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Mechanisms of angiogenesis
in tumour
Run Zhang, Yutong Yao, Hanwei Gao and Xin Hu*

China–Japan Union Hospital of Jilin University, Jilin University, Changchun, China
Angiogenesis is essential for tumour growth and metastasis. Antiangiogenic

factor-targeting drugs have been approved as first line agents in a variety of

oncology treatments. Clinical drugs frequently target the VEGF signalling

pathway during sprouting angiogenesis. Accumulating evidence suggests that

tumours can evade antiangiogenic therapy through other angiogenesis

mechanisms in addition to the vascular sprouting mechanism involving

endothelial cells. These mechanisms include (1) sprouting angiogenesis, (2)

vasculogenic mimicry, (3) vessel intussusception, (4) vascular co-option, (5)

cancer stem cell-derived angiogenesis, and (6) bone marrow-derived

angiogenesis. Other non-sprouting angiogenic mechanisms are not entirely

dependent on the VEGF signalling pathway. In clinical practice, the conversion

of vascular mechanisms is closely related to the enhancement of tumour drug

resistance, which often leads to clinical treatment failure. This article summarizes

recent studies on six processes of tumour angiogenesis and provides suggestions

for developing more effective techniques to improve the efficacy of

antiangiogenic treatment.
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endothelial growth factor; VEGFR, vascular endothelial growth factor and its receptor; VE-cadherin, vascular
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1 Introduction

Tumours satisfy their need for oxygen and nutrients by

establishing new blood vessels to perform other metabolic

functions (1). Tumour angiogenesis was initially defined as vascular

endothelial cells proliferating and migrating based on existing

capillaries or veins so that the original blood vessels form a new

vascular system (2). Following decades of research, however, it has

been shown that tumour angiogenesis is a complicated dynamic

process involving various cell types and complex signalling networks.

The tumour microenvironment (TME) encompasses the internal and

external surroundings of tumour cells during their growth and

metastasis. It consists of various components, including tumour

cells, endothelial cells (ECs), other tissue-resident cells, including

adipocytes, tumour-associated macrophages (TAMs), stromal cells

such as infiltrating leukocytes, cancer-associated fibroblasts (CAFs),

along with bone marrow-derived cells (BMDCs) (3). It plays a crucial

role in inducing immune suppression, immune tolerance, and

tumour angiogenesis. Further studies have revealed that high levels

of angiogenesis depend on the expression of vascular growth factors

and the regulation of various angiogenesis-related signalling

pathways, highlighting the significance of angiogenesis-related

signalling pathways in antitumour therapeutic strategies.

With in-depth exploration of the angiogenesis mechanism, many

anti-angiogenesis drugs (AADs) have been discovered and applied in

clinical practice and have achieved apparent effects in the treatment

of various tumours (4). However, despite the advancements in

antiangiogenic therapy that have significantly improved the lives of
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many cancer patients, resistance to antiangiogenic medication often

emerges during clinical treatment, leading to suboptimal therapeutic

outcomes and treatment failure. Increasing evidence shows that

complex angiogenic mechanisms enable tumours to evade

antiangiogenic therapy (5–8). Currently, research on angiogenesis

has focused on the mechanism of sprouting angiogenesis, while other

mechanisms of angiogenesis remain poorly understood.In this

review, we summarized the findings related to six primary cellular

mechanisms of tumour angiogenesis (Figure 1): (1) sprouting

angiogenesis (SA), (2) vasculogenic mimicry (VM), (3) vessel

intussusception, (4) vascular co-option, (5) cancer stem cell-derived

angiogenesis and (6) bone marrow-derived angiogenesis.

Additionally, we also discuss the development and current

challenges associated with anti-angiogenic therapy. It is our hope

that further studies will enhance researchers’ understanding of

angiogenesis mechanisms and regulation, facilitating the provision

of more effective and individualized antiangiogenic therapies.
2 Different mechanisms
of angiogenesis

2.1 Sprouting angiogenesis

SA, which involves the development of new capillaries from

pre-existing blood vessels, has long been considered the

predominant process underlying tumour vascularization (9). This

intricate process is subject to multiple regulatory mechanisms
FIGURE 1

Different forms of tumour angiogenesis. (A) Sprouting angiogenesis: endothelial cells proliferating and migrating based on existing capillaries.
(B) Bone marrow-derived angio-genesis: bone marrow-derived endothelial progenitor cells differentiate into endothelial cells to form blood vessels.
(C) Vasculogenic mimicry: the vascular channels are made up of tumour cells. (D) Vessel co-option: invading normal tissues, tumour cells make use
of the vascular system already in place. (E) Cancer stems cell-derived angiogenesis: tumour cells with stemness differentiate into endothelial cells.
(F) Intussusceptive angiogenesis: endothelial cells split into two vessels without proliferating. Created with BioRender.com.
frontiersin.org

https://BioRender.com
https://doi.org/10.3389/fonc.2024.1359069
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1359069
governing vascular remodelling and maturation. These mechanisms

encompass crucial signalling pathways, including: (1) The fibroblast

growth factor (FGF) and its receptor (FGFR)signalling pathway:

FGF and FGFR play pivotal roles in orchestrating angiogenesis by

stimulating the growth and development of blood vessels. (2) The

delta-like ligand 4 (DLL4)/Notch signalling pathway: DLL4

interacts with the Notch receptor, influencing cell fate decisions

during angiogenesis and promoting vessel sprouting and branching.

