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Introduction: Early detection of pancreatic cancer continues to be a challenge due

to the difficulty in accurately identifying specific signs or symptoms that might

correlate with the onset of pancreatic cancer. Unlike breast or colon or prostate

cancer where screening tests are often useful in identifying cancerous development,

there are no tests to diagnose pancreatic cancers. As a result, most pancreatic

cancers are diagnosed at an advanced stage, where treatment options, whether

systemic therapy, radiation, or surgical interventions, offer limited efficacy.

Methods: A two-stage weakly supervised deep learning-based model has been

proposed to identify pancreatic tumors using computed tomography (CT)

images from Henry Ford Health (HFH) and publicly available Memorial Sloan

Kettering Cancer Center (MSKCC) data sets. In the first stage, the nnU-Net

supervised segmentation model was used to crop an area in the location of

the pancreas, which was trained on the MSKCC repository of 281 patient image

sets with established pancreatic tumors. In the second stage, a multi-instance

learning-based weakly supervised classification model was applied on the

cropped pancreas region to segregate pancreatic tumors from normal

appearing pancreas. The model was trained, tested, and validated on images

obtained from an HFH repository with 463 cases and 2,882 controls.

Results: Theproposeddeep learningmodel, the two-stagearchitecture, offers anaccuracy

of 0.907  ±   0.01, sensitivity of 0.905  ±   0.01, specificity of 0.908  ±   0.02, and AUC

(ROC) 0.903  ±   0.01. The two-stage framework can automatically differentiate pancreatic

tumor from non-tumor pancreas with improved accuracy on the HFH dataset.

Discussion: The proposed two-stage deep learning architecture shows

significantly enhanced performance for predicting the presence of a tumor in

the pancreas using CT images compared with other reported studies in

the literature.
KEYWORDS

pancreatic cancer, multi-instance learning, image segmentation, feature extraction,
medical image analysis
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1 Introduction

Pancreatic adenocarcinoma is currently one of the deadliest

cancers, with an overall 5-year survival rate of approximately 11%

(1). Signs and symptoms of pancreatic cancer are non-specific and

thus have limited utility in early detection. Moreover, efficient

screening tests for the early detection of pancreatic tumors do not

currently exist. It is clear that the pancreatic cancer survival rate is

likely to significantly improve if the cancer can be detected at an

early stage where definitive treatment with surgery and systemic

therapy can be offered (2). Computed tomography (CT) and

magnetic resonance imaging (MRI) are two common screening

modalities that can be better utilized for diagnosing pancreatic

cancer. Recent advancements in artificial intelligence and

radiographic imaging provide hope that there may be the

opportunity to use the aforementioned modalities as early

screening detection tests, especially for early pancreatic cancer

detection (3–5). Automated medical image segmentation and

classification have been extensively investigated in the image

analysis community due to the fact that manual, dense labeling of

large amounts of medical images is tedious and error-prone.

Accurate and reliable solutions are desired to increase clinical

workflow efficiency and support decision-making through fast

and automatic extraction of quantitative measurements (6, 7).

In the field of biomedical image analysis, the analysis of

pancreatic images has significant importance in clinical diagnosis

and research, including a range of tasks: (1) segmentation of tumor

region, (2) diagnosing the presence of cancer, and (3) clustering the

region. This research primarily focuses on an integrated framework

that has the potential to perform classification, segmentation, and

clustering. Traditional fully supervised techniques require

accurately annotated data, which is laborious, uncertain, and

time-consuming. However, unsupervised methods extract features

from unlabeled data and have limited application to high-level tasks

such as image segmentation and classification. In this scenario, the

proposed algorithm strikes a balance by leveraging the benefits of

both supervised and unsupervised approaches. This paper addresses

the effectiveness and efficiency of accomplishing high-level tasks

with a minimum of manual annotation and to automatically extract

fine-grained information from coarse-grained labels.

Convolutional neural networks (CNNs) (8) have made

incredible strides in the medical imaging industry over the past

10 years, particularly in the areas of CT, MRI, and ultrasound image

analysis. Since their advent, near-radiologist level performance has

been achieved in automated medical image analysis tasks, including

detection or prediction of hypertrophic cardiomyopathy (9, 10),

future cardiovascular event (11), cancerous lung nodules (12, 13),

liver tumors (14), and hepatocellular carcinoma (15). Figure 1

demonstrates the difficulty in traditionally segmenting the

pancreas compared with other organs due to various factors such

as relatively small size, complicated anatomical structure due to

adjacent structures, and uncertain boundaries of the organ in the

limited slices in which the pancreas appears on traditional CTs.

