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Cuproptosis in glioblastoma:
unveiling a novel prognostic
model and therapeutic potential
Zhigang Qin, Bin Yang, Xingyi Jin, Hang Zhao and Naijie Liu*

Neurosurgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
Glioblastoma, a notably aggressive brain tumor, is characterized by a brief

survival period and resistance to conventional therapeutic approaches. With

the recent identification of “Cuproptosis,” a copper-dependent apoptosis

mechanism, this study aimed to explore its role in glioblastoma prognosis and

potential therapeutic implications. A comprehensive methodology was

employed, starting with the identification and analysis of 65 cuproptosis-

related genes. These genes were subjected to differential expression analyses

between glioblastoma tissues and normal counterparts. A novel metric, the “CP-

score,” was devised to quantify the cuproptosis response in glioblastoma

patients. Building on this, a prognostic model, the CP-model, was developed

using Cox regression techniques, designed to operate on both bulk and single-

cell data. The differential expression analysis revealed 31 genes with distinct

expression patterns in glioblastoma. The CP-score was markedly elevated in

glioblastoma patients, suggesting an intensified cuproptosis response. The CP-

model adeptly stratified patients into distinct risk categories, unveiling intricate

associations between glioblastoma prognosis, immune response pathways, and

the tumor’s immunological environment. Further analyses indicated that high-

risk patients, as per the CP-model, exhibited heightened expression of certain

immune checkpoints, suggesting potential therapeutic targets. Additionally, the

model hinted at the possibility of personalized therapeutic strategies, with certain

drugs showing increased efficacy in high-risk patients. The CP-model offers a

promising tool for glioblastoma prognosis and therapeutic strategy

development, emphasizing the potential of Cuproptosis in cancer treatment.
KEYWORDS
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1 Introduction

Glioblastoma is a severe and short-survival brain tumor (1). Several types of research

indicate that glioblastoma would be subdivided into proneural, classical, and mesenchymal

molecular subtypes (2, 3). The mesenchymal exhibits more malignant physiology than the

other two varieties, with a median survival of only 11.5 months. Conventional therapies for

glioblastoma remain inadequate due to treatment resistance (3).
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Copper regulation is essential for cellular enzyme activity, and

inappropriate copper deposition can result in cell death

(4).Cuproptosis is a recently found mechanism for cell death

connected with mitochondria respiration (5). Cuproptosis reflects

the biological disorder of copper homeostasis and can be activated

by specific regulatory factor such as FDX1, the loss of which gives

cell tolerance to cuproptosis (5). According to a previous study (6),

FDX1 are involved in lung cancer metabolism and prognosis.

Moreover, copper levels are changed in individuals with bladder

or breast cancer (7), as well as glioblastoma that the copper is more

significant than normal tissue (8). Computer scanning analysis

revealed that glioblastoma could absorb more cupric ion than

low-grade glioma (9). Copper intratumoral increases angiogenesis,

facilitates immune suppression, and influences cancer development

and metastasis (7, 10, 11). Copper-associated drugs have enormous

therapeutic promise for cancer (12). However, this research is still in

its infancy due to the lack of cancer cell selectivity and the

difficulties in identifying susceptible individuals (5, 7).

Bioinformatics enables the identification of the regulatory

function of cuproptosis, the prediction of therapeutic medicines,

and the selection of sensitive patients from large cohorts.

