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The value of the malignant
subregion-based texture analysis
in predicting the Ki-67 status in
breast cancer
Chao Hua, Chen Wenwen, Rui Huijuan, Pan Ting
and Zhang Jin*

Department of Radiology, Changzhou Cancer Hospital, Changzhou, China
Objective: To evaluate the value of the malignant subregion-based texture

analysis in predicting Ki-67 status in breast cancer.

Materials and methods: The dynamic contrast-enhanced magnetic resonance

imaging data of 119 histopathologically confirmed breast cancer patients (81

patients with high Ki-67 expression status) from January 2018 to February 2023

in our hospital were retrospectively collected. According to the enhancement

curve of each voxel within the tumor, three subregions were divided: washout

subregion, plateau subregion, and persistent subregion. The washout subregion

and the plateau subregion were merged as the malignant subregion. The texture

features of the malignant subregion were extracted using Pyradiomics software

for texture analysis. The differences in texture features were compared between

the low and high Ki-67 expression cohorts and then the receiver operating

characteristic (ROC) curve analysis to evaluate the predictive performance of

texture features on Ki-67 expression. Finally, a support vector machine (SVM)

classifier was constructed based on differential features to predict the expression

level of Ki-67, the performance of the classifier was evaluated using ROC analysis

and confirmed using 10-fold cross-validation.

Results: Through comparative analysis, 51 features exhibited significant

differences between the low and high Ki-67 expression cohorts. Following

feature reduction, 5 features were selected to build the SVM classifier, which

achieved an area under the ROC curve (AUC) of 0.77 (0.68–0.87) for predicting

the Ki-67 expression status. The accuracy, sensitivity, and specificity were 0.76,

0.80, and 0.68, respectively. The average AUC from the 10-fold cross-validation

was 0.72 ± 0.14.

Conclusion: The texture features of the malignant subregion in breast cancer

were potential biomarkers for predicting Ki-67 expression level in breast cancer,

which might be used to precisely diagnose and guide the treatment of

breast cancer.
KEYWORDS

breast cancer, texture analysis, malignant subregion, Ki-67 expression,
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Introduction

According to global cancer statistics in 2020, female breast

cancer has surpassed lung cancer as the most commonly diagnosed

cancer, and the leading cause of cancer death in women (1). With

the advancement of cancer diagnosis and treatment technologies,

the prognosis of breast cancer in developing countries has

significantly improved, yet there remains a substantial gap

compared to developed countries.

Ki-67, a marker of cellular proliferation, plays a crucial role in

indicating the malignancy and prognosis of breast tumors, and high

Ki-67 expression conferred a worse prognosis (2). Therefore,

accurate assessment of Ki-67 expression level is instrumental in

the diagnosis and treatment of breast cancer (3). Dynamic contrast-

enhanced magnetic resonance imaging (DCE-MRI) of the breast is

now widely used in routine examinations for breast cancer, and

high-risk women screening with DCE-MRI is more effective than

either mammography and/or ultrasound (4). The time-intensity

curve (TIC) of contrast enhancement in breast tumors is also

indicative of the malignancy level of breast tumors. Considering

the heterogeneity within tumors (5), different voxels in a lesion

exhibit varied enhancement TICs, among which the malignant

subregion, composed of voxels with a specific enhancement

pattern, is closely related to the malignancy (6, 7). However, few

of studies have investigated the association between the

characteristics of the malignant subregion with the Ki-67 status.

Texture analysis is an advanced method in medical image

analysis that converts images into high-throughput texture

features. By applying statistical analysis or machine learning

techniques, it can identify the potential imaging biomarkers to

assist clinical diagnosis and treatment. Texture analysis has been

widely used in breast cancer study, and have been proven a

promising way to achieve precise medicine (8–11). The high-

throughput texture features could identify the invisible

information, which might be associated with pathological and

molecular phenotype information (12).

This study aimed to extract texture features from the malignant

subregion of breast lesions and assessed their ability to predict Ki-67

expression status.
Materials and methods

Patients

This study was approved by the Research Ethics Committees of

our hospitals, with the need for informed consent waived for this

retrospective study. The study included 119 patients who

underwent preoperative breast DCE-MR examinations at our

hospital from January 2018 to February 2023. All patients were
Abbreviations: ROC, Receiver operating characteristic curve; SVM, Support

vector machine; VOI, Volume of interest; DCE, Dynamic contrast enhanced;

TIC, Time-intensity curve; IBSI, Image Biomarker Standardization Initiative;

LOG, Laplacian of Gaussian; mRMR, Minimum redundancy maximum

relevance; AUC, Area under curve.
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pathologically confirmed as breast cancer. All patients were female,

with an average age of 54.19 ± 11.05 years. Inclusion criteria: (1) All

patients underwent breast MR examinations before surgery; (2) All

pat ients underwent surgical treatment and specimen

immunohistochemical analysis. Exclusion criteria: (1) Concurrent

other malignant tumors; (2) Treatment related to breast cancer,

such as radiotherapy or chemotherapy, before the MR scan.

