinical variable, which contributes to more

precise prognostic information.
2.7 Construction of the nomogram and
decision curve analysis

Based on the “rms” package, a nomogram was generated to

visualize the results of the Cox regression model. The nomogram

demonstrated the prognostic value of various clinical features and

risk scores. Additionally, utilizing the “ggDCA” package (24), a

decision curve analysis (DCA) was constructed to evaluate optimal

decision strategies. As a straightforward method for evaluating the

effectiveness of clinical prediction models, this may help determine

the practical clinical utility of the models across various thresholds

and patient populations.
2.8 Drug sensitivity analyses

The “oncoPredict” package (25) was used to perform drug

sensitivity analysis to identify potential valuable drugs for treating

distinct risk groups of UCEC, thereby advancing the development of

individualized treatment approaches. This analysis was based on the

GDSC database and obtained half-maximal inhibitory concentration

(IC50) values for each drug based on gene expression data from the

UCEC. To improve the accuracy of the analysis, a threshold of 10 was

set for the minimum number of samples, and genes with small

fluctuations in gene expression were excluded.
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2.9 Reverse transcription-quantitative
polymerase chain reaction

Total RNA was extracted from the tissues using TRIzol reagent

(Takara, Japan). The RNA was reverse-transcribed into cDNA. PCR

was performed using the SYBR Green Master Mix kit (Qiagen,

Germany) with cDNA as the template and glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) as the internal reference.

Primers were designed and synthesized by Sangon Biotech Co.,

Ltd. (China), and the primer sequences are listed in Table 3. The

relative expression of hub gene mRNA was calculated by the

2-DDCT method, and during reverse transcription-quantitative

polymerase chain reaction (RT-qPCR), primer specificity was

ensured by observing the melting curves of the reactions. The

experiment was conducted with at least three technical replicates.

In each replicate well of the sample, a difference in computed

tomography (CT) values of <0.5 was considered eligible for analysis.

Finally, an unpaired t-test was used to assess the differences in the

relative mRNA expression levels between the two groups.
2.10 Immunofluorescence assay

First, the samples were prepared into 3-mm slides and

deparaffinized three times in xylene for 10 min each time. They

were then rehydrated three times in 100% ethanol for 10 min and 5

min each time. Subsequent dehydration was sequentially performed

in 95%, 85%, and 75% ethanol for 5 min each. Antigen retrieval

sodium citrate (pH 6.0) was then added to the microwaveable

vessel. The contents were boiled for 15 min in a microwave oven

(1200 W) at moderate heat. Next, 3% hydrogen peroxide (H2O2)

was added, and the cells were incubated for 15 min in the dark at

room temperature to block endogenous peroxidases. For blocking, a

3% Bovine Serum Albumin (BSA) solution (Solarbio, China) was

added to cover the tissues, which were then incubated for 30 min at

room temperature. Tissues with the primary antibody (MYBL2,

Abcam, UK; RADX, abmart, China; CYP46A1, Abcam, UK;
Frontiers in Oncology 05
RUSC2, Thermo Fisher, USA) were incubated in a humidified

chamber overnight at 4 °C. The tissues were then incubated with

a secondary antibody (labeled with fluorochrome) for 1 h at room

temperature in the dark. DAPI (4’,6-diamidino-2-phenylindole)