Here, we established and assessed the cuproptosis score in

glioblastoma patients with single-cell and bulk data. Several

regression methods were leveraged to explore the prognostic

cuproptosis-related genes. Consequently, we developed a

cuproptosis-based model to predict glioma patients’ prognosis

and clinical characteristics. The risk score revealed associations

between glioblastoma prognosis, immune response pathways, and

the immunological microenvironment. In addition, we analyzed

functional differences, immunological landscape, immune

checkpoint inhibitors (ICIs), and chemotherapy response between

the identified risk subgroups. As a potential novel therapy for

glioblastoma, cuproptosis-targeting medicines were projected to

have promise. In conclusion, our CP-model may aid in

elucidating the cuproptosis-related functions and serve as a

unique therapeutic tool for glioblastoma-specific treatment.
2 Materials and methods

2.1 Human specimen collection

All human specimens were meticulously selected based on

stringent criteria to ensure the integrity and relevance of our

research findings. The specimens comprised glioma tissues

obtained from six patients undergoing surgical resection at the

China-Japan Union Hospital. Only specimens from patients with

histopathologically confirmed glioblastoma were included, ensuring

the study focused on relevant disease pathology. Specimens were

obtained from patients who had not received any form of

chemotherapy or radiotherapy prior to surgery. This criterion was

established to minimize the potential influence of prior treatments

on the gene expression profiles of the tumor tissues. Human

samples were collected with the approval of the China-Japan

Union Hospital Ethics Committee. All patients signed informed

consent under the declaration of Helsinki.
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2.2 Data acquisition

Glioma patients with the gene expression profile, clinical

features, and survival information were acquired from the TCGA

database. Testing sets were adopted from the CGGA database (13)

and GlioVis database (Rembrandt and Gill cohorts) (14).

Immunotherapy cohorts were downloaded from the GEO

database (GSE35640 and GSE78220 cohorts) (15, 16) and one

published study (17). The single-cell profiles of glioma were

acquired from the GSE182109 accession in GEO database (18).
2.3 Functional analysis

Go and KEGG databases were applied to perform function

analysis in the clusterProfiler package (19). P value less than 0.05

is significant.
2.4 Establishment of cuproptosis score

We manually collected cuproptosis-associated genes from

literature (5) and GSEA database (GOBP_COPPER_ION_

HOMEOSTASIS . v2022 and GOBP_RESPONSE_TO_

COPPER_ION.v2022) (20). To assess the cuproptosis response in

glioma, we analyzed differential cuproptosis-related genes between

the glioma and normal tissues and established the cuproptosis score

(CP-score) based on the differential genes using the ssGSEA (for

bulk data) and Ucell (for single-cell data) algorithms.
2.5 Construction of cuproptosis risk model

To filter out the significant prognostic genes for GBM, we

performed Cox and Lasso regression based on the differential

cuproptosis-associated genes. Significant genes with (Cox

regression< 0.05) were retained for further analysis. To improve the

model’s robustness, we randomly divided the training set into

internal training and testing sets at 50% and then tested the model

in three external sets. Each potential model was evaluated using 1-, 3-

and 5-year AUC. Finally, the cuproptosis scoring model (CP-model)

was constructed using the mathematical methodology below:

riskscore =o
n

i=1

(bi�Expi)

ere n is the number of cuproptosis-related genes, exp is the gene

expression profiles, and b is the Cox regression coefficient. GBM

individuals were categorized by the CP-model. The predictive

ability was assessed using survival analysis.
2.6 Evaluation of CP-model reliability

We assessed the hazard ratios (HRs) using Cox regression for

CP-model and other clinical features. HRs and P-value were shown
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in the forest plot. We then constructed a nomogram to display the

survival time of GBM individuals in indicated times. Calibration

plot demonstrated the accuracy of nomogram. Finally, we evaluated

the CP-model and five existing models using C-index, KM curves,

and restricted mean survival time (RMST).
2.7 Analysis of the
tumor microenvironment

We applied CIBERSORT algorithm to assess the proportions of

immune cell types (21). To assess immune response and tumor cell

activity, we adopted 20 pathways from a published study (22) and

calculated pathway activity using the ssGSEA with the gsva R

package. ESTIMATE and TIDE algorithms were applied to

evaluate tumor purity and T cell dysfunction (23, 24).
2.8 Chemotherapeutic prediction