According to the St Gallen International Expert Consensus (13),

Ki-67, a marker of cellular proliferation, plays a crucial role in

indicating the malignancy, >20% is considered a high Ki-67

expression, which indicates the high probability of malignancy

and a worse prognosis (2), while ≤20% is a low Ki-67 expression.
MRI acquisition protocol

All patients underwent preoperative DCE-MR examinations

using a 3.0T scanner (MAGNETOM Aera, Siemens Healthcare,

Erlangen, Germany) with a dedicated 8-channel breast coil. DCE-

MR used a spoiled GRE sequence with the following parameters:

TR: 4.67 ms, TE: 1.66 ms, flip angle of 10°. The field of view was 360

mm×360 mm, matrix size 384×296, slice thickness 1.2 mm. The

scanning process involved initial plain scanning, followed by

injection of Gd-DTPA (Magnevist, Bayer Healthcare) 0.2mmol/kg

at 2ml/sec through a power injector, which was followed by a 20-mL

saline flush. Contrast-enhanced images in six phases were obtained

at 60, 120, 180, 240, 300, and 360s after contrast agent injection.
Image segmentation

Two experienced breast MRI radiologists conducted breast

cancer lesion segmentation. They were blinded to the initial

radiological reports and the pathologic outcomes. Radiologist 1

segmented the lesion manually, and Radiologist 2 reviewed the

segmentation. If they had different opinions, they would discuss to

reach an agreement. The most significantly enhanced phase of the

breast DCE image was selected and imported into ITK-SNAP

software (version 3.8.0, www.itksnap.org) to identify the tumor

outlines (14). Radiologist 1 scanned the entire image axially to

locate layers where the lesion existed and then delineated the

contours of the lesions layer by layer to obtain a three-

dimensional volume of Interest (VOI). VOI was then

resegmented to obtain the malignant subregion based on the

following principles: firstly, voxels with enhancement ratio >50%

were identified by comparing the signal intensity of the first

enhanced phase image with the plain phase. Then, comparing the

last to the first enhanced phase, voxels with enhancement ratio

>10% were classified as the persistent subregion, those with

enhancement ratio <-10% as the washout subregion, and the

remaining voxels consisted of the plateau subregion (6, 7). The

malignant subregion was defined as the combination of the washout

subregion and plateau subregion and saved as a separate VOI file for

feature extraction. The overall segmentation process is illustrated

in Figure 1.
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Feature extraction

The VOI corresponding to the malignant subregion and the images

of the first enhanced phase were imported into the Pyradiomics software

(version 3.0.1, https://pyradiomics.readthedocs.io/en/latest/) to extract

the texture features. Pyradiomics, conforming to the Image Biomarker

Standardization Initiative (IBSI), is widely used for extracting texture

features (15, 16). The feature extraction included two steps: image

preprocessing and feature extraction. Image preprocessing involved

resampling the image to a voxel size of 1×1×1 mm³, gray

discretization using a binWidth=5, and image intensity normalization

using the m ± 3s method. In order to highlight the value of texture

features, additional types of features were also included. Finally, the

features encompassed four categories: first-order histogram features,

texture features, shape features, and higher-order features extracted from

Laplacian of Gaussian (LOG) and wavelet filtered images. In total, 1158

features were extracted, and the comprehensive list of features can be

found in the Supplementary File.
Comparison between high and low Ki-67
expression groups

According to the features distribution, an independent sample

T-test or Mann-Whitney U test was used to compare the texture

features between high and low Ki-67 expression cohorts. A

Manhattan plot was used to display the distribution of log-

transformed p-values.
Ki-67 expression predictive model
construction and validation

First, a correlation analysis was conducted among the

features with significant differences between high and low Ki-
Frontiers in Oncology 03
67 expression groups. For paired features with a correlation

coefficient greater than 0.75, the feature with a higher average

correlation with other features was eliminated. Subsequently, the

minimum redundancy maximum relevance (mRMR) algorithm

was employed for feature selection to identify a feature set that

maximally correlates with the Ki-67 expression status while

minimizing redundancy among features. This process involved

calculating the mutual information between the Ki-67

expression status and each feature, then subtracting the

average mutual information of previously selected features

from the current feature. The top 5 features were then selected

to build a predictive model for Ki-67 expression using a support

vector machine algorithm.