High representation power and fast inference properties have

made CNNs the de-facto standard for image segmentation and

classification. Fully convolutional networks (FCNs) (12, 16) in
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general and U-Net (6) in particular are some of the commonly

used architectures for automated medical image segmentation. The

architectures are typically cascaded with multistage CNN models

when the target organs show large inter-patient variation in terms

of shape and size (17). Although deep learning has been studied

for the detection of pancreatic cancer (18–24), pancreatic

neuroendocrine tumors (pNETs) (25), and intraductal papillary

mucinous neoplasms (IPMNs) in pancreas (26), it is yet to be

incorporated as a part of the routine workup for patients diagnosed

with pancreatic cancers. The U-Net model and its extended versions

have been used in the literature for organ segmentation and have

been demonstrated to deliver good accuracy (27–29).

Pancreatic cancer detection from CT images by applying deep

learning is a challenging task because the pancreas is a small organ

and is located in a complicated position in the retroperitoneum

[Nakao et al., (30)]. A typical CT scan of a patient contains 131

slices in the full axial view, with approximately 20 to 60 slices

containing the image of the pancreas. In early stages, the pancreatic

tumors are too small and irregularly shaped for easy identification.

Following that, several researchers proposed cutting-edge CNN

techniques based on segmentation of the pancreas using either

cascaded or coarse-to-fine segmentation networks. However, prior

investigations of pancreatic segmentation were conducted on

extremely limited populations (4, 18, 31, 32) and the results have

been unsatisfactory (maximum dice coefficient 0.58) (33). This is

primarily due to the minor differences between a singular image

that contains the tumor vs. an image that does not. To the best of

our knowledge, there are very few DL studies that have been

conducted on big CT datasets that encompass a variety of

pancreatic volumes. Figure 2 illustrates the private and publicly

available pancreatic dataset with normal and abnormal patients

used for training the proposed framework. Therefore, the objective

of this investigation is to carry out an effectiveness study using a

weakly supervised algorithm with a total of 463 patients suffering

from pancreatic tumors and a total of 2,882 controls.

Furthermore, as the tumor size is significantly small compared

with the overall size of the CT image, the task of identification is

further complicated when all slices are analyzed together. To

circumvent these issues, we propose a weakly supervised two-

stage architecture with a cascade of segmentation and

classification. As we do not have annotated mask of the pancreas

in our local dataset (Henry Ford Health (HFH)), the segmentation

model was trained using MSKCC data to segment the pancreas. It

should be noted that the Memorial Sloan Kettering Cancer Center

(MSKCC) data set is small and does not capture all possible clinical

variations of tumors. On the other hand, HFH is a much larger

dataset but contains only patient-label information (cancer versus

non-cancer). Our proposed approach intelligently combines “the

best of both the worlds” by using a weakly supervised classification

that utilizes patient label information of the HFH data and applies it

to the cropped pancreas images, after initial processing by the

segmentation model trained on the MSKCC data.

The goal of semantic segmentation (34) is to identify common

features in an input image by learning and then to label each pixel in

an image with a class. In this technique, raw image data are

converted to quantitative, spatially structured information and
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can then be used for further processing. The segmentation method

is an essential component in finding features in several clinical

applications, such as applications of artificial intelligence in a

diagnostic support system, tumor growth monitoring, therapy

planning, and intraoperative assistance.
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Based on FCN models, researchers have proposed a variety of

strategies recently, including Hierarchical 3D FCN (35), DeepLab

(36), SegNet (37), PSPNet (38), and RefineNet (39). The majority of

these techniques automatically fit into the category of fully

supervised learning methods, hence requiring a sufficient number
FIGURE 2

Private and external pancreas datasets used for model training.
(a) (b) (c) 

FIGURE 1

Sample CT images. (A) Original image, (B) ground truth, and (C) color-coded depiction of overlay on an axial CT image (pancreas: green,
cancer: blue).
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of annotated data to train. Overall, the existing state-of-the-art

methods for performing segmentation and classification either

involve careful generation of handcrafted features or heavily rely

on the extensive delineation of pancreatic tumor areas to give the

annotation masks, which really place a tremendous load on the

oncologists and researchers, respectively. Fully supervised methods

have achieved remarkable performance in segmentation tasks such

as brain tumor segmentation, lesion segmentation, and multiorgan

segmentation (40). However, when a fully supervised algorithm is

applied to pancreatic cancer detection and segmentation, these

models have not achieved satisfactory results (3).