The GDSC database and pRRophetic package were leveraged to

evaluate the drug sensitivity for each specimen in R (25). Therein,

we calculated the IC50 with 10-fold cross-validation and default

setting (26).
2.9 Immunohistochemistry

Glioma tissue samples were prepared as 4 mm sections. The

slides were deparaffinized, rehydrated in a series of gradient ethanol,

and recovered them by heating the tissue at 100°C in citrate buffer

for 1 hour. The endogenous peroxidase activity was inhibited with

3% hydrogen peroxide for 10 minutes at room temperature. The

slides were treated with primary antibodies overnight at 4°C. After

washing with PBS, we then incubated it with goat serum at room

temperature for 30 min. Each segment was rinsed with PBS and

then incubated with DAB for 5 min. Two pathologists assessed the

IHC staining. IHC was performed using antibodies against CD3

(ab16669, Abcam), FOXP3 (ab20034, Abcam), Tryptase (ab2378,

Abcam), and CD163 (ab79056, Abcam).
2.10 Patients stratification and qPCR assay

The classification of glioblastoma patients into high-risk and

low-risk groups was based on their CP-model score, which was

computed from the expression levels of CP-model genes measured

by quantitative PCR (qPCR). This approach allowed for a robust

stratification of patients. qPCR assays were conducted to measure

the expression levels of the genes comprising our CP-model. RNA

was extracted from glioblastoma tissue samples using TRIzol

reagent, and cDNA synthesis was carried out using a High-

Capacity cDNA Reverse Transcription Kit. qPCR was performed

using SYBR Green PCR Master Mix in a Real-Time PCR Detection

System. The CP-model score for each patient was calculated based
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on the expression levels obtained from the qPCR results using the

formula derived from our model. The DDCt method was used to

analyze the relative changes in gene expression normalized to an

endogenous reference gene and relative to a control.
3 Results

3.1 Exploration of cuproptosis
in glioblastoma

To inspect the cuproptosis dysfunction in glioblastoma, we

collected 65 cuproptosis-related genes from the published study

and GSEA database and performed the differential analysis between

glioblastoma and normal tissue. We found 31 differential expressed

cuproptosis-related genes, including 26 up-regulated and 5 down-

regulated genes (Figure 1A). To comprehensively analysis the

correlation among these differential genes, we categorized them

into two clusters based on hierarchical clustering and constructed a

regulatory network. We observed a significant positive association

of DLAT with DLD (cor = 0.703), and a negative association of

MAP1LC3A with SORD (cor = -0.369) within the cluster

A (Figure 1B).

We further constructed the CP-score to evaluate cuproptosis

response in GBM. The CP-score was remarkably higher in the GBM

patients versus the normal individuals (Figure 1C), and significantly

associated with the advanced grade (Figure 1D). Rembrandt and

Gill datasets were used to validate the results (Figures 1E, F).

Furthermore, we performed enrichment analysis of the

differential expressed cuproptosis-related genes and observed that

they were enriched in multiple functions and pathways, such as

copper regulation and homeostasis, metal transition pathways and

mineral absorption (Figures 1G, H).

As tumor microenvironment (TME) are involved in

tumorigenesis, we then assessed the CP-score with infiltrated

immune cells in GBM. We found that CP-score were significantly

correlated with several cell infiltrations (Figure 1I), such as positive

correlation with M2 macrophages (Figure 1J), negative correlation

with CD8+ T cells (Figure 1K).
3.2 Assessment of CP-score at single-
cell level

To further assess the correlation between CP-score and TME in

single-cell level, we acquired 60094 cells from GEO database under

the GSE182109 accession number after quality control. We

categorized these cells into 17 clusters (Figure 2A), and then

annotated the cell types using the celltypist algorithm (Figure 2B).