The predictive performance of the model was assessed using

receiver operating characteristic curve analysis (ROC). The optimal

cut-off value for the model was determined based on the Youden

index, and the model’s accuracy, sensitivity, specificity, positive

predictive value, and negative predictive value were calculated. To

verify the reliability of the model, a 10-fold cross-validation was

conducted. The average area under the ROC curve (AUC) and

diagnostic performance parameters from the cross-validation were

also obtained.
Statistical analyses

All statistical analyses in this study were performed using R

statistical software (version 4.2.1, www.r-project.org). Features

conforming to a normal distribution were represented by mean ±

standard deviation, while others were represented by median and

interquartile range. ROC analysis was used to evaluate the

predictive performance of texture features and the model, with

the AUC as the assessment indicator. A p-value of <0.05 was

considered statistically significant.
FIGURE 1

Flowchart of breast cancer lesion segmentation and the 3 subregions re-segmentation. The washout subregion (red) and the plateau subregion
(green) were merged as the malignant subregion.
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Results

Patient characteristics and
pathological results

The study included 119 pathologically confirmed breast cancer

patients, with an average age of 54.19 ± 11.05 years. By comparing

the clinicopathological information between high and low Ki-67

expression cohorts, the age (High vs. Low: 53.420 ± 9.606 vs. 55.842

± 13.637, p = 0.264), tumor size (High vs. Low: 2.707 ± 1.390 vs.

2.497 ± 1.749, p = 0.480), Lymph node metastasis (High vs. Low,

percentage of Yes: 44.444% vs. 36.842%, p = 0.559) and

Lymphovascular invasion (High vs. Low, percentage of Yes:

22.222% vs 21.053%, p = 1.000) shown no significant differences.

However, the percentage of WHO III in high Ki-67 expression

cohort was significantly higher than the low Ki-67 expression

cohort (High vs. Low: 20.988% vs. 2.632%, p=0.006), similarly,

high Ki-67 expression cohort occupied higher TNBC percentage

(High vs. Low: 33.333% vs. 13.158%, p = 0.036). The detailed

information was shown in Table 1.
Differences in texture features between
different Ki-67 expression levels

Comparison between groups with different Ki-67 expression

levels revealed significant differences in 51 texture features,

including 48 high-order features (26 from Laplacian of Gaussian

transformation, 22 from wavelet transformation), and 3 shape

features, no first-order histogram feature and second-order

texture features shown significantly different between two cohorts,

as shown in Figure 2.
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Ki-67 expression predictive model
construction and validation

After correlation analysis and mRMR, 46 redundant features

were excluded, 5 remaining features entered into the SVM classifier

to predict the Ki-67 status. The distributions of the 5 features in the

high and low Ki-67 expression cohorts are illustrated in Figure 3A,

highlighting a visually distinct contrast. Through ROC analysis for

each feature, the range of AUC values were from 0.595 to 0.642, and

wavelet_LLH_glcm_Idm had the highest AUC value (Figure 3B).

The ROC curve of the model was shown in Figure 4, with an

AUC of 0.77 and a 95% confidence interval of [0.68, 0.87]. Based on

the Youden index, the optimal cut-off value for the model was 0.366,

with corresponding model accuracy, sensitivity, specificity, positive

predictive value, and negative predictive value of 0.765, 0.802, 0.684,

0.844, and 0.619, respectively. To validate the model reliability, the

10-fold cross-validation was conducted and the result was shown in

Figure 4, with the highest AUC reaching 0.91 and an average AUC

of 0.72 ± 0.14.
Discussion

Previous studies have evaluated breast cancer using the whole

lesion in assessing tumor enhancement patterns in DCE-MRI.

However, tumor is heterogeneous internally, with different

regions showing different enhancement patterns. Following the

methodology of Kim et al. (6, 7), in this study, we obtained

enhancement curves for individual voxels and classified the tumor

into plateau, persistent, and washout subregions. The washout and

plateau subregions often correlate with the malignancy of the

tumor. Similarly, Ki67, a marker of cell proliferation, is also
TABLE 1 Comparison of the patients’ clinicopathological information between high and low Ki-67 expression cohorts.

Ki-67 Status (n = 119)
p-value

High (n=81) Low (n=38)

Age (Year) 53.420 (9.606) 55.842 (13.637) 0.264

Size (mm) 2.707 (1.390) 2.497 (1.749) 0.480

WHO I 15 (18.519) 15 (39.474)

II 49 (60.494) 22 (57.895)

III 17 (20.988) 1 (2.632) 0.006

TNBC No 54 (66.667) 33 (86.842)

Yes 27 (33.333) 5 (13.158) 0.036

LNM No 45 (55.556) 24 (63.158)

Yes 36 (44.444) 14 (36.842) 0.559

LVI No 63 (77.778) 30 (78.947)

Yes 18 (22.222) 8 (21.053) 1.000
TNBC, triple negative breast cancer; LNM, lymph node metastasis; LVI, Lymphovascular invasion.
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associated with the malignancy of tumors. Our study was the first to

investigate whether the texture features of the malignant subregion

(the washout subregion and plateau subregion) could predict Ki-67

expression status.

