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Colorectal cancer is the second leading cause of cancer-related deaths. In

2018, there were an estimated 1.8 million cases, and this number is expected to

increase to 2.2 million by 2030. Despite its prevalence, the current therapeutic

option has a lot of side effects and limitations. Therefore, this study was

designed to employ a computational approach for the identification of anti-

cancer inhibitors against colorectal cancer using Resveratrol derivatives.

Initially, the pass prediction spectrum of 50 derivatives was conducted and

selected top seven compounds based on the maximum pass prediction score.

After that, a comprehensive analysis, including Lipinski Rule, pharmacokinetics,

ADMET profile study, molecular orbitals analysis, molecular docking, molecular

dynamic simulations, and MM-PBSA binding free energy calculations. The

reported binding affinity ranges of Resveratrol derivatives from molecular

docking were -6.1 kcal/mol to -7.9 kcal/mol against the targeted receptor of

human armadillo repeats domain of adenomatous polyposis coli (APC) (PDB ID:

3NMW). Specifically, our findings reported that two compounds [(03)

Resveratrol 3-beta-mono-D-glucoside, and (29) Resveratrol 3-Glucoside]

displayed the highest level of effectiveness compared to all other derivatives

(-7.7 kcal/mol and -7.9 kcal/mol), and favorable drug-likeness, and exceptional

safety profiles. Importantly, almost all the molecules were reported as free from

toxic effects. Subsequently, molecular dynamic simulations conducted over
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100ns confirmed the stability of the top two ligand-protein complexes. These

findings suggest that Resveratrol derivatives may be effective drug candidate to

manage the colorectal cancer. However, further experimental research, such

as in vitro/in vivo studies, is essential to validate these computational findings

and confirm their practical value.
KEYWORDS

drug design, resveratrol derivatives, colorectal cancer, molecular docking, molecular
dynamics simulation
1 Introduction

Colorectal cancer (CRC), the third most common cancer

globally, is the second leading cause of cancer-related death, with

an estimated 1.8 million cases in 2018 and a expected increase to 2.2

million by 2030. CRC is currently the second most prevalent cancer

among women (9.2%) and the third among men (10%) (1–3). CRC

incidence is higher in developed countries (737,000 cases per year)

compared to less developed regions (624,000 cases per year). This

cancer originates from the abnormal proliferation of glandular

epithelial cells in the colon, appendix, or rectum (4). CRCs can be

caused by three mechanisms or a combination of them:

microsatellite instability (MSI), chromosomal instability (CIN), or

CpG island methylator phenotype (CIMP). Fearon suggests that the

classical CIN pathway commences with mutations in the

adenomatous polyposis coli (APC) gene. The APC gene functions

as a traditional tumor-suppressive gene in both hereditary and

sporadic colorectal malignancies (5, 6). Chemotherapy is still the

most effective option for cancer treatment, but it’s becoming less

effective as cancer cell lines develop resistance due to the

undesirable side effects between cancerous and normal cells (7).

To overcome this unwanted side effect, an alternative approach and

novel therapeutic development are needed for the management, and

treatment of CRC. However, the process of developing an effective

and novel medication is challenging, lengthy, and costly, as well as

requires substantial research resources. Besides, a large number of

drugs fail during the development phase or pre-clinical or clinical

trials due to undesirable side effects and toxicity, resulting in a huge

amount of costs, and resources being wasted. Computational drug

design approaches can reduce costs and resources in

pharmaceutical development by minimizing early physiochemical

and toxicity prediction studies. Thus, the current study incorporates

the widely used computational approach (in silico study) to analyze

the binding mode, dynamic simulation, and residual interaction

with the target protein APC, aiming to determine the drug-like

characteristics of Resveratrol derivatives effective in treating human

CRC. In this investigation, we selected Armadillo repeats domain of

Adenomatous polyposis coli (APC) as the targeted receptor. The

guanine nucleotide exchange factor is activated by this substance to

regulate cell-cell adhesion and migration. In CRCs, decreased APC
02
leads to constitutive activation. This activation enhances the

motility and angiogenesis of cancer cells in CRC. So, our primary

target is to inhibit this Armadillo repeats domain of APC (8, 9). The

Resveratrol derivatives have been chosen due to their wide range of

therapeutic benefits, and pharmacological effects such as

cardioprotective neuroprotective, antitumor, antidiabetic,

antioxidants, anti-age effects, and glucose metabolism. It also

reported strong pharmacological action against different types of

cancer including colon cancer, and thyroid carcinoma as well as

being capable of controlling oxidative stress, cell death, and

inflammation (10–12).
2 Materials and methods

2.1 PASS prediction

In this study, we utilized pass prediction investigation to

identify the possible pharmacological effectiveness of the

Resveratrol derivatives using pass online website. This web-based

program, has the capability to predict the bioactivity spectrum of a

molecule by predicting the numerous probable pharmacological

effects based on the molecule’s structure. The bioactivity prediction

for compounds was conducted using the Pass online web server,

accessible at https://www.way2drug.com/passonline/index.php.