When employing advanced machine learning to the diagnosis

of pancreatic tumors, the following major challenges arise: (1) Over

70% of pancreatic tumors have irregular shapes and ambiguous

margins, resulting in imperceptible boundaries with the

surrounding tissues. This characteristic increases the complexity

of the segmentation process and may result in oversights when

segmenting tumors. (2) The pancreas region is surrounded by many

organs and tissues, and cancers affect a small area of the organ. Due

to this, training a CNN architecture becomes difficult and the model

gets distracted by irrelevant regions of the image, potentially leading

to misclassification. (3) Training a deep learning model requires a

substantial quantity of precisely annotated images for training.

However, owing to the anatomical intricacy of the organ and

differences in tumor appearance, physically identifying the

pancreas and tumor locations is a labor-intensive and time-

consuming task.

To overcome these issues, we herein propose a new weakly

supervised algorithm that has a two-stage architecture, namely,
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segmentation and classification. In the first stage, the pancreas is

segmented by the supervised segmentation model, and in the

second stage, the multi-instance learning-based weakly supervised

classification method is applied to the cropped pancreas images,

which were obtained from segmentation, to classify pancreatic

tumor images and normal-appearing pancreas, as schematically

illustrated in Figure 3. There are three major impactful

contributions from this work:
1. An end-to-end model for high-accurate pancreas

segmentation along with classification has been proposed.

The segmentation model is built upon an nn-Unet

architecture, which segregates the pancreas, pancreatic

cancers , and res idua l background organ and

intraperitoneal space.

2. Furthermore, end-to-end multiple instance learning has

been performed by multiple-instance neural networks,

which accept a bag containing different numbers of

instances as input and output the bag label right away.

3. Finally, comprehensive experiments on the unannotated

HFH dataset have been conducted to demonstrate that the

proposed approach outperforms other state-of-the-art

techniques. To validate the effectiveness of the overall

approach, the proposed architecture has been tested on a

large volume of data obtained from the local data repository

at Henry Ford Health (HFH) in Detroit, Michigan.
In this paper, Section 2 highlights the dataset used, network

architectures, its components, and methodology. Sections 3 and 4
FIGURE 3

Illustration of the proposed two-stage architecture.
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present the results and discussion in terms of ablation and

comparison study. Finally, the conclusions of the study are

presented in Section 5.
2 Materials and methods

CT images from HFH and Memorial Sloan Kettering Cancer

Centre (MSKCC) were used to develop an end-to-end algorithm to

detect the presence of pancreatic tumors in case versus control

images. MSKCC is an open-source dataset that was used to train the

segmentation model. Following this, we focused on the larger HFH

dataset to further fine-tune and validate the model. A method has

been proposed utilizing the axial view CT images and segmentation

and classification techniques.
2.1 Dataset

In the proposed algorithm, the publicly available MSKCC

dataset has been used to develop the segmentation model,

followed by a separate and more robust HFH dataset used to

train, test, and validate the MIL classification model. The MSKCC

dataset comprised patients undergoing resection of pancreatic

masses (31). These data consist of portal venous phase CT scans

of 281 patients. Each patient has a single nifty (.nii) file that contains

a full series of axial view images at the volumetric level. The

classification model train, test, and validation data included CT

images of 3,453 adult patients from HFH. Cases were images from

patients diagnosed with pancreatic ductal adenocarcinoma, and

controls were those where there was no suspicion of pancreas

disease. Patients who had pancreatitis and women who were

pregnant were excluded from the dataset.
2.2 Data preprocessing

In this study, retrospective imaging data were collected at Henry

Ford Health (HFH), Detroit, Michigan, United States, from 2013 to

2020. Each patient on the HFH dataset had axial, sagittal, and

coronal view images. In this investigation, the axial view is preferred

because it provides a higher resolution and more detailed cross-

sectional images of the pancreas. In addition, the axial perspective is

consistent with the conventional clinical methods, which guarantees

that our analysis and findings are reliable and consistent every time.