(3) The vascular endothelial growth factor (VEGF) and its receptor

(VEGFR) signalling pathway: VEGF and VEGFR constitute a

fundamental axis in angiogenesis, facilitating the formation of

new blood vessels and promoting tumour angiogenesis. (4) The

platelet-derived growth factor (PDGF) and its receptor (PDGFR)

signalling pathway: PDGF contributes to the growth and

maturation of blood vessels, playing a role in the tumour’s

vascularization process (10–12). These signalling pathways are

interconnected and interact to enhance the proliferation of

vascular epidermal cells and induce tumour angiogenesis, creating

favourable circumstances for malignant tumour development,

invasion, and metastasis.

ECs demonstrate the ability to differentiate into two distinct

phenotypes within the context of angiogenesis: tip cells,

characterized by their capacity to migrate in response to a

concentration gradient of the signalling molecule VEGF, and stalk

cells, which are proficient in proliferative activities (13). In the

intricate process of angiogenesis, the tip cells play a pivotal role by

navigating toward the source of VEGF, guiding the extension of

new vascular branches. These branches subsequently fuse with

other neighbouring branches, culminating in the formation of a

continuous vascular channel. This nascent vascular channel serves

as the foundation for the subsequent development of a sophisticated

network of blood vessels, encompassing capillaries, arterioles, and

venous vessels. This orchestrated process significantly amplifies the

extent of tumour angiogenesis (14), contributing to the increased

supply of oxygen and nutrients to the tumour microenvironment,

ultimately facilitating the progression and sustenance of

malignant tumours.

Upon reaching a certain stage of growth, solid tumours are

exposed to a hypoxic environment, which is considered a hallmark
Frontiers in Oncology 03
feature of tumour growth. Solid tumours generate a significant

amount of Hypoxia-inducible factor 1 (HIF-1) under hypoxic

conditions, and HIF-1 plays a crucial role in tumour progression,

metastasis, and adverse prognosis. Research indicates that HIF-1

can activate the transcription of hypoxia-inducible genes by

targeting genes’ promoters with a common DNA sequence

known as hypoxia response elements (HREs). When induced,

these HREs are activated, leading to the excessive secretion of

various factors that promote angiogenesis (15). Essentially, the

upregulation of HIF-1 in the hypoxia response plays a critical role

in orchestrating molecular events that promote new blood vessel

formation, providing essential oxygen and nutrients for the survival

and development of tumours. Under hypoxic conditions, HIF-1

upregulates growth factors such as VEGF and FGF, promoting

endothelial cell vascular permeability, endothelial cell growth, and

proliferation. Furthermore, it can activate other growth factors,

including PDGF, TGF, and the transcription of angiopoietins

(Ang), facilitating the release of angiogenic factors by cancer cells.

VEGF is a proangiogenic factor that specifically targets vascular

endothelial cells and is involved in a variety of events, such as

tumour development, invasion, and angiogenesis. Members of the

VEGF family include VEGF-A, VEGF-B, VEGF-C, VEGF-D, and

placental growth factor (PIGF) (16). VEGF-A activates VEGFR-2,

which leads to the upregulation of VEGFR-3 and Dll4 in tip cells

and activation of the Notch pathway in neighbouring stalk cells.

This process results in the downregulation of VEGFR-2 and

VEGFR-3 and upregulation of VEGFR-1, maintaining the balance

between tip and stalk cells (Figure 2). The downstream pathways of

the p38-mitogen-activated protein kinase (p38/MAPK) and AKT-

phosphatidylinositol-3 kinases (PI3K/AKT) are activated upon

VEGF-A binding to VEGFR-2 on the surface of ECs (17), causing

ECs to proliferate and migrate, producing a large number of

proangiogenic proteases that increase the permeability of the

vessel barrier.