This platform enables the prediction of the bioactivity spectrum

at different threshold values, specifically denoted as Pa (probable

activity) and Pi (probable inactivity) (13, 14).
2.2 Preparation of ligand dataset

The 3D chemical structures of Resveratrol analogs were initially

acquired from the PubChem database (https://pubchem.

ncbi.nlm.nih.gov/) in SDF format. Subsequently, the compounds

were processed using BIOVIA Discovery Studio, incorporating

hydrogens, and their structures were saved in PDB format.

Following this, the ligands were optimized using Gaussian 09

software and the DFT/B3LYP 6- 311G approach before molecular

docking (15, 16). These optimizations were conducted to ensure the
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ligands were prepared appropriately for subsequent molecular

docking studies. The molecular structures are displayed in Figure 1.
2.3 Determination of ADMET profile

The study evaluated the potential of selected compounds as the

mentioned drug candidates by evaluating their pharmacological

profile using ADMET (Absorption, Distribution, Metabolism,

Excretion, and Toxicity) analysis. Early-stage pharmacokinetic

properties assessment is essential in computational drug design

and development to identify the safety profile of newly develop drug

candidates. Therefore, we studied the ADMET profile and drug-

likeness properties of selected Resveratrol derivatives using the

pkCSM (https://biosig.lab.uq.edu.au/pkcsm/prediction). This

freely accessible web tools, pkCSM, utilization a state-of-the-art

approach based on graph signaling to assess pharmacokinetic

profiles (17).
Frontiers in Oncology 03
2.4 Protein preparation and
molecular docking

The 3D Crystal structure of armadillo repeats domain of APC

(Adenomatous polyposis coli) tumor suppressor protein (PDB ID

3NMW) was retrieved from the RCSB protein Data Bank (https://

www.rcsb.org/). The protein crystal structure was resolved by the X-

ray diffraction method with a resolution of 1.60 Å. The PDB protein

structure was refined/purified by removing water molecules,

unwanted heteroatoms, and ligands that were already attached

with protein that may interfere with the desired ligand-protein

binding, and by keeping the desired chain fold in BIOVIA

Discovery Studio Visualizer. Then, the structure (Figure 2) was

prepared through Biovia discovery studio. After preparation of the

protein, the molecular docking work was performed to predict the

trajectory of the binding potential of a protein-ligand complex using

PyRx virtual screening tool AutoDock Vina. This study employed

the default configuration parameters of the AutoDock VinaWizard,
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FIGURE 1

Molecular structure of selected ligands. Although, they have similar physicochemical properties. However, each of the ligands contains different
structural shape, and functional unit.
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a virtual screening tool developed by PyRx. Before conducting

docking, the set of grid parameters was selected based on receptor

active sites to conduct the molecular docking work. For further

evaluation, the result displaying the highest binding affinity (kcal/

mol) with a negative sign was elected. Finally, we visualized the

protein-ligand interaction complex to identify the strong binding

pose of active site residues with the lead compounds and their bond

distance using the BIOVIA Discovery Studio Visualizer.
2.5 Molecular dynamics simulation

Molecular Dynamics (MD) Simulations were carried out to

investigate the validity of the applied molecular docking studies. As

known that MD simulation is a principal tool for proofing the

stability of protein-ligand MD simulation provides detailed

information on the fluctuations and conformational changes of

proteins-ligand complex towards its stable conformation (18).

Thus, in the present study, the MD simulations of the targeted

human armadillo domain of APC (PDB ID: 3NMW) protein with

selected ligands complexes have been conducted to establish the

binding accuracy of 03, 29, and standard capecitabine to the

targeted protein (PDB ID: 3NMW). The computations were

performed for 100 nanoseconds in a periodic water box utilizing

the Gromacs version 2020 software package and the CHARMM36

force field (19). Using the CHARMM-GUI web-based graphical

interface, the simulation system was configured and the force fields

for both the ligands and the protein were generated (20). The

complexes were positioned within a rectangular box that had a

buffer distance of 10 in each of the cardinal directions. The box was

subsequently dissolved in water molecules containing TIP3P (21,
Frontiers in Oncology 04
22). In order to maintain system neutrality, sodium and chloride

ions were put into the system, followed by the minimization of

energy using the steepest descent method. The equilibration process

was carried out on all of the full systems at a temperature of 310 K

for a total of 5,000 steps, equivalent to 10 picoseconds (PS). An

isothermal-isochoric ensemble NVT (constant number of particles,

volume, and temperature) and an isothermal-isochoric ensemble

NPT (constant number of particles, pressure, and temperature)

were used to equilibrate each system (22, 23). To restrict hydrogen,

the Lñncs algorithm was employed; hence, the time step was

established at 2 fs.