For patients with known pancreatic tumors, image acquisition was

performed with a pancreas protocol, high-resolution imaging cut at

2.5 mm with dedicated arterial and portal venous phases to identify

vascular abnormalities, characteristics of hypoattenuating tumors,

and to recognize hepatic metastases. The axial raw images were in

DICOM format with several images (60 to 350) per study.

A Python function was used to convert a 2D slice-level multiple

images to a single 3D volumetric level image in nifty (.nii) format.

To account for scanner and acquisition variability, a third-order

spline interpolation was used for image data and nearest-neighbor
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interpolation for the corresponding segmentation mask to convert

heterogeneous spacing to homogeneous (3, 41). During training

and inference, each image was normalized using a global

normalization scheme. While preprocessing HFH data, a total of

108 patients’ CT images were excluded due to incomplete axial view

series (38), inconsistent pixel spacing (33), inconsistent image

orientation (13), and segmentation error (29) due to poor quality

of the image. This is represented in the flowchart (Figure 4). After

this preprocessing step, the train, test and validation dataset sizes

were 463 patients with pancreatic tumors and 2,882 controls.
2.3 Model architectures and training

In this study, the objectives of the segmentation method were to

identify the slices containing the pancreas from the full-volume

image and thereby identify the location of the pancreas in each slice.

The segmentation method was applied to the volumetric axial view

images, and it produced a segmented portion of the pancreas. In the

first stage, the pancreas was segmented by the nnU-Net model (3).

The segmented pancreas image was then used to find the location of

the pancreas in the input image. The supervised classification model

provides satisfactory results if the training data set captures a wide

variation of the clinical samples. Therefore, we applied a weakly

supervised classification model known as multi-instance learning

(MIL). The MIL-based classification model was applied to

distinguish pancreatic tumor and non-tumor pancreas on the

cropped pancreas images. MIL is a weakly supervised

classification wherein a label is only assigned to a collection of

observations or a bag of instances (42–45).

In this approach, a three-dimensional image is converted into a

bag of two-dimensional slices. Initially, each image is divided into

patches as instance, with bags representing a subset of these patches.

The instances are assigned with a label based on the presence or

absence of the cancer region. If at least one instance within the bag

consists of the tumor region, the bag is labeled as positive and none

of the instances in the negative bag are positive. One of the

challenges in applying MIL is finding the positive instances and

negative instances from the positive bag. If all instances within the

bad are classified as non-tumors, then the bag is labeled as negative.

For the given coarse-grained (bag) label, MIL aims to predict the

fine-grained (instance) labels for each patch within the image.

To guarantee that each positive bag consists of more than one

positive-labeled instance, the K-means clustering algorithm is

employed to partition the data into distinct groups based on the

features extracted from the images. The architecture of the proposed

MIL approach is given in Figure 5. The feature of the instances was

extracted by the average pool layer, where the base network is taken as

ResNet50, a popular CNN framework used for image processing (46–

48). This ensures that each positive bag consists of multiple instances

representing tumors regions within the image. The following are the

steps involved to obtain the predicted instance probability:

Step 1: We label the instances in a positive bag by clustering the

image features into two groups: one is a positive group that contains

all positive instances, and another is a negative group that contains
frontiersin.org
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negative instances. Given a dataset, X(i),Y (i)
� �N

i=1 containing N

volumetric images, X(i) ∈ Rhi�wi�zi , and Y (i) ∈   0, 1f g is the patient
label, where 1 indicates positive patient and 0 indicates a normal

patient. Each volumetric image X(i) is a bag of instances

x(i)1 , x(i)2 ,…, x(i)n
n o

∈  X(i).

Step 2: For the negative bag, all instances are negative. In the

MIL pipeline, the features of the images are captured by ResNet50

and classified by ResNet50 (46).

Step 3: After extracting features of the images in ResNet50, K-

means clustering was employed to get the label of the instance. In the

feature extraction network, instance features are extracted at average

pooling layers and returned as x(i)1 , f (i)1

� �
, x(i)2 , f (i)2

� �
,…, x(i)n , f (i)n

� �n o
,

where f (i)1 is the feature of instance x(i)1 .