Once ECs have sprouted and aggregated to form a vascular

prototype, they release factors to attract pericytes. Notably, heparin-

binding EGF-like growth factor stimulates pericyte proliferation,

while transforming growth factor beta 1/2 (TGFb1/2) initiates

pericyte recruitment (18). Additionally, by attracting pericytes
FIGURE 2

The sprouting mode of angiogenesis. Tip cells can move in response to a VEGF concentration gradient, and stalk cells can proliferate. VEGF-A
activates VEGFR-2, which leads to the upregulation of VEGFR-3 and Dll4 in tip cells and activation of the NOTCH pathway in neighbouring stalk
cells, wherein VEGFR-2 and VEGFR-3 are downregulated, and VEGFR-1 is upregulated. Created with BioRender.com.
frontiersin.org
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and tumour-associated fibroblasts, PDGF is essential in the process

of tumour angiogenesis. The PDGF family includes PDGF-A,

PDGF-B, PDGF-C, and PDGF-D (19). PDGF binds PDGFR and

promotes receptor dimerization, thereby initiating signalling,

including the Ras-mitogen-activated protein kinase (RAS/MAPK)

and PI3K pathways (20). PDGF-AB stabilizes the newly formed

tumour vascular system by recruiting pericytes (21). PDGF-BB

regulates VEGFR2 signalling and endothelial proliferation to

prevent vascular abnormalities due to high levels of VEGF (22).

Ang induces tumour-endothelial cell interactions to regulate

tumour angiogenesis. Ang-1, Ang-2, Ang-3, and Ang-4 are

members of the Ang family, while Tie1 and Tie2 are their

corresponding tyrosine kinase receptors (23). Ang-1-mediated

signalling mechanisms involving Tie2 phosphorylation have the

potential to maintain tight endothelial cell interactions (24). A

reduction in vascular sprouting and the induction of tumour

neovascularization can be achieved by blocking Tie/Ang-2 (11).

In addition, the Ang-2/Tie signalling and VEGF signalling

pathways synergistically promote tumour neo-angiogenesis,

blockade of Ang-2 and VEGF delays tumour growth and

enhances survival benefits through reprogramming of tumour-

associated macrophages toward an antitumour phenotype as well
Frontiers in Oncology 04
as by pruning immature tumour vessels (25). Pericytes release Ang-

1, which binds to endothelial cell TIE2 receptors, thereby efficiently

inhibiting endothelial cell proliferation and promoting angiogenesis

stability through downstream signalling pathways, such as Calpain,

protein kinase B, and forkhead box O3A (26).

Anti-angiogenic targeted therapies inhibit the proliferation,

invasion, and metastasis of malignant tumours by disrupting

proangiogenic signalling between tumour cells and ECs

(Figure 3). Currently, the clinical application of AADs mainly

includes antiangiogenic macromolecular monoclonal antibodies,

small-molecule antiangiogenic tyrosine kinase inhibitors, and

antiangiogenic-related molecule inhibitors. The most prevalent

macromolecular monoclonal medicines are bevacizumab and

ramucirumab, and the primary targets of these medications are

VEGF-A and VEGFR. Bevacizumab as a first-line regimen for

metastatic colorectal cancer (mCRC) has been shown in clinical

trials to extend the median overall survival and progression-free

survival of mCRC patients (27). However, due to its single targeting

that is typically combined with chemotherapeutic drugs,

bevacizumab, when combined with platinum-based therapies, has

a considerable PFS advantage in metastatic non-small cell lung

cancer (NSCLC) (28).Tyrosine kinase inhibitors, such as sorafenib,
FIGURE 3

Complex mechanisms of SA formation and anti-angiogenesis therapy. HIF-1 is composed of two subunits: HIF-1a and HIF-1b. In normoxia, HIF-1a is
hydroxylated by prolyl hydroxylase (PHD) in the cyto-plasm in an oxygen-dependent manner. It then forms a complex with the von Hippel-Lindau
protein (VHL) and other proteins, is ubiquitinated and degraded by the proteasome. During hypoxia, lack of oxygen-dependent hydroxylation and
proteasomal degradation of HIF-1a leads to its accumulation. It then forms a dimer with HIF-1b and enters the nucleus, interacts with cAMP
response element-binding protein and p300 protein (CBP and p300), and binds to HRE to activate the transcription of hundreds of genes, including
VEGF, PDGF, Ang, and FGF.VEGF/VEGFR activates the downstream p38/MAPK and PI3K/AKT path-ways. Ramucirumab, sorafenib, regorafenib,
sunitinib, axitinib, apatinib and bevacizumab de-crease angiogenesis by targeting VEGF/VEGFR. PDG/PDGFR causes dimerization of PDGFR-a and
PDGFR-b of different subtypes of the receptor and activation of specific downstream path-ways. Sorafenib, regorafenib, sunitinib, and axitinib also
target PDGFR to inhibit angiogenesis. The Notch pathway mediates angiogenesis through activation of Ras. FGF/FGFR activates downstream PI3K/
AKT, Janus kinase/signal transducer and activator of transcription (Jak/Stat), and other signalling pathways to regulate tumour angiogenesis.
Sorafenib inhibits angiogenesis by targeting FGFR. Created with BioRender.com.
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sunitinib, and pazopanib, control angiogenesis by preventing the

function of receptor tyrosine kinases that accelerate angiogenesis.