We conducted a comprehensive assessment of all van der Waals

(vdw) forces using a switching system that varied from 12 to 14 Ã,

with a cutoff value of 14. The long-term electrostatic connections

have been determined using the particle mesh Ewald (PME)

method with a maximum grid spacing of 1.2. Instead of utilizing

a multiple-time-stepping approach, PME processes have been

carried out at every step. The temperature kept constant at 310 K.

The barostat was set to regulate system size fluctuations to a

concentrated level of 1 bar (24, 25). The time step for integration

was 2 femtoseconds. Upon completion of the 100 ns molecular

dynamics simulation, the simulation outputs were initially re-

centered. Subsequently, the trajectory files were analyzed using

Gromacs and VMD built-in tools to investigate the dynamic

conformational changes and interactions within the complexes

over time. Analyzed simulated trajectories to calculate Root Mean

Square Deviation (RMSD), Residue Root Mean Square Fluctuation

(RMSF), radius of gyration growth, number of H-bonds, Principal

Component Analysis (PCA), and Dynamics Cross-Correlation

Matrices (DCCM).
2.6 Binding free energy calculation
using MM-PBSA

In this study, we utilized the MM-PBSA approach to compute

the free interaction energy between molecules and the targeted

protein (PDB ID: 3NMW). Estimation of binding free energy (DG)
was performed using Equation (1) with the script MMPBSA.py

from the AMBER package (26).

DG = Gcomplex − Greceptor − Gligand (1)

G-complex is the free energy of the complex; G-receptor is the

free energy of the receptor; G-ligand is the free energy of the

ligand (27).
3 Results analysis

3.1 PASS prediction

The pass prediction properties was utilized to identify potential

therapeutic properties of the compounds. The PASS prediction

value evaluates a compound’s similarity to known physiologically

relevant structures, allowing scientists to predict a molecule’s
FIGURE 2

Displayed three-dimensional structure of selected target proteins.
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activity. This strategy can be employed from the beginning of the

study to develop a new medication (28, 29). The previously

obtained structures of the described compounds were submitted

as a mol form to the PASS online program, and the potential

therapeutic activities were investigated. These filters are based on

the probability of potential activity (Pa) as well as inactivity (Pi)

(13). PASS algorithms and filters can help scientists efficiently

screen through thousands of lead candidates, saving time and

money by focusing on the most promising ones. Which

substantially reduces the time it takes to discover novel

medications and increases their chances of effectiveness in

treating a wide range of diseases.

Pa and Pi values can range from 0.00 to 1.0, and notably,

Pa+Pi≠1, demonstrating that a molecule cannot be simultaneously

active and inactive at the same time (30). In this investigation, total

50 Resveratrol derivatives were taken, and analysis pass prediction

(Supplementary Table 1). Regarding the data, our reported

compounds had the most effective antineoplastic activity,

exhibiting the Pa value above 0.775+ by the majority of the

compounds and considering Ligand no 03, 11, 17, 24, 28, 29, and

39 demonstrated the highest Pa score (Pa > 0.791, Pa > 0.791, Pa >

0.791, Pa > 0.833, Pa > 0.791, Pa > 0.791, and Pa > 0.775)

respectively. Where the range of Pa values for antibacterial,

antifungal, and antiparasitic was between 0.548-0.301, 0.676-

0.421, and 0.480-0.363 correspondingly. These considerable Pa

values along with favorable Pi values underline their suitability as

antineoplastic agents, and based on these noticeable features, and

top seven compounds is finally selected (Table 1).
3.2 ADMET profile investigation

The pharmacokinetic features of the compounds provided

better understood through the application of in silico ADMET

analysis, which is valuable for evaluating their therapeutic potential

(Table 2). One of the essential factors influencing the distribution

and absorption of drugs is their water solubility, indicated by the

parameter log S. The water solubility values of our compounds

range from -2.575 to -2.892 to -3. 401.The following are the

ordinary solubility ranges: insoluble<10, weakly soluble<6,

moderately soluble< 4, soluble< 2, extremely soluble< 0, and very
Frontiers in Oncology 05
soluble > 0 (31–34). The stated water solubility values of our

compounds vary fall within these ranges as well. According to

these measurements, the solubility of our compounds ranges from

moderate to poor.