solution (Solarbio) was added to the samples, which were

incubated in the dark at room temperature for 10 min. Finally,

the slides were washed three times with phosphate-buffered saline

(PBS) for 5 min each.
2.11 Statistical analysis

Statistical analysis was performed using R software (version

4.3.0). The “ggplot2” and “ggpubr” packages were utilized for data

visualization. For normally distributed continuous variables, analysis

was performed using Student’s t-test, while the Wilcoxon test was

employed to compare the mRNA expression levels (non-normally

distributed variables) of individual genes between the UCEC and

control groups. Unless otherwise stated, a p-value of <0.05 was

considered indicative of statistical significance in all analyses.
3 Results

3.1 Differential expression of ERGs
between tumor and normal tissues

Differential expression analysis was conducted on themerged Gene

Expression Omnibus (GEO) dataset to identify 830 differentially

expressed genes (DEGs) (Figure 2A). Subsequently, WGCNA was

conducted on the dataset, with b=5 (R2 = 0.85) selected as the soft

threshold to construct a scale-free network (Figures 2B, C), and 12

modules were successfully screened (Figure 2D). The intersection of

DEGs with genes in the selected modules resulted in the identification

of 444 hub DEGs (Figure 2I). A similar analysis was carried out on

TCGA-UCEC dataset, revealing 2892 DEGs, compared with normal

tissues (Figure 2E). In WGCNA, b=7 (R2 = 0.78) was selected to

construct a scale-free network (Figures 2F, G), and 19 modules were

identified (Figure 2H). Finally, 1442 hub DEGs were identified

(Figure 2J). By overlapping the hub DEGs from both TCGA and

GEO analyses, along with the ER stress-related genes (ERGs), 94

DEERGs were obtained (Figure 2K).
3.2 Identification of ERG-related subtypes
in UCEC

Based on the expression of DEERGs, consensus clustering of

544 patients with UCEC in the TCGA cohort was performed. By

gradually increasing the clustering variable (k) from 2 to 10, we

observed the highest intragroup correlation at k=2, and relatively

low intergroup correlations (Figures 3A, B). As k increased from 2

to 9, a significant change in the relative area under the cumulative

distribution function (CDF) curve was observed (Figure 3C). This

finding suggests that 544 patients with UCEC were effectively

categorized into two clusters: C1 (n=252) and C2 (n=292). The
TABLE 3 The primers of hub DEERGs and GAPDH.

Gene
name

Primer
orientation

Sequences

MYBL2
Forward CTTGAGCGAGTCCAAAGACTG

Reverse AGTTGGTCAGAAGACTTCCCT

CYP46A1
Forward GCCGTGTGCTCCAAGATGTG

Reverse GAACTTCTTAACCGACTCAGGACTC

RADX
Forward TTCAGGCACAGTGTCAGTGATTATG

Reverse GAAGAACTAAACCAACCCGCAAAC

RUSC2
Forward GAGTGTGGTTGAGGCTTCC

Reverse GGGTCTGGATGATGTCTTCG

GAPDH
Forward CAGGAGGCATTGCTGATGAT

Reverse GAAGGCTGGGGCTCATTT
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PCA results revealed a pronounced separation of samples from

these two clusters (Figure 3D), signifying substantial transcriptomic

differences between them. The results of the survival analysis

suggested that clusters C1 and C2 had significantly different

prognostic outcomes, in which cluster C2 had a poorer prognosis

and shorter OS and progression-free survival (Figures 3E, F).

Using the “estimate” algorithm, a tumor microenvironment

(TME) score was obtained for each UCEC sample to understand the

compositions of the TMEs in different clusters. In conclusion, the

immunity score gradually decreased from C1 to C2 (Figure 3G),

whereas tumor purity gradually increased (Figure 3H). Differential

expression analysis revealed that 85 DEERGs were differentially

expressed in different clusters, most of which were upregulated in

cluster C2 (Figure 3I).

Further analysis of immune cell infiltration in the two clusters

using CIBERSORT revealed noteworthy increases in the infiltration

levels of CD4 memory activated T cells, follicular helper T cells, M1

macrophages, M2 macrophages, and activated dendritic cells in

cluster C2, compared with those in cluster C1. In contrast, the levels
Frontiers in Oncology 06
of CD4 memory resting T cells and regulatory T cells (Tregs) were

decreased in cluster C2 (Figure 4A).

A high expression of most immune checkpoint genes (CD274,

CTLA4, HAVCR2, TIGIT, LAG3, PDCD1, and PDCD1LG2) was

observed in cluster C2, whereas SIGLEC15 expression was not

significantly different between the two risk groups (Figure 4B).