Since the approval of Sorafenib in 2007, significant progress has

been made in the treatment of hepatocellular carcinoma (HCC)

(29). Studies of combination therapy with molecule-targeted drugs

and immune checkpoint inhibitors are underway, promising to

benefit more patients (30). Currently, a Phase III trial has been

conducted to effectively treat neovascular age-related macular

degeneration (nAMD) by using faricimab, an antibody targeting

Ang/Tie and VEGFR pathway (31).
2.2 Vascular co-option

The process by which tumour cells invade normal tissues and

utilize the existing circulatory system to gather nutrition and oxygen

is known as vascular co-option (32). Pezzella first discovered in 1997

that tumours could also grow in nonangiogenic ways in non-small

cell lung cancer cells (33). Further studies have revealed that vascular

co-option occurs in lung cancer, renal cell carcinoma (RCC), colon

cancer, glioma and breast cancer (34–40). Under a light microscope,

the characteristic pathological morphology of vascular co-option may

be observed by staining tissue sections with the commonly used

haematoxylin and eosin method (41). By quantitatively analysing CT

and MRI images, angiogenic tumours can be distinguished from

tumours that utilize vascular gain to accurately distinguish between

these two phenotypes (41). Vascular co-option is characterized by

intact vascular architecture of normal tissue within the tumour and

tumour uptake of normal vessels surrounding the tissue rather than

neovascularization, inflammation, or fibrosis (42). In contrast,

tumour angiogenesis usually manifests as disorganization.

Angiogenesis is highly dynamic in time and space, with some

tumour not only budding through vascular co-option but also

utilizing sprouting angiogenesis to derive nutrients from them.

There are two main ways for blood vessel absorption between

tumour and adjacent tissues: (1) malignant cells replace normal

epithelial cells (2) tumour cells invade the perivascular matrix (43).

The molecules involved in the various stages of vascular co-option

formation have been summarized by Ying Shao (44). The

occurrence of vascular co-option seems to be related to the type

of tumour and metastatic site. By analysing 164 cases of lung

metastases (34), it was observed that 91.3% of breast cancer,

98.2% of colorectal cancer, and 62.3% of kidney cancer

metastases exhibited some degree of vascular absorption growth.

Additionally, 71.7% of breast cancer, 78.9% of colorectal cancer, and

37.7% of kidney cancer metastases had the vascular uptake growth

pattern as their predominant pattern. Furthermore, evaluation of

haematoxylin and eosin staining tissue sections from 45 cases of

liver metastases found that a vascular resorption pattern was

present in 96% of breast cancer liver metastases compared with

only 32% of colon cancer metastases (45). Compared to renal and

colorectal malignancies, vascular co-option growth patterns are

more prevalent in breast cancer, and most colorectal cancer liver

metastases induce a wound-healing response through angiogenesis.

These data suggest that vascular co-option often occurs in breast
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cancer metastases to the lung and liver, which may help to explain

why VEGFR antiangiogenic medication has had very little efficacy

in treating metastatic breast cancer. The ability of tumour cells to

resist such therapies through a mechanism known as vascular co-

option is becoming increasingly obvious. Research by Victoria has

demonstrated that although the drug sunitinib can inhibit the

growth of subcutaneous xenografts, tumours that metastasize to

the lung often utilize vascular co-option (34). Further evidence

indicates that patients with HCC treated with sorafenib may

experience a shift from vascular sprouting to vascular uptake

driven by tumour cells (5). Additionally, intracranial glioblastoma

tumours exhibit slower growth in response to anti-VEGF treatment

but appear to adapt to angiogenesis inhibition by co-opting the host

vasculature (6). The co-option of pre-existing brain vasculature

contributes to malignant development without the production of

sprouting angiogenesis, as further demonstrated by a model of

malignant melanoma brain metastases (46).

Due to the lack of accurate marker analysis of vascular co-option,

which can only be performed by analysing tissue slices of patients,

studies on the mechanisms of vascular co-option are unclear. Current

studies have shown that vascular co-option is related to the epithelial

mesenchymal transformation (EMT) process and vascular adhesion

of tumours. EMT refers to a phenotype in which ECs lose their

polarity through a specific process to obtain a higher ability to invade

and migrate (47). Tumour cells are more likely to break through the

basement membrane of blood vessels and enter the blood vessels to

absorb nutrients and oxygen. Therefore, the occurrence of vascular

co-option in tumours is also correlated with the factors and signalling

channels related to EMT process. As a known signalling pathway in

EMT process, the Wnt signalling pathway is involved in tumour

EMT process and plays a crucial role in the occurrence and

development of tumours (48). In glioma, treating cells with

LGK974, an inhibitor of the Wnt signalling pathway, significantly

reduced Wnt7a expression in vivo, preventing tumour cell migration

along vascular endothelial cells and contact with blood vessels (36).