Moreover, the CP-score were calculated using the Ucell algorithm

(Figure 2C). To distinguish each cell type, we labeled the

representative markers of each cell type and demonstrated the top

differential genes (Figures 2D, E). We observed that CP-score were

significantly correlated with immune cell infiltration in GBM

samples (Figure 2F).
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Due to the importance of T cell and macrophages in the TME,

we evaluated the CP-score in distinct T cell and macrophage

subsets. We annotated the subtypes and observed the strong

correlation among the cell diversity of CP-score which were in

accordance with the bulk data (Figures 2G–J).
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3.3 Construction of cuproptosis risk model

We further analyzed cuproptosis-related genes with

glioblastoma prognosis using Cox regression. Twenty-five genes

were associated with glioblastoma prognosis and ten-fold cross-
A
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C

FIGURE 1

Functional enrichment and prognostic characters of cuproptosis-related genes. (A) Heatmap showing the 36 differential cuproptosis-related genes
in glioma. (B) Interactive correlation of 25 cuproptosis-related genes with significant prognosis. (C) Distribution of CP-score in TCGA-GTEx datasets
between the tumor and normal tissues. (D) Distribution of CP-score in TCGA-GTEx datasets with grade information. (E, F) Distribution of CP-score
in Gill and Rembrandt datasets. (G) GO enrichment of differential cuproptosis-related genes. (H) KEGG analysis of differential cuproptosis-related
genes. (I) Correlation of CP-score with immune cell inflictions. (J) Representative positive correlation: M2 macrophage. (K) Representative negative
correlation: CD8+ T cells. *P<0.05, **P<0.01, ****P<0.0001.
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validation was leveraged to calculate the deviance (Figure 3A). To

identify the genes with the highest predictive value, we performed

the Cox regression with LASSO penalty in the TCGA and internal

training sets using 50% random sampling. We finally got five

cuproptosis genes to establish the cuproptosis risk model (CP-

model) as shown below:
Frontiers in Oncology 05
riskscore = ANKRD9� 0:271 + SLC31A1� 0:724 − LCAT

� 0:379 − SNCA� 0:298 − SORD� 0:606

We categorized GBM patients into two risk subgroups using the

CP-model for the training and external sets using the same cut point

obtained from the training set. As expected, we observed a shorter OS
A B
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C

FIGURE 2

Landscape of CP-score in single-cell level. (A) Distribution of cell cluster. (B) Distribution of cell annotation. (C) CP-score distribution.
(D) Representative cell marker in each cell type. (E) Top differential genes in each cell type. (F) CP-score difference among distinct cell types.
(G) Distribution of cell annotation in T cells subtypes. (H) CP-score correlates with macrophage subtypes. (I) Distribution of cell annotation in T cell
subtypes. (J) CP-score correlates with macrophage subtypes. *P<0.05, **P<0.01, ****P<0.0001.
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in the high-risk subtype from the TCGA training cohort as well as

other five cohorts (Figure 3B). In addition, the predictive ability of

CP-model was also evaluated using the time-dependent ROC analysis

in the 1-, 3- and 5-year were all above 0.5, indicating the excellent

predictive ability of CP-model (Figure 3C). Finally, the relative gene

expression profile and risk score distribution were illustrated in

Figure 3D. To monitor the robustness of the CP-model, the

reliability of CP-model using the TCGA set was evaluated in three

external sets using the same formula and cutoff from training cohort.
3.4 Performance of CP-model

To evaluate the clinical application of the CP-model, we performed

univariate and multivariate analyses with some clinical vicariates. We

observed that the CP-model demonstrated a more reliable for
Frontiers in Oncology 06
glioblastoma prognosis compared with age and grade (Figures 4A,

B). In addition, a nomogram was built to help clinicians to analyze the

survival probability of GBM individuals by combining the CP-model

and other independent factors (Figure 4C). In brief, these factors were

weighted using a point system. Assigning values to the variables

included drawing an upward-sloping straight line and then rescaling

the total of the points for each variable. The total points were calculated

by adding together all the individual variable scores. Illustrating a

straight line to the outcome axis allowed us to calculate the 1-, 3-, and

5-year survival probabilities for GBM. The calibration plot revealed that

the bias-corrected line was near the ideal curve, indicating high degrees

of concordance between the predictive and actual points (Figure 4D).