Step 4: The instance labels are assigned by clustering method as

x(i)1 , y(i)1
� �

, y(i)2 , f (i)2

� �
,…, x(i)n , y(i)n

� �n o
, where yj ∈ 0, 1f g.

Step 5: The label instances are fed into the classification model

that produces the predicted instance probability.

In this case, the ResNet50 model was used as a classification

model. ResNet50 is a CNN-based classification method available in

the Keras environment with pretrained weights in the TensorFlow

backend. The original model was trained on the ImageNet dataset

and was slightly modified in the proposed method. The fully

connected output layers that were used for the prediction in the

original model were not used. Instead, an average pooling layer with

a pool size of (4 × 4) was added, followed by a dense layer with the

number of neurons as 256. As the problem is that of binary
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classification, the output layer is a dense layer with dimension 2,

and the softmax activation function is used for this layer. A dropout

rate of 0.3 was applied in between the output layer and its previous

layer. The final layer of the network, called the probability layer,

calculates the probability of the input (cropped) image being of that

class. Furthermore, a multilayer perceptron neural network (NN)

was applied to aggregate the instance probability to patient

probability and schematically illustrated in Figure 5. The NN

structure is optimized, and the best-performing network is found

to have one hidden with the number of neurons 18. The MIL and

NN were trained by 173 cases and 543 control patients of the

HFH dataset.
3 Results

To validate the effectiveness of the proposed architecture, a

series of ablation studies with different baseline models were

conducted in this section. The model was trained, tested, and

validated on images obtained from an HFH repository with 463

cases and 2,882 controls.
3.1 Quantitative evaluation

We created a two-stage weakly supervised deep learning-based

model to identify pancreatic tumors using CT images from publicly
FIGURE 4

Patients’ enrollment and exclusion process in the HFH database.
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available Memorial Sloan Kettering Cancer Center (MSKCC) and

Henry Ford Health (HFH) data sets. In the first stage, the nnU-Net

supervised segmentation model was used to crop an area in the

location of the pancreas, which was trained on the MSKCC

repository of 281 patient image sets with established pancreatic

tumors. In the second stage, a multi-instance learning-based weakly

supervised classification model was applied on the cropped

pancreas region to segregate pancreatic tumors from normal-

appearing pancreas. The performance of the proposed two-stage

architecture was then compared with the existing models that have

been recently published.

The performance of the proposed method was tested on the

HFH dataset comprising 179 patients with known pancreatic

tumors (23715 slices) as well as 1,398 patients without pancreatic

cancer (182,757 slices), whereas the model parameters were fixed by

the validation dataset including 111 patients with known pancreatic

tumors (14,612 slices) as well as 941 patients without pancreatic
Frontiers in Oncology 07
cancer (122,214 slices), both selected randomly, yielding an average

number of slices per patient of 131. A training dataset of HFH

patients was created with 173 randomly selected patients with

pancreatic cancer (22,942 slices) and 543 patients without

pancreatic cancer (68,467 slices). The training dataset was used to

train the MIL classification and NN aggregation models. The

segmentation model was fed with the input CT image. The train

and test data of HFH were segmented by the trained nnU-Net

model. The nnU-Net model was trained by 281 patients of MSKCC

dataset. Figure 6 depicts the segmentation results of samples with

both normal and abnormal by using the nnU-Net model applied on

the HFH dataset. The Supplementary Material (Supplementary

Figure S1) contains a box plot of the dice score for pancreas and

pancreatic cancer regions.

The cropped pancreas images from the HFH train dataset were

used to train the MIL classification model. In this case, only the list

of positive patients and negative patients is known. In the MIL
(a)

(b)

FIGURE 5

Architecture of the proposed model: (A) multi-instance learning, and (B) classification model.
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approach, each patient is considered as a bag, a cancerous patient is

called a positive bag, and a control patient is called a negative bag.

All instances in the negative bag are negative, and we directly fed the

instances with label 0 to the classification model without clustering.