Meanwhile, the expression levels of HLA-B, HLA-C, HLA-DMB,

HLA-DOA, HLA-B, HLA-DPB2, HLA-DQA1, HLA-E, HLA-F,

and HLA-H significantly increased in cluster C2, whereas that of

HLA-L decreased (Figure 4C).
3.3 Identification of hub DEERGs

By combining the UCEC expression profiling data and clinical

information, a group of 521 cancer patients was obtained from the

TCGA-UCEC cohort of 579 patients with a survival time of >30

days. Using univariate Cox regression analysis, 54 DEERGs that

were significantly associated with prognosis were identified in the
B

C

D

E F

G

H

I J K

A

FIGURE 2

The results of differential expression analysis and WGCNA. (A, E) The volcano plots of DEGs in GEO and TCGA datasets, respectively. The red dots represent
the up-regulated genes and the green dots represent the down-regulated genes, while gray dots represent nonsignificant genes. (B, F) The histograms of
connectivity distribution and the scale-free topology in GEO and TCGA datasets, respectively. (C, G) The dendrograms of genes clustered via the dissimilarity
measure in GEO and TCGA datasets, respectively. (D, H) The heatmaps of the correlation between genes and clinical traits in GEO and TCGA datasets,
respectively. (I, J) The Venn diagrams of overlapping genes between DEGs and the genes of the hub module in GEO and TCGA datasets, respectively.
(K) Venn diagram showed the overlapping genes between hub DEGs in the GEO dataset, ERGs, and hub DEGs in the TCGA dataset.
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TCGA-UCEC cohort (Figure 5A). Additionally, using machine

learning algorithms, the key genes from the 54 DEERGs were

identified. The XGBoost algorithm further identified 14 hub genes

(Figure 5B). In the LASSO regression analysis, an optimal lambda

value of 0.0005 was determined after ten cross-validations, and nine

key genes were identified (Figures 5C, D). During the SVM-RFE,

the classifier error was minimized when the number of features was

16. These 16 genes were identified as hub genes (Figures 5E, F). The

random forest algorithm identified 21 DEERGs with importance

scores of >1.0 as hub features (Figures 5G, H). Overall, CYP46A1,

RADX, MYBL2, and RUSC2 overlapped among the four machine

learning algorithms and were recognized as hub DEERGs. Details of

the results from these machine learning algorithms are provided in

Supplementary Table 2. In the external validation set GSE106191,

the expression levels of CYP46A1 and RADX were downregulated,

while that of MYBL2 was upregulated. No significant difference in

the expression level of RUSC2 was identified (Figures 5I–L).
3.4 Establishment and verification of the
risk score model

After random partitioning, TCGA-train and TCGA-test cohorts

comprised 355 and 156 patients, respectively. A prognostic model

was constructed for the TCGA-train cohort based on the four hub
Frontiers in Oncology 07
DEERGs (Figures 6A, B). The risk score was calculated as follows:

riskscore = (0.113 × MYBL2 expression) + (0.070 × RADX

expression) + (0.030 × RUSC2 expression) + (0.173 × CYP46A1

expression). Patients in the TCGA-train, TCGA-test, and all-TCGA

cohorts were stratified into high- and low-risk groups according to

the median risk score. Risk scores in different clusters constructed

based on 94 DEERGs were analyzed, suggesting that cluster C2

exhibited a significantly higher risk score than cluster C1 (Figure 6C).

The relationship between risk score and survival status was also

explored. Scatter plots showed that patient mortality increased with

increasing risk score (Figure 6D). Kaplan-Meier analyses were used to

determine the prognostic value of the risk model. Overall, high-risk

scores were associated with unfavorable OS in the TCGA-train cohort

(Figure 6E). To further underscore the prognostic accuracy of the

model, a time-dependent ROC analysis was conducted. The area

under the ROC curve (AUC) values for the TCGA-train cohorts at 1,

3, and 5 years were 0.562, 0.657, and 0.688, respectively (Figure 6F).