The intestinal absorption fraction of a drug is a key indicator of

its absorption rate in the gastrointestinal tract. The absorption rates

vary among the compounds, ranging from 51.086% to 89.45% where

the compound 11, 28, 29, and 39 has reported optimum GI

absorption. Additionally, our molecules exhibit volume of

distribution (VDss) values such as 0.125, 0.011, and 0.15, reflecting

how a medicine is distributed through the circulatory system.

To reach the central nervous system of any drugs or bioactive

compounds require high blood-brain barrier (BBB) permeability

capacity. Mentioned ligands has demonstrate a range of

permeability values, from -1.029 to -1.692 and -1.056 which

means they are almost unable to reach BBB, and the compounds

has a chance to reach BBB since it shows 0.043. Furthermore, we

assessed the potential impact of the compounds on CYP3A4, an

essential enzyme in drug metabolism. The compounds have

reported that neither act as substrates nor inhibitors of CYP3A4.

We also evaluate the renal OCT2 substrates and total clearance,

which has been used to described the drug removal routes. Our

finding has been documented that none of the compounds renal

OCT2 substrate activity. In addition, total clearance values such as

0.057 and 0.257 are reported which means minimum 0.057 ml/min/

kg excrete and maximum 0.257 ml/min/kg excrete from the body.

In the assessment of the toxicity, we considered skin sensitivity,

hepatotoxicity, and maximum tolerated dosage. The compounds have

totally free from hepatotoxicity and skin sensitization characteristics,

and the minimum, and maximum tolerated dosage was documented

0.305 log mg/kg/day, and maximum 0.569 log mg/kg/day.

Finally, it is concluded that safety profiles of these mentioned

derivatives are significant, confirming their potential as promising

therapeutic candidates.
3.3 Molecular orbitals and chemical
reactivity indicators

The compounds’ optimized geometry, highest occupied

molecular orbital (HOMO) surfaces, lowest unoccupied molecular
TABLE 1 Pass prediction data of Resveratrol derivatives.

No Name of the derivatives PubChem ID
Antibacterial Antifungal Antineoplastic Antiparasitic

Pa Pi Pa Pi Pa Pi Pa Pi

03 Resveratrol 3-beta-mono-D-glucoside 5281718 0.548 0.012 0.676 0.011 0.791 0.013 0.480 0.018

11 Cis-Resveratrol 3-O-glucoside 10178463 0.548 0.012 0.676 0.011 0.791 0.013 0.480 0.018

17 (E)-resveratrol 3-O-alpha-d-glucopyranoside 11968839 0.548 0.012 0.676 0.011 0.791 0.013 0.480 0.018

24 (E)-Resveratrol 3-(4’’-acetyl)-O-beta-D-xylopyranoside 11292556 0.547 0.012 0.664 0.012 0.833 0,008 0.380 0.035

28 Resveratrol-4’-O-beta-d-glucopyranoside 54286634 0.548 0.012 0.676 0.011 0.791 0.013 0.480 0.018

29 Resveratrol 3-Glucoside 25579167 0.548 0.012 0.676 0.011 0.791 0.013 0.480 0.018

39 [3h]-resveratrol 129846314 0.301 0.060 0.421 0.046 0.775 0.015 0.363 0.039
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orbital (LUMO) surfaces, and molecular electrostatic potential

(MEP) surfaces were calculated in the gas phase using the

GaussView 5.0 molecular visualization program and Gaussian 09.

The calculations were performed without symmetry restrictions,

employing the DFT/B3LYP hybrid functional and 6-31G basis set

(35–38). The representation of chemical reactivity and kinetic

stability in a molecule is described by its frontier orbitals, which

are essential for determining the bioactivity of compounds. There

are two types of frontier orbitals in molecules: HOMO and LUMO.

The shift of the electron from the lowest to the highest energy state

is mainly measured for by the excitement of one electron from

HOMO to LUMO (39, 40). Therefore, the transfer of electrons from

the HOMO to the excited LUMO results in a substantial increase in

energy. The kinetic stability of a molecule is a linear relationship

between the HOMO-LUMO energy gap, which is described as

increasing the HOMO-LUMO energy gap, simultaneously growing

the chemical reactivity and kinetic stability (41, 42). Table 3

presents the calculated values of molecular orbital energies, which

include the two widely recognized chemical parameters: energy gap,

chemical potential, electronegativity, hardness, and softness. The

compound 11, as described, exhibited the greatest HOMO-LUMO

energy gap (4.54648 eV), indicating a more stable structure.