In the positive bag, positive and negative instances are mixed. The

instances in the positive bag are fed to the feature extraction model

to extract the feature. The clustering method segregates the positive

and negative instances by utilizing their features. The positive

instances are labelled as 1 and fed to the classification model. The

classification model was trained by the labeled instances from the

training dataset. For test data, instance probability for the risk of

cancer was predicted by the trained classification model. In the

aggregation model, the neural network produces patients’ cancer

probability by combining all instances of the probability of the

patients. The neural network model parameters were fixed by the

validation dataset. The results of validation dataset were as follows:

sensitivity 0.847  ±   0.015, specificity 0.880  ±   0.025, 0.876  ±  

0.021, and AUC 0.863  ±   0.01.
3.2 Ablation study of the proposed model

The proposed pancreatic tumor detection method was then

compared with the existing nnU-Net-based segmentation method

shown in Table 1. As the nnU-Net is a segmentation method for

pancreas and pancreatic tumor segmentation (3), its efficacy toward

identification of pancreatic cancer in the HFH dataset was

characterized by measuring sensitivity, specificity, accuracy, and

area under curve (AUC) based on the tumor segmentation results.

The corresponding 95% confidence intervals (CI) were obtained

using the Delong technique (49). With a 95% CI of (0.88, 0.92), the

sensitivity was 0.905, demonstrating a high level of reliability in

detecting true positives. The proposed framework’s ability to detect
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true negatives is reflected by specificity, which is 0.908 (95% CI:

0.86, 0.94). The model demonstrated outstanding performance

across different assessment measures, with an overall accuracy of

0.907 (95% CI: 0.887, 0.927) and an AUC of 0.903 (95% CI:

0.883, 0.923).

As is evident, nnU-Net + MIL with the NN aggregation model

(the proposed method) yielded the best performance with

sensitivity 0.905  ±   0.01, specificity 0.908  ±   0.02 accuracy

0.907  ±   0.01, and AUC(ROC) 0.903  ±   0.01. In comparison,

the nnU-Net + MIL and nnU-Net alone significantly

underperformed, as shown in Table 1. The AUC(ROC) for the

three methods are illustrated in Figure 7. As the nnU-Net + MIL +

NN method provides each patient label as probability, the ROC is a

smooth curve unlike other two methods which involve detection by

setting threshold yielding binary patient label (0 or 1).

Several classification methods such as ResNet50, Xception,

VGG16, and InceptionV3 were implemented in the second-phase

test dataset on the cropped pancreas image. The pancreatic tumor

detection results of these methods with the proposed architecture

are depicted in Figure 8. It is evident that the proposed algorithm

yields better performance in terms of accuracy and sensitivity. We

have compared the proposed (nnU-Net + MIL with the NN

aggregation model) architecture with various models such as

nnU-Net. As can be deduced from Figure 8, the InceptionV3

classification model yielded the best performance (accuracy 0.83,

sensitivity 0.79, and specificity 0.84) compared with the nnU-Net

(0.79, sensitivity 0.78, specificity 0.8), nnU-Net + ResNet50

(accuracy 0.82, sensitivity 0.78, specificity 0.82), nnU-Net +

Xception (accuracy 0.82, sensitivity 0.78, specificity, 0.81), and

nnU-Net + VGG16 (accuracy 0.82, sensitivity 0.78, specificity,

0.82) models.

P-values are computed for both proposed and state-of-the-art

techniques and are represented in Supplementary Figure S2.
FIGURE 6

Segmentation results on HFH data: the first row represents the raw input image, and the second row represents the results of segmentation
(pancreas: green, cancer: blue).
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4 Discussion

We have developed and validated an image analysis model that

can identify pancreatic tumors on CT images by a combination of

segmentation and classification methods, both based on deep

learning techniques. The two-stage framework was developed

utilizing a previously reported pancreas dataset from MSKCC and

validated on the HFH dataset of control patients and pancreatic

tumor patients. It has been demonstrated that the proposed method

results in satisfactory performance. As is evident from Table 1, the

proposed method yields superior performance when compared with

other existing models and offers an accuracy of 0.907. Equally

importantly, the performance of the proposed two-stage approach

is demonstrated to be stable in a large dataset. The robust

performance of the proposed method is an outcome of the

verification and optimization that are performed at each layer.

The information output from the pancreas is high in the segmented

region. Hence, in the proposed method, the MIL classification

method was applied only on the cropped pancreas image. As a

result, the chances of identifying false positives are minimized.

Overall, our results indicate that two-stage image analysis can

distinguish between presence and absence of pancreatic tumors

on CT images when given blinded images.