To validate the accuracy and stability of the model, the same

analysis was conducted for both the TCGA-test and all-TCGA

cohorts. The results indicated a worse prognosis in the high-risk

group than that in the low-risk group (Figures 6G, H, J, K). In the

TCGA-test cohort, the AUC values at 1, 3, and 5 years were 0.636,

0.764, and 0.734, respectively (Figure 6I). In the all-TCGA cohort,

the corresponding AUC values were 0.583, 0.685, and 0.700 at 1, 3,

and 5 years, respectively (Figure 6L).
B C D
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I

A

FIGURE 3

Unveiling ER stress-related subtypes through consensus clustering and subsequent analyses. (A) Consensus clustering matrix when k=2. (B) Relative
alterations in CDF delta area curves. (C) Consensus CDF curves when k=2 to 9. (D) Three-dimensional Principal Component Analysis (3D PCA)
delineating the segregation between Cluster C1 and Cluster C2. (E, F) The difference in overall survival and progress-free survival between the two
clusters. (G, H) Correlations between the two clusters and immune scores, as well as tumor purity scores. (I) Histogram revealing the contrasting
expression patterns of the 85 ERGs between the two clusters. *: p<0.05; **: p<0.01; ***: p<0.001.
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3.5 Construction and validation of a
predictive nomogram

Univariate and multivariate Cox regression analyses indicated that

age, grade, tumor stage, and risk score were independent risk factors of

UCEC. An elevated risk score was independently associated with poor

OS, suggesting that it was an independent prognostic factor in patients

with UCEC (Figures 7A, B). The clinical features and risk scores were

integrated to construct a nomogram (Figure 7C) for individualized
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prediction of the 1-, 3-, and 5-year survival probabilities of patients

with UCEC. The calibration plot demonstrated high consistency

between the observed and predicted values (Figure 7D). Analysis of

the calibration curves provided a more comprehensive understanding

of the model’s performance and ensured its validity in clinical practice.

Based on the nomogram, the AUC values of the 1-, 3-, and 5-year ROC

curves for OS prediction were 0.796, 0.804, and 0.844, respectively

(Figure 7E). The DCA results indicated that the nomogram offered

optimal clinical net benefit for 3- and 5-year OS, although it did not
B

C

A

FIGURE 4

(A) The diagram of the difference in immune cell infiltration levels between the two clusters. (B, C) The expression level of immunosuppressive
checkpoint genes and HLA-related genes, respectively (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
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provide the optimum clinical net benefit for 1-year OS (Figures 7F–H).

These findings suggest that a nomogram based on risk score can serve

as an effective prognostic prediction tool in clinical practice.
3.6 Verification of the expression of
hub DEERGs

Clinical tissues were collected from 20 control patients and 20

patients with UCEC to verify the mRNA and protein expression of the

hub genes. The RT-qPCR results showed that the relative expressions

of RADX, RUSC2, and CYP46A1 in the UCEC group were lower than

those in the control group, whereas the relative expression of MYBL2

mRNA was upregulated (Figures 8A–D). Immunofluorescence

analysis revealed that the protein expression levels of the four hub

genes were consistent with the RT-qPCR results (Figures 9A–D).
3.7 Potential drugs related to UCEC

Differences in the IC50 levels of chemotherapeutic agents

between the high- and low-risk groups were further investigated.

The results indicated significantly lower IC50 values for ibrutinib,

cediranib, fulvestrant, and teniposide in the high-risk group than
Frontiers in Oncology 09
those in the low-risk group. This suggests that patients with high-

risk scores could potentially benefit more from the use of these

drugs (Figures 10A–D). Conversely, in the low-risk group,

dactinomycin, docetaxel, selumetinib, and trametinib may offer

greater clinical benefits (Figures 10E–H).
4 Discussion

UCEC is the most prevalent gynecological disease in developed

countries. Disease-free survival (DFS) in patients with UCEC is

influenced by factors such as age, menopausal status, tumor stage,

grade, and lymphovascular gap invasion. Despite advancements in

our understanding and management of endometrial cancer,

variability in patient outcomes, especially among patients with

advanced-stage disease or recurrence, remains a significant

challenge. This variability stems in part from the limitations of

traditional prognostic markers and the one-size-fits-all approach to

treatment, which fail to account for the molecular complexity and

diversity of endometrial cancer. Standard treatment modalities,

while effective for a subset of patients, fall short of providing

targeted therapeutic options for patients with high-risk disease

features or those who develop resistance to conventional

treatments. Therefore, refined prognostic tools and tailored
B C D
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A