Serine proteinase 2 (35), runt-related transcription factor-1/actin-

related protein 2/3 complex (49), fibroblast activation protein a (50)

are signalling molecules involved in EMT. The deletion of these genes

will lead to changes in cell motility and promote tumour selection of

vascular co-option mode mediating the malignant development

of cancer.

Another widely studied change in vascular co-option is vascular

adhesion. L1CAM, as a cell adhesion factor, is involved in the

development of the nervous system and the progression of

malignant tumours (51). The dynamic nature of L1CAM

adhesion interactions may be particularly beneficial for cancer

cells seeking cooperative vasculature when invading tissues,

mediating and participating in vascular co-option of BMS cancer

cells (35). L1CAM depletion significantly reduced the ability of

H2030-BrM3 and MDA231-BrM2 cells to spread on the surface of

the capillary cavity and decreased the activity of brain metastasis of

cancer cells, thereby mediating co-option and metastatic growth of

brain capillaries. Vascular co-option is prevented by reducing

tumour cell EMT progression or targeting tumour cells’

propensity to adhere to blood vessels (Figure 4A).
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2.3 Vessel-intussusception

In 1990, Burri discovered that capillary beds expanded by

generating elongated columns of intravascular tissue in the lungs of

rats and named this development pattern intussusceptive

microvascular growth (IMG) (52). Since then, IMGs have been

found in both embryonic and adult tissues and organs (53, 54). As

research has progressed, IMGs have also been found to be involved in

the abnormal proliferation of tumour vessels. Patan demonstrated

that intussusceptive obstruction is an important mechanism of

tumour angiogenesis by examining the growth of human colon

adenocarcinoma (LS174T) (55). This is a mechanism that also

occurs in several other tumours, such as colon (55, 56) and

mammary carcinomas (57), melanoma (58), B-cell non-Hodgkin’s

lymphoma (59), and glioma (60).

According to Ribatti, the steps in the development of

intussusception are summarized as involving contact between

neighbouring endothelial cell walls, reorganization of connections

between ECs, central perforation between interconnected bilayers of

ECs to form a core of mesenchymal pillars, and extension and

invasion of the pillars by myofibroblasts and pericytes (8). Finally,

the pillar increases in diameter, forming collagen fibres and,
Frontiers in Oncology 06
eventually, a capillary network (Figure 4B). Thus, in contrast to

tumour sprouting angiogenesis, the most distinctive feature of

intussusception is the absence of endothelial cell proliferation and

the formation of ‘transvascular pillars’.

The mechanism underlying the onset and development of

intussusceptive angiogenesis (IAs) is complex and dynamic, and no

definitive studies exist that prove its development mechanism.

Nevertheless, researchers have identified several factors that play

key roles in this intricate process. First, shear stress generated by

blood flow in the vasculature is an important aspect of IA

development. Djonov demonstrated changes in branch morphology

through blood pressure and blood clamping of a dichotomous branch

in the developing chorioallantoic membrane (CAM) of the chick

embryo (61). Second, VEGF-A is involved in SA and vascular co-

option of tumour angiogenesis, and a considerable body of research

indicates that the development of IA is also linked to VEGF (10). It is

thought that shear stress triggers VEGF expression in endothelial cells

adjacent to myofibers through the diffusion of nitric oxide in the

vascular microenvironment, promoting tumour angiogenesis (62,

63). There is a correlation between the progression of intestinal

obstruction and the production of VEGF in CAM micro-vessels.

Inhibition of VEGF signalling pathway inhibits the development of
FIGURE 4

Other mechanisms of angiogenesis and anti-angiogenesis therapy. (A) Vascular co-option is prevented by reducing tumour cell EMT progression or
targeting tumour cells’ propensity to adhere to blood vessels. (B) The process of vessel intussusception. (C) Bone marrow-derived cells develop into
endothelial progenitor cells or are attracted around blood arteries to participate in angiogenesis directly or indirectly by secreting signalling
chemicals. (D) Targeting aberrant signalling pathways in cancer stem cells and immunotherapy to reduce cancer stem cell angiogenesis. Created
with BioRender.com.
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capillaries that are dependent on intestinal obstruction (64).