We further applied a time-dependent ROC curve to assess the survival

probability, the AUC were 0.82, 0.86, and 0.79 in 1-, 3-, and 5-year,

respectively (Figure 4E). The risk scores were a better predictor of

outcomes than traditional factors (Figure 4F).
A

B

D

C

FIGURE 3

Prognostic analysis of CP-model. (A) Lasso regression was used to screen out significant genes. (B) KM survival curve in the training sets and the
testing sets. (C) Time-dependent ROC curve analysis of the CP-score in the training sets and the testing sets. (D) Risk plot distribution, survival
status, and relative expression of risk factors in the training sets and the testing sets.
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We chose five popular risk models from the literature to

evaluate against our CP-model (27–31), and we plotted their

ROC and KM curves to show how they compare (Figures 5A, C).

C-index was calculated using the rms package in R. According to

the findings, the C-index for CP-model was higher than other five

predictive risk models (Figure 5B). The high-risk subgroup’s RMST

across all six models is shown in Figure 5D. Overall, our results

indicate that the CP-model was more accurate for predicting

glioblastoma patients’ survival than individual prognostic markers

and other existing models.
Frontiers in Oncology 07
3.5 Clinicopathological significance of the
CP-model

We applied a heatmap to show the expressed profiles of five

cuproptosis-related genes and clinicopathologic factors

(Figure 6A). The expression of SNCA, SORD and LCAT were

inhibited, and ANKRD9 and SLC31A were relatively higher in the

higher risk patients. Furthermore, most of the patients in grade

III/IV were categorized as high-risk subgroups, reflecting the

feasibly predictive ability of the CP-model. Risk scores were also
A B

D

E F

C

FIGURE 4

Evaluation of risk model. (A) The univariate Cox regression analyses of the risk score and other clinical factors. (B) The multivariate Cox regression
analyses of the risk score and other clinical factors. (C) Nomogram was used to predict 1-, 3-, and 5-year OS of glioblastoma. (D) Calibration curves
was used to demonstrate the nomogram−predicted OS and observed OS of glioblastoma patients. (E) ROC curve demonstrating the AUC at 1-, 3-,
and 5-year for the risk score. (F) ROC curve demonstrating the AUC of risk score and other clinical factors.
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associated with age, dead status, and grade in glioblastoma

(Figures 6B–D). In line with risk stratification, the risk score

was correlated positively with ANKRD9 and SLC31A, but

negatively with SNCA, SORD and LCAT (Figures 6E, F).

Altogether, our results indicated that the CP-model was

independent of conventional clinical characteristics.
3.6 Functional variations between the CP-
model subtypes

To mechanically detect the difference between the two subtypes,

we applied GSEA analysis based on GO and KEGG databases. We
Frontiers in Oncology 08
observed that some GO functions were activated in the high-risk

patients, such as adaptive immune response, B cell and T cell-

mediated activation (Figure 7A). However, some GO functions were

inhibited, including multiple amino acid transport functions

(Figure 7A). In addition, multiple disease-related pathways were

activated for KEGG analysis, but AMPK and JAK-STAT signaling

pathways were inhibited (Figure 7B).

Next, we analyzed the principal component analysis (PCA)

using the full set of genes (Figure 7C), on all cuproptosis genes

(Figure 7D), and five selected cuproptosis genes from the CP-model

(Figure 7E). We showed that the two risk subgroups were

distinguishable based on the expression patterns of the selected

cuproptosis regulatory genes.
A

B

D

C

FIGURE 5

Comparison of CP-model. (A) The ROC curve of Wang, Fan, Lin, ChenH, and Chen signatures. (B) Barplot demonstrating the C-index of six risk
signatures. (C) The KM survival curve of Wang, Fan, Lin, ChenH, and Chen signatures. (D) RMST for each of the six models.
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3.7 CP-model correlates
immune landscape

To assess the TME in glioblastoma patients, we calculated

immune response and tumor cell activity using the ssGSEA and

assessed the infiltrated immune cell using the CIBERSORT

algorithm. We found that 17 pathways and 14 types of cells were

dramatically altered between the two subgroups (Figures 8A, B).