The nnU-Net used in this study has been applied toward

medical segmentation decathlon (MSD) competition for multiple-

organ segmentation and tumor detection tasks such as liver, spleen,

kidney, pancreas, gallbladder, colon, and prostate (3). However, the

detection efficacy of the pancreatic tumor by employing nnU-Net is

limited, exemplified by a low dice coefficient of 0.53. In our study,

we identified that a single-stage approach using nnU-Net produces
Frontiers in Oncology 09
more false positives, primarily because the contour of the pancreatic

tumor is irregular and there are ill-defined margins on the CT

image, leading to false detection of the normal pancreas portion as

cancer. The CNN patch-based classification method was also

attempted in literature for pancreatic cancers detection (18) but

suffered from the following lacunae. First, CNN was trained to

classify pancreas patches and pancreatic cancer patches. The

patches were generated by the sliding windows method in a

region of interest determined by the presence of pancreas fed in

as the input. While this may be feasible in training, for a test image,

such masks are unlikely to be available. Secondly, in this patch-

based analysis, a patch is labeled positive, even if only a single pixel

is predicted as cancerous. Apart from the above method, whole slide

image (WSI) classification has been studied for pancreatic cancer

detection (50, 51). Since the pancreas is a small organ, the tumor

size is also very small in the early stages and thus a classification

model alone is unlikely to be sufficient for locating the features of

the small tumor portion with respect to the whole slide. This study

also had limitations. Manual labeling of pancreatic images are

labor-intensive, so we used publicly available datasets and private

datasets for training and validation; the testing dataset included

only American participants from a single institution. In response to

this limitation, we used the MIL technique to balance both

supervised and unsupervised approaches and verified the

generalizability of the model. The findings demonstrate the

effectiveness of a proposed two-stage weakly supervised deep

learning system for detecting pancreatic cancer. By employing the

proposed prediction model to aid in the radiographic diagnosis of

tumors, therapeutic intervention may be accelerated, leading to

better clinical results for the patient.
FIGURE 7

ROC curve on HFH test data: (A) nnU-Net model, (B) nnU-Net with MIL, (C) nnU-Net +MIL+NN.
TABLE 1 Comparison of the proposed model with different classifications on the HFH test dataset.

Model Sensitivity Specificity Accuracy AUC

nnU-Net 0.780 ± 0.03 0.801 ± 0.04 0.790 ± 0.03 0.791 ± 0.02

nnU-Net + MIL 0.831 ± 0.02 0.917 ± 0.01 0.908 ± 0.01 0.874 ± 0.02

nnU-Net + MIL + NN
(Proposed approach)

0.905 ± 0.01 0.908 ± 0.02 0.907 ± 0.01 0.903 ± 0.01
The above mentioned results are tested on the HFH test dataset, which includes 179 cases (23,715 slices) and 1,398 control (182,757 slices). Data are sensitivity (95% CI).
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FIGURE 8

Performance evaluation of the proposed approach with different classification techniques on the HFH test dataset.
TABLE 2 Summarization of the existing techniques for pancreatic cancer detection.

Author Dataset Segmentation Classification Algorithm Performance
measure

Zhang et al., 2021 (52) FLARE 2021 ✓ ✗ Efficient context aware network DSC: 75.3

NSD: 60.5

Wang et al., 2020 (53) FLARE ✓ ✗ Enhancement of pancreatic cancer using local
and global multi-scale feature fusion

DSC: 79.5

Jaccard: 66.6

Zhang et al., 2021 (47) NIH and MSD ✓ ✗ Lightweight deep convolutional neural network Mean DSC: 84.90

Min DSC: 61.82

Max DSC: 91.46

Yu et al., 2018 (8) NIH ✓ ✗ Recurrent saliency transformation network Mean DSC: 84.50

Min DSC: 62.81

Max DSC: 91.02

Oktay et al., 2018 (7) NIH ✓ ✗ Attention u-net DSC: 82.2

Chen et al., 2022 (54) NIH and MSD ✓ ✗ Attention mechanism-based feature propagation
and fusion