Furthermore, the derivatives exhibiting the highest softness value

were calculated to be 0.56071 in Ligand 39. This indicates that the

compound has the potential to dissolve at a faster rate, as shown in

Table 3. At the same time, Ligand 11 exhibits a maximum hardness

of approximately 2.7324. This hardness value suggests that it may

have taken longer to break down after it entered the

physiological system.
3.4 Molecular electrostatic potential

Molecular Electrostatic Potential (MEP) provides extensive

insights into studies associated with the chemical reactivity or

biological activity of a product. The spatial arrangement and

magnitude of electrostatic potential significantly influence the

fundamental processes of chemical reactions, affecting the interaction

of electrophilic or nucleophilic agents (43, 44). The investigation

involved simulating the electrostatic potential map of the targeted

compounds using the B3LYP method with a 6-31G basis set. The

structure was then optimized, resulting in Figure 3. Color variations are

used to visually represent the molecule’s structure, size, and regions of

positive, negative, and neutral electrostatic probability. Additionally, it

is a notable method for investigating the correlation between

physicochemical properties and the structure of a specific substance.

The decreasing potential of the attacking area occurs in the sequence of

blue, red, and white. The white section represents neutral areas, while

the red color indicates high electron saturation, indicating potential

electrophile attack. The blue color indicates the lowest electron density

surface, making it susceptible to nucleophilic attack.

Compound (3) displayed a spectrum of units ranging

from -7.55e-2 to 7.55e-2 units, with colors ordered in the

sequence of red, yellow, green, and blue. Compound (11)

exhibited a unit range of -6.977e-2 to 6.977, while compound (17)

showed a range of -7.234 to 7.234. Similarly, compound (24)
T
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exhibited a range of units between -7.218 and 7.218, and compound

(28) displayed a range between -7.418 and 7.418. Compound (29)

showed a spectrum of values ranging from -7.166 to 7.166, whereas

compound (39) had a range between -6.961 and 6.961. The positive

charges in compounds 17, 24, 39, 28, and 03 are mainly found on
Frontiers in Oncology 07
the hydrogen atoms of the hydroxyl groups connected to the

aromatic rings. Conversely , the negative charges are

predominantly concentrated on the oxygen atoms of the hydroxyl

groups attached to the aromatic rings and are visually represented

in red.
TABLE 3 Presents data on the chemical reactivity and molecular characteristics.

Name
HOMO LUMO Energy

GAP
Hardness Softness

03 -5.3290798 -1.2789356 4.05014 2.0250 0.49381

11 -5.700515 -1.154035 4.54648 2.7324 0.36597

17 -5.5337103 -1.4971712 4.03653 2.0182 0.49547

24 -5.4999673 -1.4647894 4.03517 2.0175 0.49564

28 -5.3655430 -1.2955345 4.07000 2.0300 0.49139

29 -5.16200184 -1.0846462 4.07735 2.0386 0.49051

39 -5.10975596 -1.542886159 3.566869 1.7834 0.56071
FIGURE 3

View of the molecular electrostatic potential surface of the ground state of the optimized structure of compounds, obtained by using the DFT/
B3LYP/6-31G method.
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3.5 Molecular docking analysis against
breast, and colorectal cancer
targeted proteins

The molecular docking approach is a significant aspect of

structural biology that is primarily employed for Computer-aided

drug design (CADD). This is a technique for predicting the optimal

binding mode of drug molecules to a specific receptor

macromolecule (45, 46). In order to investigate the binding

affinity between selected molecules and the target protein, we

have therefore integrated molecular docking analysis in our study.

The PyRx AutoDock software was used to assess possible binding

energy and interaction with the active regions of CRC

targeting protein.

Resveratrol derivatives (ligand numbers 11, 17, 24, 28, and 39)

showed considerable binding affinity against the human armadillo

repeats domain of APC (PDB ID: 3NMW) with predicted binding

scores of -6.3 kcal/mol, -6.9 kcal/mol, -7.3 kcal/mol, -7.0 kcal/mol,

and -6.1 kcal/mol, respectively (Table 4). In addition, the findings

indicated that two compounds (ligand no: 03 and 29) displayed the

maximum effectiveness compared to all other derivatives, with the

maximum binding affinity values of -7.7 kcal/mol and -7.9 kcal/mol,

respectively. Finally, it might be stated that these mentioned

derivatives of Resveratrol perform a stronger binding affinity than

the standard FDA-approved drug capecitabine, which ultimately

suggested as possible therapeutic options for CRC therapy.