Various methods were developed to identify the subregions of

the tumor, with habitat analysis is the widely used method. The

habitat analysis involves obtaining quantitative parameters for each

voxel within the tumor, such as Ktrans, Kep, Ve, and Vp from high

temporal resolution DCE-MRI, followed by clustering algorithms to

cluster the voxels into different subregions. This segmentation

method has limitations as the subregions’ physiological

information was unclear. Similarly, Fan et al. ever used the

subregions in tumor to predict the Ki-67 status, although their

subregions considering to the pattern of enhancement, but the

subregions also didn’t have clear definition (17). Our approach,

based on enhancement curves for subregion segmentation,

considered the principles of tumor enhancement. Different

enhancement types reflected cells with different levels of

malignancy, making the segmentation more clinically meaningful.
Frontiers in Oncology 05
Texture analysis has been widely used in noninvasive tumor

investigation, and the texture features are able to capture the invisible

information correlated with clinical outcome or pathological

characteristics (18). In this study, we classified texture features into

four categories: shape, histogram, second-order texture, and high-

order texture features. However, as shown in the Manhattan plot,

there weren’t the first-order histogram features and the second-order

texture features significantly differed between high and low Ki-67

expression cohorts. In contrast, a substantial number of high-order

texture features derived from Laplacian of Gaussian and wavelet

transformed images showed significant differences between high and

low Ki-67 expression groups. This suggested that the malignant

subregion, also related to tumor malignancy, was influenced by Ki-

67 expression levels. Lower-order features, which are not visually

discernible, do not representmolecular-level information. In contrast,

high-order features captured more detailed information within

lesions and were more sensitive to molecular-level differences (12).

We constructed a model for predicting Ki-67 expression levels using

support vector machine algorithm and evaluated its efficacy with 10-fold
FIGURE 3

The distribution heatmap of the features used to construct the predictive model in different Ki-67 expression status (A) and their results of ROC
analyses (B).
FIGURE 2

Manhattan plot showing the distribution of p-values for the significance of texture feature differences. The y-axis represents -log10(p), with larger
values indicating smaller p-values. Each dot represents a texture feature. The blue line indicates p=0.05, with points above the line representing
texture features with significant differences.
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cross-validation. The model’s AUC reached 0.77, with an average AUC

of 0.72 for cross-validation, suggesting that the machine learning model

based on the features derived from the malignant subregion could

accurately and reliably predict Ki-67 expression levels, offering

significant diagnostic value for breast cancer. Simultaneously, we noted

a low AUC value for fold 2, possibly stemming from the varying

distribution of features within fold 2 compared to the rest of the data.

Therefore, conducting cross-validation is essential to mitigate such

occasional discrepancies and validate the robustness of the predictive

model, with the averaged AUC holding more valuable.

The Ki-67 predictive model included 1 shape feature and 4 high-

order texture features. The shape feature was original_shape_

Maximum2DDiameterColumn, which was defined as the largest

pairwise Euclidean distance between tumor surface mesh vertices in

coronal plane. In high Ki-67 expression patients, original_shape_

Maximum2DDiameterColumn had the higher value, which suggested

high Ki-67 expression leaded to the malignant subregion having longer

diameter in coronal plane. In 4 high-order texture features,

wavelet_LLH_glcm_Idm is a measure of local homogeneity of the

image, which increased in high Ki-67 expression cohort. This

suggested that although high Ki-67 expression indicates a higher

malignancy level and higher malignancy is typically associated with

increased tumor heterogeneity, the malignant subregion of the tumor

tended to showconsistent enhancementpatternswhenKi-67 expression

was high. The wavelet_LLL_glcm_ClusterShade and log_sigma_

4_0_mm_3D_glcm_ClusterShade are both the measures of the

skewness and uniformity of the gray level co-occurrence matrix

(GLCM), which suggested that in high Ki-67 expression cohorts, their

malignant regions’ GLCMs were low skewness. The log_sigma_

4_0_mm_3D_glcm_Imc2 quantified the complexity of the texture,

which was lower in high Ki-67 expression cohorts, in other words, the

microscopic information in the malignant subregion tends to be

more consistent.

However, this study has several limitations. Firstly, there was no

independent external validation to assess the performance of the

predictive model and their reproducibility. However, we utilized
Frontiers in Oncology 06
cross-validation to confirm the reliability of the model. Secondly,

the value of the persistent subregion’s texture features in predicting

the Ki-67 expression status was not investigated and compared with

the other subregions. In future research, we would include the other

regions, such as peritumor region, to identify the best region to

predict Ki-67 expression status.
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