Moreover, the risk score was positively correlated with seven cells,

but negatively correlated with four cells (Figure 8C). Finally, we

validated our findings using IHC by targeting immune cell markers

(Figure 8D). We confirmed that CD3 targeting T cells were

accumulated in low-risk group patients. However, FOXP3

targeting Tregs, tryptase targeting mast cells and CD163 targeting

M2 macrophage were collected in high-risk group patients.

We next evaluated the tumor heterogeneity using ESTIMATE.

High-risk subgroup patients have significantly elevated estimate,

stromal, and immune scores but have low tumor purity (Figure 8E).
Frontiers in Oncology 09
Moreover, TIDE and T cell dysfunction, but not exclusion, were

substantially lower in the high-risk subgroup (Figure 8F). Patients

with low-risk and high TIDE scores exhibited the more extended

OS than the others (Figure 8G). High-risk score correlated with

high intratumor heterogeneity, high proliferation activity, high

leukocyte fraction and low CTA score (Figure 8H). Thus, our

findings show that aberrant immunological infiltration and tumor

heterogeneity in glioblastoma may serve as prognostic markers

and immunotherapy targets and may have substantial

therapeutic consequences.
3.8 CP-model predicts immunotherapy and
chemotherapy in GBM

Cancer immunity cycle is a set of sequential events that killing

cancer cells (32). The high-risk subgroup patients had a low score in

steps 2 3 and 5, compared with the low-risk ones (Figure 9A).
A B

D

E F

C

FIGURE 6

Clinicopathological characteristics of CP-model. (A) Heatmap demonstrating the distribution of clinical factors (age, gender and stage) and relative
expression of five cuproptosis regulators in the two risk subgroups. (B) The scatter diagram of risk score and age. (C) The scatter diagram of risk
score and survival status. (D) The scatter diagram of risk score and grade. (E) The association of five cuproptosis regulators with the risk score.
(F) Relative expression of five cuproptosis regulators between the two risk subgroups. ***P< 0.01, ***P< 0.001.
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Conversely, the high-risk group presented low score in steps 1, 4,

and 6 (Figure 9A). These findings indicated that high-risk patients

had a better ability to identify tumors and induced T cells to tumors,

but a weaker ability to infiltrate immune cells and kill tumors (32).

Next, we assessed the immunotherapeutic prediction of the CP-

model using the SubMAP algorithm. High-risk score patients would

get a better effect from anti-MAGA-A3 treatment (Figure 9B).

However, we do not observe significant responsiveness in anti-

PD-1/PD-L1/CTLA4 treatments. We further detailed the

immunotherapeutic responsiveness in a different cohort from

GSE35640 (targeting MAGE-A3 immunotherapy), IMvigor210

(targeting PD-L1 immunotherapy) and GSE78220 (targeting PD-

1 immunotherapy). Consistent with the SubMAP results, the risk

score could be negatively associated with the anti-MAGA-A3

response. Higher score patients presented worse outcomes in the

GSE35640 cohort (Figure 9C). In addition, the risk score was

positively associated with ICIs, such as PD-1, PD-L1, CTLA4,

HAVCR2, LAG3 and TIGHT (Figure 9D). Interestingly, the CP-

model could predict the response to the combination treatment of

anti-PD-1 and anti-CTLA4 (Figure 9E). Since chemotherapy is a

common way of anticancer, we analyzed the CP-model with

chemotherapy response. We found that Pazopanib, Parthenolide,
Frontiers in Oncology 10
NVP.TAE684, Cisplatin, Docetaxel and GSK269962A would be