However, further experimental research is required to validate

these findings.
3.6 Molecular docking and
interaction analysis

The molecular docking poses and active amino acid residues are

schematically displayed in Figure 4. The Chimera application and

Biovia Discovery Studio 2021 used to create this artwork. The

molecular docking poses provided insights into the interaction
Frontiers in Oncology 08
between the drug and each target protein, highlighting the

bonding strength of the reported ligand with these proteins (47,

48). It has been seen that the complex 03 has formed total five bonds

where three are hydrogen bonds (THR C: 240, and ASP C: 238), and

the complex 29 has documented total including HIS C: 205

(Hydrogen bonds), and the others two are ASP C: 219, and VAL

C: 236.
3.7 Molecular dynamic simulation
result analysis

3.7.1 Root mean square deviation analysis (RMSD)
RMSD analysis reveals deviations observed during the

simulation progression. Furthermore, RMSD quantifies the

stability of the structure, with lower RMSD values indicating

greater stability (49). The RMSD calculations were performed on

the protein backbones and complexes during a 100-nanosecond

MD for each protein-ligand complex. This analysis provided

valuable insights into the conformational changes occurring

during protein-ligand interactions. The results are illustrated

in Figure 5.

Figure 5A displays the average RMSD values for complex-03,

complex-29, and the standard, which are 4.97, 5.4, and 7.18 Å,

respectively. Initially, the RMSD of all complexes increased until 20

ns, after which each complex exhibited distinct RMSD patterns

during the simulation. Between 25 and 45 ns, complex-03

experienced a dramatic decrease in its RMSD value. Conversely,

both complex-29 and the standard complex exhibited an increase in

their RMSD values, with the RMSD value of the standard complex

reaching its peak. This increase indicates that the ligand’s affinity for

the standard complex is relatively low. Following this time frame,

every complex formation displayed fluctuations until the

conclusion of the simulation.

Additionally, Figure 5B presents RMSD analysis of the

backbone atoms for the three complexes during a 100 ns

simulation, revealing different conformational states the backbone

of the protein (PDB ID: 3NMW). The RMSD plots of the backbones

of the complex 03, 29, and standard have mean values of 2.5, 2.6,

and 2.1 Å, respectively. Among the three trajectories, the standard

protein backbone exhibits the largest variation but has the lowest

RMSD value. In contrast to the 29 and standard structures, the 03-

protein backbone remained stable throughout the simulation.

3.7.2 Root mean square fluctuation
(RMSF) analysis

RMSF is a useful tool for evaluating the residual flexibility of a

protein’s backbone, which is a essential factor in MDmodeling. The

protein residues are essential for attaining a stable conformation in

a protein-ligand complex, and this stability can be assessed using

the RMSF measure. A high RMSF number suggests increased

flexibility, whereas lower RMSF values imply a more stable zone.

Hence, residues or groups exhibiting RMSF values signify increased

flexibility, suggesting a larger probability of interacting with ligand

molecules. On the other hand, decreased RMSF fluctuations are
TABLE 4 Binding affinities of docked ligand calculated against
targeted proteins.

SL. No

Armadillo repeats domain
of APC (PDB ID: 3NMW)

Kcal/mol

03 -7.7

11 -6.3

17 -6.9

24 -7.3

28 -7.0

29 -7.9

39 -6.1

Standard Capecitabine -5.9
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linked to reduced flexibility, leading to a decrease in interaction

capability (50, 51). In this study, we calculated RMSF values to

investigate the effect of ligands on the residual flexibility of the

protein backbone, as shown in Figure 6.

There were three different average backbone RMSF values: 1.22

Å for compound 03, 1.34 Å for compound 29, and 1.35 Å for the

standard (Table 5). The RMSF graph for compound 03 exhibited

strong peak fluctuations at the backbone residue positions of

SER171-HSD170, LEU185-ALA186, SER192-VAL196, VAL236-

GLU240, and VAL252-ASP255, as illustrated in Figure 6. For

compound 29, an RMSF graph showed peak fluctuations at the

backbone residue positions between PRO178-GLU183, SER192-

GLY194, VAL236-GLY239, and ASN253-ASP255. In the case of the

standard compound, an RMSF graph revealed peak fluctuations at

the backbone residue positions between PRO178-GLU183,

MET208-ASP210, THR227-GLU230, ALA237-GLY239, and

ASN253-ASP255. These findings indicate that, in Figure 6, the

protein backbone for compound 03 exhibits the lowest RMSF value,

whereas compounds 29 and the standard compound have higher

RMSF values.