FIGURE 5

(A) Top 20 genes associated with overall survival via univariate COX analysis. (B) Screening diagnostic biomarkers based on the XGBoost algorithm
(n=14). (C, D) The variables selection in the LASSO model(n=9). (E, F) Optimal biomarkers screening by SVF-RFE algorithm(n=16). (G, H) Significant
feature selected via the random forest algorithm(n=21). (I–L) The expression validation between control and UCEC based on GSE106191.
(I) CYP46A1; (J) RADX; (K) MYBL2; (L) RUSC2. ns: p>0.05; *: p<0.05; **: p<0.01.
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therapeutic strategies are urgently required. Recent studies based on

public databases, such as TCGA and GEO, have identified specific

genes associated with UCEC tumor prognosis and treatment

response. For instance, polymerase-epsilon (POLE)-mutant

tumors demonstrate significantly improved progression-free

survival, whereas tumors with high copy numbers exhibit worse

prognoses (26). The emergence of molecular subtyping-based

immunotherapy has presented a promising therapeutic avenue for

advanced and recurrent UCEC and has demonstrated notable
Frontiers in Oncology 10
efficacy (27). The management of metastatic UCEC poses a

significant challenge, particularly following failure of first-line

chemotherapy. Therefore, exploration of new prognostic

biomarkers and development of more precise prognostic models

to guide treatment strategies for UCEC are crucial.

The role of ER stress in cancer has garnered substantial interest

because of its pivotal role in promoting tumor growth, proliferation,

metastasis, invasion, angiogenesis, and chemotherapy resistance

(28). Uncontrolled tumor cell growth, hypoxia, nutrient
B C

D E F

G H I

J K L

A

FIGURE 6

Construction and validation of the risk score model. (A, B) Constructed a prognostic model in the TCGA-train cohort through LASSO COX
regression analysis. (C) The difference in risk scores between the two ERGs subtypes. (D, G, J) Risk scores distribution and survival status of each
patient in the TCGA-train cohort, TCGA-train cohort, and all-TCGA cohort, respectively. (E, H, K) Kaplan–Meier curves for the OS of the two
subtypes in the TCGA-train cohort, TCGA-train cohort, and all-TCGA cohort, respectively. (F, I, L) ROC curves illustrated the predictive efficacy of
the risk score for 1-, 3-, and 5-year survival in the TCGA-train cohort, TCGA-train cohort, and all-TCGA cohort, respectively.
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deprivation, oxidative stress, and DNA damage in tumors can result

in ER stress. ER stress induces an unfolded protein response,

enabling tumor cell adaptation for survival. It also leads to the

release of proinflammatory factors and the reprogramming of

immune cell function, thereby promoting tumor progression and

immune escape (29, 30). Numerous studies have identified ERGs as

valuable predictors of cancer prognosis. For instance, Zhang Q

identified 16 ERGs that offer insights into the immune profile of

gliomas and provide a basis for prognostic assessments (31).
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In hepatocellular carcinoma, Song D verified the differential

expression of 6 ERGs through in vitro experiments, shedding light

on their potential roles in tumor dynamics (32). Furthermore, ERGs

have been reported in clear cell renal cell carcinoma and pancreatic

ductal adenocarcinoma, demonstrating their broad relevance to

different cancer types (33, 34). Given these insights, targeting ER

stress and its signaling pathways is a promising strategy for cancer

therapy. Inhibitors of unfolded protein response components, such

as PERK and IRE1a, are being explored for their potential to
B

C D E

F G H

A

FIGURE 7

(A, B) Univariate and multivariate analyses showed the prognostic value of the clinical features and risk scores. (C) The construction of the
nomogram. (D) Calibration curves to evaluate the performance of the nomogram for 1-, 3-, and 5-year OS, respectively. (E) The AUC of the
nomograms compared for 1-, 3-, and 5-year OS, respectively. (F–H) The DCA curves of the nomogram for 1-, 3-, and 5-year OS in TCGA-
UCEC, respectively.
B C DA

FIGURE 8

The mRNA expression validation between control and UCEC tissues by RT-qPCR. (A) RADX; (B) RUSC2; (C) CYP46A1; (D) MYBL2.
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sensitize cancer cells to chemotherapy and radiotherapy by

exacerbating ER stress, leading to cell death (35, 36). Additionally,

the modulation of ER stress responses to enhance antitumor

immunity is an emerging area of research that offers new avenues

for combination therapies to improve clinical outcomes (37).