more effective in high-risk patients (Figure 9F).
4 Discussion

Although glioblastoma is the common cancer of brain, its

prognosis differs amongst molecular subgroups. There is an urgent

need for innovative and efficient methods to assess and improve the

prognosis of glioblastoma. Our understanding of how cancers cause

cell death is constantly refined as new programmed cell death

patterns are discovered and associated molecular pathways are

elucidated. Tsvetkov et al. recently created the term “cuproptosis”

to describe a new kind of copper-dependent apoptosis (5). Several

scholarly articles have established prognostic models based on

cuproptosis-related genes. These models highlight the potential of

leveraging copper metabolism pathways as biomarkers for

glioblastoma prognosis and therapeutic targets (33–36). However,

the precise mechanism of cuproptosis-related genes is currently

unknown. In the present study, five cuproptosis genes were

evaluated for associations with cuproptosis, and the results were

used to develop a risk signature successfully. These genes were
A

B

D EC

FIGURE 7

GSEA analysis of risk score-associated functions. (A) Representative GO enrichment between the two risk subgroups. (B) Representative KEGG
enrichment between the two risk subgroups. (C) PCA for all gene expression profile. (D) PCA for all cuproptosis-related genes expression profile.
(E) PCA for five cuproptosis-related genes expression profile.
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ANKRD9, SLC31A1, LCAT, SNCA and SORD. Additionally, we

demonstrated that patients belonging to high-risk groupings based on

target cuproptosis-related genes are significantly associated with

shorter OS, a weaker immunological effect, and increased

chemosensitivity compared to the low-risk cohort.
Frontiers in Oncology 11
Immunotherapy has proven an effective cancer treatment

method in clinical practice (37). Immunotherapy that blocks the

PD-1/PD-L1 checkpoint has joined chemotherapy as the

conventional medicine for lung cancer (38). Unfortunately, the

metabolic reprogramming of tumors presents a formidable obstacle
A B
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F G
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FIGURE 8

Immune landscape of CP-model. (A) Pathway activities between the two risk subgroups. (B) Differential immune infiltration of 22 immune cell
fractions between the two risk subgroups. (C) The correlation of 22 immune cell types with the risk score. (D) Representative IHC images of immune
cell markers between the two risk subgroups. (E) Correlation of risk score with tumor microenvironment. (F) TIDE, T cell dysfunction and exclusion
between the two risk subgroups. (G) Survival analysis of patients with different combinations of risk scores and TIDE in TCGA cohort. (H) Correlation
of risk score with the intratumor heterogeneity, cell proliferation, leukocyte fraction and CTA score. *P< 0.05, **P< 0.01, ***P< 0.001, ****P<0.0001,
n.s, not significant.
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for immune cells to fulfill their jobs and for cancer immunotherapy

to be effective (39). Specifically, cells with a high concentration of

lipid-acylated proteins are more susceptible to copper-induced cell

death. Thus, in cancers characterized by an increased lipid

metabolism, the stimulation of copper-mediated cell death may

eliminate medication resistance from immune evasion. As

anticipated, our GO and KEGG analyses revealed strong

associations between immune response-related pathways. Our

CP-model indicated an inextricable link between copper-

dependent cell death and tumor immune responses in
Frontiers in Oncology 12
glioblastoma when seen as a whole (40). Moreover, we have

extended our analysis to include recent findings by Zhu et al.,

which highlight the prognostic significance of cuproptosis clusters

in low-grade glioma (LGG) and their correlation with

immunotherapy response (41). This study’s approach to

categorizing patients based on cuproptosis-related DEGs mirrors

our methodological framework in glioblastoma, underscoring the

potential universality of cuproptosis as a prognostic marker across

glioma subtypes. The evidence suggesting that cuproptosis-related

genes influence patient prognosis by modulating immune cell
A B
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F