Furthermore, throughout the IA process, researchers have

discovered that FGF2 increases the development of intraluminal

pillars in ECs and pericytes (65). Observations have also shown

that vascular morphological alterations through intussusceptive

angiogenesis occur in hepatocellular carcinoma models during

treatment with sirolimus, an inhibitor of the mammalian target of

rapamycin (mTOR) pathway (7). The shift in angiogenesis from

sprouting to intussusceptive might be an adaptive reaction to therapy

using various antitumour and antiangiogenic drugs (8).
2.4 Vasculogenic mimicry

In vitro, researchers demonstrated the reproduction of the

structured vascular channels present in human tumour tissue was

shown in 1999, even in the absence of Ecs, in highly invasivemelanoma

cells (66). They named this mechanism vasculogenic mimicry. VM has

been observed in numerous malignant tumours in recent years,

including melanoma (67, 68), glioblastoma (69), HCC (70, 71),

breast cancer (72, 73), and lung cancer (74). Unlike conventional

angiogenesis, VM does not involve ECs and is characterized by tumour

cells constituting vascular channels and the dense deposition of

extracellular matrix (75). The presence of CD31/CD34-negative and

PAS-positive cells and erythrocytes within the vasculature is considered

a hallmark of VM (76). Saber provided microscopic and

immunohistological data to facilitate the identification and

understanding of in vitro and in vivo VM processes (77).

As previously mentioned in this review, hypoxia is a significant

driver that not only affects tumour angiogenesis but also plays an

essential role in antiangiogenic therapy (78, 79). HIF-1 binds to the
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HRE on the promoter sequences of Twist, Snail, and ZEB2 in the

nucleus to regulate their expression. HIF-1 enhances LOXL2

expression in hepatocellular carcinoma, which promotes

extracellular matrix remodelling and VM via the Snail/FBP1/

VEGF pathway (80). A hypoxic microenvironment was observed

to enhance VM in a melanoma mouse model compared to controls

and was positively correlated with HIF-1a and HIF-2a (81). HIF-1

also controls the expression of other VM-related molecules,

including VEGF, Twist, LOX, and matrix metalloproteinase

(MMP). The expression of VEGF in melanoma has been reported

to promote VM development by activating the PI3K/AKT

pathway (82).

Knockdown of VEGF also reduces the expression of MMP and

vascular endothelial-cadherin(VE-cadherin) (83). VE-cadherin

erythropoietin-producing hepatocellular receptor A2 (Eph A2)

plays an important role in VM. VE-cadherin regulates the

phosphorylation level and localization of Eph A2, thereby

activating focal adhesion kinase (FAK) and extracellular signal-

regulated kinase (ERK) 1/2, and subsequently, activated Eph A2 can

also activate the PI3K signalling pathway directly without relying on

FAK and ERK1/2 (84). Furthermore, PI3K can upregulate MMP

expression, which in turn activates MMP2, ultimately leading to the

cleavage of laminin 5g2 into the g2’ and g2x fragments, promoting

extracellular matrix remodelling and VM formation (85, 86).

Considerable progress has been made in inhibiting tumour

angiogenesis by targeting the signalling pathways involved in VM

(Figure 5). Ginsenoside Rg3 decreased the expression of VE-

cadherin, EphA2, MMP9, and MMP2 to successfully block

pancreatic cancer mimic angiogenesis (87). As a novel candidate

for antitumour VM and anti-covariance treatment, miR-27b might

bind to the 3’-untranslated region (3’UTR) of VE-cadherin mRNA
FIGURE 5

Mechanisms of vasculogenic mimicry. HIF-1 binds to the HRE on the promoter sequences of Twist, Snail, and ZEB2 in the nucleus to regulate their
expression, which promotes extracellular matrix remodelling and VM. HIF-1 also controls the expression of other VM-related molecules, including
VEGF, Twist, LOX, and MMP2. The expression of VEGF has been reported to promote VM development by activating the p38/MAPK, PI3K/AKT/
mTOR, and JAK/STAT path-ways. VE-cadherin regulates the phosphorylation level and localization of Eph A2, thereby activating the PI3K/AKT, FAK/
MEK/ERK1/2 pathways. Ginsenoside Rg3, R8-modified epirubicin dihydro-artemisinin liposomes inhibit VM progression by inhibiting the VE-
Cadherin/EphA2/MMP9 signal axis. Luteolin and Resveratrol target VEGFR to inhibit angiogenesis. Created with BioRen-der.com.
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to reduce the production of VE-cadherin in ovarian cancer cells

(88). By suppressing STAT3 and PI3K/AKT, curcumin decreases

the ability of hepatocellular carcinoma cells to simulate

angiogenesis (89). By disrupting the PI3K/MMPs/Ln-52 signalling

pathway, NCTD prevents tumour development and VM in human

GBCs both in vitro and in vivo (90).
2.5 Bone marrow-derived angiogenesis

BMDCs play a crucial role in the pathogenesis and

dissemination of malignancies due to their ability to suppress the

immune system and promote the migration and vascularization of

tumour cells. Comprising various cell types such as lymphocytes,

stromal cells, bone marrow cells, and endothelial progenitor cells,

BMDCs exhibit heterogeneity. They are recruited around blood

vessels to actively participate in, either directly or indirectly through

the secretion of signalling molecules (Figure 4C). Several

haematopoietic populations from the bone marrow have been

reported to contribute to tumour angiogenesis, such as monocytes

(91), macrophages (92), granulocytes, and neutrophils (93, 94).