3.7.3 Radius of Gyration (Rg) analysis
The Rg of a protein-ligand interaction complex refers to the

distribution of its atoms about its axis. Calculating the Rg is a vital

parameter for evaluating the structural dynamics of a macromolecule,
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as it provides insights into the changes in the overall compactness of the

complex during the simulation. Figure 7 depicts the the stability of

therapeutic candidate compounds, specifically complex 03 (represented

by the color black), complex 29 (represented by the color red), and the

control standard (represented by the color blue), in their interaction

with the target protein. This investigation focused on measuring the Rg

values over the simulation period of 100 ns. Overall, the variations in

Rg values among all complexes exhibited clear and unique patterns.

According to the data, complex-03 exhibited the lowest Rg value,

suggesting that it is more condensed compared to the other complexes.

A decrease in density might result from a modification in the way the

protein and the ligand interact with each other.

3.7.4 Hydrogen bond analysis
The results of calculating and graphing the number of hydrogen

bonds established by the ligand molecules (ligand-03, ligand-29,

and the standard) with the proteins are shown in Figure 8. The

presence of intermolecular hydrogen bonding between the protein

and the ligand is essential for stabilizing protein-ligand complexes.

The stability of the hydrogen bond network formed by the ligands

(ligand-03, ligand-29, and the standard) has been assessed

throughout the 100-nanosecond simulation period. Hydrogen

bond conditions were defined using an acceptor-donor distance

of 0.30 nm and an angle above 120 degrees, following commonly

used hydrogen-bond distances in the literature.
FIGURE 4

Molecular docking pocket, and active site analysis.
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During the MD simulation, a total of 4 hydrogen bonds were

observed between 03 and the protein, while a total of 3 hydrogen bonds

were observed between 29, the standard, and the protein. The graph

clearly demonstrates that complex-03 has a higher number of

hydrogen bonds throughout the entire simulation, whereas the

standard has the lowest number of hydrogen bonds. The strength of

binding is directly connected to the higher occurrence and longer

duration of hydrogen bonds. Furthermore, by employing hydrogen-

bond occupancy, crucial residues implicated in the formation of

hydrogen-bonds for ligand recognition could be identified. The

investigation of the relative frequencies of established ligand–protein
Frontiers in Oncology 10
hydrogen bond interactions was facilitated by the VMD “Hydrogen

bonds” instrument. Ligand-03 preserves all the hydrogen bonds that

were identified in the docked complex, but ligand-29 fails to preserve all

of the hydrogen bonds discovered in the docked complex. In the case of

the standard compound, it maintained interactions only with THR-

207, ASP-210, AND VAL-206.
3.7.5 Principal component analysis (PCA)
PCA is a nonparametric analysis, which serves as a

dimensionality reduction technique. Generally utilized to
FIGURE 6

RMSF for backbone atoms of protein.
FIGURE 7

Represents the ROG values of the protein–ligand complexes to the
protein backbone for 100 ns. RoG of 03, 29, and standard are
shown in black, red, and blue respectively.
TABLE 5 Average backbone of RMSF values.

No RMSF

Ligand-03 1.22 Å

Ligand-03 1.34 Å

Standard 1.35 Å
A

B

FIGURE 5

(A) RMSD for complex systems of 03, 29, and standard protein.
(B) RMSD for backbone atoms of 03, 29, and standard protein.
FIGURE 8

Represents the number of hydrogen bonds responsible for the
stability of the complexes (03, 29, and standard) throughout the
100 ns.
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investigate high-dimensional data from MD simulations into an

informative low-dimensional space (52, 53). The collective motion’s

complexity, which is linked to the stability of the system and the

functions of proteins, could be investigated by adjusting different

parameters and then simplifying the motion. Also, it can be utilized

to characterize the many conformational variations that are

associated with the process of protein folding as well as the open-

close mechanism of ion channels (54).