C

FIGURE 9

CP-model predicted the response to chemotherapy and targeted therapy. (A) Differential immune cycle processes between the two risk subgroups.
(B) Putative immunotherapy response between the two risk subgroups. (C) Risk score distribution for different immunotherapy target responses in
the GSE35640 cohort, IMvigor210 cohort and GSE78220 cohort. (D) Differential expression of six immunosuppressive molecules between the two
risk subgroups. (E) Four subtypes of IPS values between the two risk subgroups. (F) Drug sensitivity of Pazopanib, Parthenolide, NVP.TAE684,
Cisplatin, Docetaxel and GSK269962A between the two risk subgroups. *P< 0.05, **P< 0.01, ***P< 0.001, n.s, not significant.
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infiltration and tumor-associated pathways further supports our

hypothesis that targeting these pathways could offer new

therapeutic avenues. Inspired by these findings, we posit that our

CP-model not only serves as a reliable predictor for glioblastoma

patient outcomes but also holds the potential to guide

immunotherapeutic strategies, enhancing the precision of

treatment modalities in glioblastoma.

Since glioblastoma typically does not react favorably to ICIs, it is

considered immunologically “cold” (42). The high percentage of

myeloid cells (30-50%) within glioblastoma tumors that act to

inhibit the immune cells entering the tumor is primarily

responsible for this immune escape (43). One of the primary

components of the glioblastoma TME is myeloid-derived

suppressor cells (MDSCs), which limit cytotoxic T lymphocyte

and natural killer cell activity (43). In addition, CTLA4 (44), PD-

1 (45), and TIM3 (46) are intensively researched checkpoint

molecules in glioblastoma. Given that PD-L1 expression levels are

inversely associated with clinical outcome (47), we explored the

expression of important role in the immune checkpoints, such as

PD-1/PD-L1, CTLA4, HAVCR2, LAG3 and TIGHT, to better

understand the connections between the CP-model and immune

invasion. Our data demonstrated a strong correlation between the

risk score and the expression of immunological checkpoints, with

higher expression levels observed in the high-risk subgroup, which

also had a worse outcome. These findings suggest that elevated

immune checkpoint expression contributes to a more

immunosuppressive milieu, which promotes glioblastoma

progression in the high-risk subgroup and may explain why this

group has a worse prognosis.

Our study introduces a novel prognostic model for

glioblastoma, advancing the understanding of cuproptosis

beyond the scope of existing models. Furthermore, our paper

builds upon the groundwork laid by previous studies by offering

innovative approaches and insights. Importantly, we have

developed a prognostic model with refined predictive accuracy

for glioblastoma outcomes by integrating a unique set of

cuproptosis-related genes. Additionally, our model is thoroughly

validated using both single-cell and bulk RNA-seq data, providing

a multi-dimensional perspective that reinforces the model’s

applicability and robustness. In particular, we delve deeper into

the interplay between cuproptosis-related genes and the immune

microenvironment, a connection that has not been extensively

explored in glioblastoma. Consequently, our CP-model correlates

with both the immunological landscape and chemotherapy

responses, paving the way for its use as a clinical tool for

personalized treatment strategies. Lastly, we employ advanced

computational techniques, including machine learning

algorithms, to develop a prognostic score that outperforms

traditional clinical parameters and previous prognostic models.
5 Conclusion

Our CP-model was shown to be an independent predictive

biomarker for patients with glioblastoma by examining the immune

landscape of glioblastoma from multiple cohorts. Genes enriched in
Frontiers in Oncology 13
the immune response and immunological-related pathways were

most prominent among those revealing variations in immune

infiltration across subgroups. In addition, a nomogram was built

that quantitatively predicts glioblastoma patients’ OS by merging

the CP-model and clinical parameters. The CP-model foretells the

effectiveness of immunotherapy and chemotherapy in treating

glioblastoma. Therefore, it aids doctors in making judgments

about patient care.
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