Daniel and his colleagues (95) used genetically labelled bone

marrow progenitor cells and demonstrated, using high-resolution

microscopy and flow cytometry that early-stage tumours recruit

bone marrow-derived endothelial progenitor cells These endothelial

progenitor cells differentiate into mature ECs, integrating into the

developing tumour vasculature, thereby promoting tumour growth

and progression. However, the mechanism by which tumours

recruit BMDCs to the site of angiogenesis remains unknown.

Tumours enhance the recruitment of BMDCs to the site of

angiogenesis by secreting integrin avb3, a receptor that mediates

cell−cell and cell–extracellular matrix adhesion (96). Platelets

further mobilize and recruit CXCR4+ bone marrow-derived cells

to promote vascularization (97). Tumours also induce myeloid cells

to secrete factors associated with vascularization to promote tumour

angiogenesis and progression. MMP-9, which controls the switch

for angiogenesis by releasing VEGF from its membrane-bound

form, has been shown to be expressed in myeloid cells (98). Rose

demonstrated that HIF-1a partially induced the recruitment of

bone marrow-derived CD45+ myeloid cells with Tie2+, VEGFR1+,

CD11b+, and F4/80+ subpopulations, along with endothelial and

pericyte progenitor cells, by increasing SDF1a and promoting the

neovascularization of glioblastoma (99). Additionally, HIF-

mediated negative regulation of PHD2 mobilizes BMDCs to

regulate angiogenesis (100).

The recruitment of myeloid cells from bone marrow is directly

associated with the emergence of tumour resistance or recurrence

after antiangiogenic treatment. In response to antiangiogenic

treatment, it has been demonstrated that macrophages increase

the production of a number of angiogenic molecules, including

FGF-1, FGF-2, MMP9, and Ang2 (101–104). Partially overcoming

tumour resistance may be achieved by combining anti-VEGF with

monotherapy targeting CD11b+Gr1+ myeloid cells (105). Thus,

effective ablation of myeloid cells’ proangiogenic capacity may be

achieved by extensively targeting them in cancer therapy (3).

Inhibiting the gamma isoform of PI3K (PI3Kg), which is largely
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expressed in myeloid cells and maintains their immunosuppressive

and proangiogenic functions, maybe a promising targeting

approach (106).
2.6 Cancer stem cell-derived angiogenesis

Cancer stem cells (CSCs) represent a small subset of cells within

solid tumours capable of self-renewal and differentiation into

various cell types present in the tumour. They play a crucial role

in tumour metastasis, recurrence, and resistance to chemo and

radiotherapy across a spectrum of cancers (107). Recent research

has highlighted the role of CSCs in promoting angiogenesis through

the release of angiogenic factors and exosomes (108–110). For

instance, For example, CSCs in breast cancer have been found to

secrete stromal cell-derived factor-1 and VEGF to facilitate

angiogenesis (111). Further research discovered that enhanced IL-

8 secretion by CD133+ CSCs in HCC not only induced tumour

angiogenesis but also boosted tumour self-renewal and initiation

(107). Additionally, emerging evidence suggests that tumour cells

possess the ability to differentiate into phenotypes of ECs that are

engaged in tumour angiogenesis. According to research on

glioblastoma, ECs in varying quantities (range 20–90%, mean

60.7%) contain the same genetic abnormalities as tumour cells.

This finding raises the possibility that GBM-derived stem cells can

differentiate into ECs in vitro (112). This result suggests that tumour

cells may have CSC origins, providing insight into the formation of

VM.Studies by Sun et al. have shown that ALDH1+ and CD133+

breast cancer cells produced more VE-cadherin and generated

VM channels (113). To support the formation of CSCs and

preserve their stem properties, vascular niches in the tumour

microenvironment also release growth factors through autocrine

and paracrine pathways (107). Tumour growth is further

encouraged by the positive feedback loop between tumour stem

cells and angiogenesis.

From a therapeutic perspective, targeting CSCs is essential to

impede tumour progression. The conventional approach involves

blocking aberrant signalling pathways in CSCs, mainly including the

Wnt, Nuclear factor-kB (NF-kB), Notch, Hedgehog, JAK/STAT, PI3K/
AKT/mTOR, TGF/SMAD, and PPAR pathways. Napabucasin, a