Precision: 85.6

Recall: 85.9

IoU: 74.8

Kim et al., (55) MSD ✓ ✗ Scalable gradient-based optimization DSC 1: 80.61

DSC 2: 51. 75

NSD 1: 95.83

NSD 2: 73.09

Liu et al., 2020 (18) Private, MSD
and TCIA

✗ ✓ CNN with modified VGG network Accuracy: 87.4

Specificity: 86.7

Sensitivity: 91.5

(Continued)
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Table 2 summarizes the state-of-the-art techniques validated on

different datasets such as FLARE, NIH, andMSD. As indicated by the

references in the table, the codes for these studies are not available,

making it impossible to reproduce their investigations. Therefore, a

direct comparison of these approaches is not feasible. However, all

these studies used pancreatic images either for classification or

segmentation tasks. A modified CNN model was trained to classify

patches as cancerous or non-cancerous (18). The model was trained

on the local dataset and externally tested on 281 patients with

pancreatic cancer, and 82 individuals with normal pancreas.

Researchers have developed a generalized pancreatic cancer

diagnosis, and the method consists of anatomically guided shape

normalization, instance-level contrastive learning, and a balance-

adjustment strategy (23) on two unseen datasets (a private test set

with 316 and a publicly available test set with 281). The effectiveness

of the adaptive-metric graph neural network and causal contrastive

mechanism has been developed to enhance the discriminability of the

target features and improve early diagnosis stability (24). The training

dataset with cross-validation consists of 953 subjects including 554

pancreatic cancer and 399 non-tumor pancreas. Despite the superior

performance reported in the majority of the studies, a limited dataset

with just a few hundred samples was utilized. We evaluated our

pipeline on a significantly larger dataset with 463 cases and 2,882

controls CT images, whereby > 90% accuracy and sensitivity values

were achieved. The significant diversity in the HFH dataset ensured

strong generalization capabilities, demonstrating its superior

performance. Moreover, our deployment of the segmentation

model enabled both accurate normal pancreas and pancreatic

cancer detection. As a result, our approach may enable an early
Frontiers in Oncology 11
detection modality that affords comprehensive options for clinicians

to assess earlier onset of pancreatic cancers as well as offer curative

intention options for pancreatic cancers that would not otherwise

be feasible.
5 Conclusion

In this paper, we propose an end-to-end model for accurate

pancreatic tumor prediction. The model incorporates segmentation

using the nnU-Net architecture and multi-instance classification

using weakly supervised learning. The pancreatic tumor samples

are processed by localizing the area of interest from the segmented

image. A bag is then formed for each region, which is labeled based

on the grade. Finally, the multi-instance learning model is trained for

classification. The proposed MIL classification technique achieves an

optimal performance by utilizing patient label information on the

cropped image, not on the whole pixel patches. Our experimental

findings demonstrate that the proposed framework outperforms

nnU-Net with Inception V3 by a large margin (7.0%) using the

HFH test dataset. From the results, it is evident that the two-stage

deep learning architecture of patient radiographic imaging has the

potential to be of great assistance in the pursuit of early pancreatic

tumor detection. Furthermore, it has the potential to reduce the

number of incorrect diagnoses of pancreatic cancer, which would

ultimately result in much-required improvements in patient care. We

will investigate the possibility of employing auto-encoding DNN

rather than K-means in the future.
TABLE 2 Continued

Author Dataset Segmentation Classification Algorithm Performance
measure

Li et al., 2023 (24) Private ✓ ✓ Adaptive-metric graph neural network and
causal contrastive mechanism

Accuracy: 88.9

Sensitivity: 88.7

Specificity: 89.1

AUC: 94.9

Qu et al., 2023 (23) Private and MSD ✓ ✓ Multiple instance learning and anatomically
guided shape normalization

Accuracy: 89

Sensitivity: 88

Specificity: 89

AUC: 94

Proposed algorithm MSD and HFH ✓ ✓ nn-Unet and multi-instance learning DSC 1: 81.64

DSC 2: 52.78

Sensitivity: 90.5

Specificity: 90.8

Accuracy: 90.7

AUC: 90.3
MSD, medical segmentation decathlon; NIH, National Institutes of Health; HFH, Henry Ford Health; DSC, dice similarity coefficients; IoU, intersection over union; NSD, normalized surface
distance; AUC, area under the ROC curve.
The symbol ✓ indicates that the reported paper used the method or result, whereas the symbol ✗ signifies that the reported paper does not include method, or result.
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