The analysis presented in Figure 9 demonstrates that the top 20 PCs

of the Ligand-03,29 system and the standard system contributed to 89%,

88%, and 79% of the overall variance, respectively. This indicates that the

Ligand-29 and standard systems have a more restricted phase space and

less performance flexibility compared to the Ligand-03 system.
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The analysis presented in Figure 9 demonstrates that the top 20

PCs of the Ligand-03,29 system and the standard system

contributed to 89%, 88%, and 79% of the overall variance,

respectively. This indicates that the Ligand-29 and standard

systems have a more restricted phase space and less performance

flexibility compared to the Ligand-03 system. In comparison to the

PCA plots of Ligand-03,29 and ligand-standard the PC1 cluster

exhibited the greatest variability, accounting for 42.54%, 23.09%,

and 38.9% of the variance, respectively. The PC2 cluster

demonstrated 14.21%, 15.29%, and 8.97% variability, while the

PC3 cluster exhibited minimal variability, accounting for only

5.1% of the variance for the Ligand standard. The low degree of

variability exhibited by PC3 for the Ligand standard, when
FIGURE 9

Principal Component Analysis Backbone of complex 03, 29, and Standard. Every data point represents the protein’s conformation about the X and Y
axes. The simulation used a chromatic arrangement of blue and red dots to depict the extent of conformational alterations. The color gradient,
ranging from blue to white to red, functioned as a visual depiction of the simulation’s duration. The color blue represents the start time step, the
color white represents the intermediate time step, and the color red represents the final time step.
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compared to the PC1 and PC2 clusters, suggests that the binding of

the Ligand standard is highly stable, and the structure is compact.

3.7.6 Dynamics cross-correlation matrices
(DCCM) analysis

In addition, to investigate the conformational changes of the

targeted human armadillo domain of the APC (PDB ID: 3NMW)

protein, all Ca atoms were analyzed using DCCM analysis (55, 56).

2D diagrams of the DCCM showed correlated motions between

residues throughout the entire simulation process (Figure 10).

DCCM showed an overall correlation ranging from -1.0 to 1.0

(light green to dark blue). Different colors were used to identify the

different degrees of correlation between the residues and the darker

the color, the stronger the correlation. Positive correlation (0 to 1)

meant that the residues were moving in the same direction, while

negative correlation (-1 to 0) meant that the residues were moving

in the opposite direction.

A comparison of the DCCM diagrams of the three systems

shows that the correlation behaviour of systems 03 and 29 in

particular is significantly different from that of the standard

system. Compared to the standard system, both systems exhibit a

significant increase in positive correlation motions as seen in the

black dashed boxes. Moreover, this increase is more pronounced in

the 03 structure. This increase suggests that there are significant

changes in protein-associated motions following ligand binding.

However, when the DCCM diagrams of ligand-03 and ligand-

29 systems were analysed, it was revealed that the correlation

movements differed significantly. In the ligand-29 system, the

negative correlated motions were significantly reduced, while in

the ligand-03 system, the overall positive correlated motions were

relatively less changed. The reduction of negative correlated
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motions may help to stabilise the conformational state of the

protein and indicate that it is more stable after ligand-29 binding.

3.7.7 Binding free energy analysis
The Molecular Mechanics Poisson-Boltzmann Surface Area

(MM-PBSA) method was used to calculate the binding free energy

in protein-ligand complexes to analyze molecular binding

interactions. This method considers various interactions, including

binding and non-bonded forces like van der Waals and electrostatic

forces. The binding free energy of these complexes was calculated

using theMM-PBSAmethod, focusing on the last 20 nano-seconds of

the trajectory. The binding free energy (DG bind) of ligands 03, 29,

and the standard was determined using the MM-PBSA approach,

which incorporates binding affinity scores. Lower values of DG
indicate stronger binding affinities between proteins and ligands.

Table 6 and Figure 11 demonstrate the correlation between the

predicted free binding energies for ligands 03, 29 and the standard.

The MM-PBSA study showed that the ligand 03 complex had

higher binding energy and enhanced stability in comparison to

ligand 29. The observations were confirmed by comparing

molecular docking and MD simulation results using binding free

energy calculations (Table 6).
4 Conclusion

In this study, we applied a wide range of computational

approaches to identify the pharmacological effects of Resveratrol

derivatives against CRC. These computational studies include

molecular docking, theoretical ADMET, pharmacokinetics profile

investigation, PASS prediction, and molecular dynamic simulations.
FIGURE 10

Dynamic cross-correlation matrix (DCCM) plots for (03, 29, and Standard).
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Molecular docking analysis documented strong binding affinities to

the target protein, compare to the standard drug capecitabine. In more

precisely, ligands [(03) Resveratrol 3-beta-mono-D-glucoside, and

(29) Resveratrol 3-Glucoside] has shown most favorable binding

affinity. Subsequently, molecular dynamics simulations were

performed to the top two compounds based on better binding

energy, which confirm the stability of the drug-protein interactions,

their stability. The MM-PBSA binding free energy analysis further

supported the findings. Overall, these results highlight the potential of

these molecules as effective candidates for the treatment of CRC.
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