Several studies have investigated the association between ER

stress and UCEC. The activation of the unfolded protein response

and increased expression of GRP78 following ER stress may

promote UCEC growth and invasion (11). Furthermore, GRP78

knockdown significantly decreases Ishikawa cell growth, suggesting

a direct association between ER stress and UCEC progression (38).
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Zhou and Zhang (39, 40) also analyzed TCGA-UCEC data and

created a prognostic model. While both our study and theirs rely on

bioinformatic data analysis, our research appears to be more

comprehensive and in-depth. First, we analyzed multiple UCEC

datasets from different databases to enhance the generalizability of

our results. Furthermore, the adoption of advanced algorithms,

including WGCNA and machine learning techniques, facilitated

the targeted identification of crucial hub genes. The incorporation

of in vitro validation techniques such as RT-PCR and

immunofluorescence in clinical UCEC specimens reinforced the

results of our study.
B

C

D

A

FIGURE 9

The protein expression level of RADX, RUSC2, CYP46A1, and MYBL2 between UCEC and control tissues by immunofluorescence. (A) RADX; (B) RUSC2;
(C) CYP46A1; (D) MYBL2.
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In the present study, a prognostic model based on the

investigation of ER stress-related genes was constructed using

sophisticated bioinformatics analyses. This approach represents a

significant step forward in addressing the challenges posed by

endometrial cancer. By investigating the molecular intricacies of

endometrial cancer, particularly the role of ER stress in

tumorigenesis and disease progression, our model offers a more

nuanced understanding of the biological underpinnings of

endometrial cancer.

Building on our initial findings, this comprehensive analysis of

multiple endometrial cancer datasets from TCGA and GEO

databases identified 94 significant DEERGs. By leveraging these

genes, we stratified the TCGA-UCEC dataset into two distinct

clusters, revealing that patients in cluster C2 exhibited significantly

worse OS and progression-free survival than those in cluster C1. This

discovery not only demonstrates the feasibility of stratifying patients

with UCEC based on DEERGs but also highlights the increased risk

associated with cluster C2.

Further in-depth analysis suggested that the observed

survival disparity between clusters may be linked to the unique

immunoenvironmental characteristics of cluster C2. Specifically,

increased immune cell infiltration, activation of immunosuppressive

signaling pathways, and aberrant HLA gene expression in cluster C2

collectively contributed to the observed adverse prognosis. The

simultaneous overactivation and immunosuppression within cluster

C2 suggests a complex mechanism that allows cancer cells to evade

immune surveillance. These insights emphasize the importance of

considering the unique immunogenetic landscape of patients with

endometrial cancer in the development of personalized treatment

strategies. However, the findings presented herein require further

validation through laboratory studies and clinical trials. Future
Frontiers in Oncology 13
research should focus on elucidating the specific roles of these

DEERGs in the development of endometrial cancer and how they

modulate immune responses and promote immune escape.

Using Cox regression analysis, we successfully identified 54

DEERGs. To identify critical genes within this extensive list, we

utilized a sophisticated array of machine learning algorithms:

LASSO, XGBoost, SVM-RFE, and Random Forest. LASSO

introduced an L1 regularization term that facilitated automatic

feature selection by narrowing certain model coefficients to zero.

XGBoost, a gradient-boosting framework, synergized the

strengths of decision trees and gradient boosting, iteratively

enhancing model performance. SVM-RFE progressively

trimmed the feature set by iteratively training the support vector

machine, eliminating features with minimal contributions to

classification to reveal key features. Random Forest, which

utilizes multiple decision trees, performed classification or

regression and enhanced model stability and accuracy through

voting or averaging. Employing these algorithms allowed us to

distill the 54 DEERGs into four key hub genes: MYBL2, RADX,

RUSC2, and CYP46A1.

MYBL2 belongs to the MYB family of transcription factors,

which perform crucial physiological regulatory functions in cell

cycle progression, survival, and differentiation. Research has

indicated that elevated MYBL2 expression in various tumors is

linked to unfavorable prognoses, as observed in bladder cancer and

hepatocellular carcinoma. Specifically, MYBL2 contributes to the

proliferation and metastasis of bladder cancer by upregulating the

expression of cell division cycle-associated protein 3 (CDCA3) (41).

Additionally, a study by Frau showed that increased expression of

MYBL2 in hepatocellular carcinoma actively contributed to the

biological progression of tumors by influencing the cell cycle (42).
B C D

E F G H

A

FIGURE 10

Differential analyses of IC50 values of common drugs between the high- and low-risk groups. (A) ibrutinib; (B) cediranib; (C) fulvestrant;
(D) teniposide; (E) dactinomycin; (F) docetaxel; (G) selumetinib; (H) trametinib.
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RADX is an X-linked single-stranded DNA-binding protein

related to RPA1 and is essential for maintaining genome stability.

Although little research has been conducted on RADX in cancer,

evidence suggests that inactivation of RADX may confer resistance

to chemotherapy and PARP inhibitors in cancer cells (43).

CYP46A1 (cytochrome P450 family 46 subfamily A member

1) plays a crucial role in drug metabolism and lipid synthesis. In

glioblastoma, the expression of CYP46A1 is significantly reduced

and correlates with tumor grade and prognosis. Its ectopic

expression reduces the proliferation and invasive capacity of

glioblastoma multiforme cells (44). Moreover, CYP46A1

transcripts are overexpressed in certain human pancreatic

neuroendocrine tumor samples, correlating with tumor diameter

(45). CYP46A1 has been identified as a promoter of colorectal

cancer progression by inducing tumor cell proliferation and

angiogenesis (46).

RUSC2 is a less investigated multi-structural domain protein

that is functionally associated with the Rap and Rab GTPase

families. Mutations in RUSC2 in neuroblastoma have been

identified as potential drivers (47). Duan has demonstrated

that RUSC2 is commonly expressed in diverse lung cancer

cells, knockdown of RUSC2 effectively inhibits the migration

of lung cancer cells, and RUSC2 regulates the progression of lung

cancer through epidermal growth factor receptor (EGFR)

signaling (48).

By constructing a prognostic model based on the four hub

DEERGs and categorizing patients into distinct risk groups within

the TCGA-train cohort, we unveiled a stark contrast in mortality

rates, with the high-risk group exhibiting significantly elevated

mortality. The prognostic model’s validity, confirmed across the

UCEC-test and all-TCGA cohorts, underscores the robustness and

universal applicability of our findings. The stratification of

patients based on risk scores, particularly the pronounced

disparity between clusters C1 and C2, emphasizes the critical

role of MYBL2, RADX, RUSC2, and CYP46A1 in molecular

stratification and prognostic forecasting in UCEC. This

stratification not only provides a deeper understanding of

UCEC molecular diversity but also has substantial implications

for personalized treatment approaches.

The development of a robust prognostic model rooted in ER

stress-related genes through exhaustive bioinformatic analysis is a

promising advancement. However, the retrospective nature of our

study, which relied heavily on existing TCGA and GEO database

information, introduces inherent limitations to our conclusions.

Although our initial experimental validations confirmed the

differential expression of the key hub genes, future research

must expand into more comprehensive cellular and animal

studies. Such endeavors are vital to elucidate the precise

biological functions of these ERGs and to decode the complex

mechanisms by which they influence the pathogenesis and

progression of UCEC.

In this study, WGCNA was used to screen 94 DEERGs, and

patients with UCEC were categorized into two subtypes based on these

genes, with cluster C2 patients having a poorer prognosis. Using Cox
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regressionmodeling andmachine learning algorithms, RADX, RUSC2,

CYP46A1, and MYBL2 were identified as diagnostic and prognostic

markers for UCEC. A prognostic model established using these four

genes could effectively evaluate patient prognosis and guide clinical

decisions. In summary, this study contributes significantly to the field

by enhancing the molecular understanding of endometrial cancer,

introducing methodological innovations, advancing personalized

medicine through prognostic modeling, and highlighting new

therapeutic targets.
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