small-molecule inhibitor of STAT3, has shown efficacy in preventing

the spread of biliary tract cancer, glioblastoma, and small-cell lung

cancer (114–116). Clinical trials combining napabucasin with paclitaxel

for gastric cancer have demonstrated favourable pharmacokinetic

profiles, safety, and patient tolerability (117). Additionally, LGR5, a

seven-transmembrane receptor from the G protein-coupled receptor

family connected to the Wnt pathway that contains leucine-rich

repeats, was first discovered as a marker of intestinal stem cells

(118). LGR5 is a unique functional marker and a prognostic

indicator that, by stimulating the Wnt pathway, can drive EMT and

become a potential therapeutic target (119). In colon cancer, targeting

LGR5 using antibody-drug conjugates greatly reduced tumour size and

proliferation (120). Since normal human stem cells and tumour stem

cells usually express the same surface and protein markers, therapeutic

medication development faces significant challenges. Table 1

summarizes some of the signature markers of tumour stem cells for
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reference. To boost antitumour efficacy, there is rising interest in

combining immunotherapy with conventional chemotherapy and

targeted medicines. The most promising immunotherapy is chimeric

antigen receptor (CAR) T-cell treatment, which has been licensed for

B-cell acute lymphoblastic leukaemia and B-cell lymphoma (144). CAR

T cells targeting cd133 in glioma not only have good efficacy in

xenograft models but also have no negative effect on normal human

CD133+ haematopoietic stem cells (137). As a result, CART133 cells

may be a useful treatment option for CSCs in different solid cancers.
3 Clinical application of
anti-angiogenic drugs

Anti-angiogenic therapy aims to inhibit tumour growth and

metastasis by blocking the blood supply to tumour tissue using anti-

angiogenic drugs. Clinically used anti-angiogenic drugs mainly

include anti-angiogenic monoclonal antibodies (AA-MAs) and

anti-angiogenic tyrosine kinase inhibitors (AA-TKIs). Compared

with kinase inhibitors, monoclonal antibodies are artificially

produced from hybridoma cells and have the advantages of high

purity, high sensitivity, strong specificity, and low cross-reactivity.

Tyrosine kinase inhibitors usually have multi-target effects and can

interfere with cell signalling pathways and inhibit tumour growth

(145). However, the utility of tyrosine kinase inhibitors is limited as

not all cancers respond to them.

In addition to targeting the VEGF signalling pathway, there

are also monoclonal antibodies targeting PDGF such as

olaratumab. In 2016, the FDA approved olaratumab for the

treatment of patients with soft tissue sarcoma. Combined

treatment with doxorubicin and olaratumab significantly

improves the overall survival of patients (146). Furthermore,

some monoclonal antibodies targeting the Ang/TIE pathway are

undergoing clinical trials. Faricimab, as a bispecific antibody,

binds and inhibits both VEGF-A and Ang-2. Initially approved

in 2022, it serves as a first-line treatment for neovascular age-

related macular degeneration or diabetic macular edema (DME)

(147). In addition to their use as monotherapies, monoclonal

antibodies can serve as adjuvant therapy in surgery or in

combination with chemotherapy, further expanding their
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potential in the anti-angiogenic treatment of tumours through

ongoing clinical trials.

Sorafenib disrupts the downstream Ras/Raf/MEK/ERK pathway

by inhibiting the autophosphorylation of Raf and kinase receptors,

thereby impeding tumour angiogenesis and metastasis. In 2005 and

2007 respectively, it was approved by the FDA for the first-line

treatment of RCC and advanced HCC (148, 149). In recent years,

studies have found that it also shows anti-tumour activity in

differentiated thyroid cancer (150). Sunitinib targets VEGFR-1/2/3,

PDGFR, c-Kit receptor, fms-like tyrosine kinase-3 receptor (FLT-3),

and receptor encoded by the ret proto-oncogene (Ret) and is

approved for treatment drug-resistant gastrointestinal stromal

tumours (GIST) and RCC (151–154). In 2009, the FDA approved

pazopanib as a multikinase inhibitor against VEGFR-1/2/3, PDGFR-

a/b, and c-Kit receptors for the treatment of patients with advanced

RCC (155). In addition, pazopanib and olaratumab are both suitable

for the treatment of advanced soft tissue sarcoma (156). Regorafenib,

a small pan-tyrosine kinase inhibitor targeting VEGFR-1/2/3,

PDGFR-a/b, FGFR-1/2, Tie2 and c-Kit receptors (157). Due to its

excellent therapeutic effect in phase III clinical trials, it was also

approved for the clinical treatment of metastatic RCC (158).

Subsequently, regorafenib was approved for the treatment of HCC

as a systemic approach that provided a survival benefit in patients

with HCC that had progressed on sorafenib (159). Lenvatinib is a

novel and potent tyrosine kinase inhibitor targeting VEGFR-1/2/3,

PDGFR-a/b, FGFR-1/2/3, Ret and c-Kit (160). It has initially

approved by the FDA for the treatment of radioactive iodine-

refractory differentiated thyroid cancer depending on the trial, but

more than 40% of patients who received lenvatinib had more adverse

effects such as hypertension, diarrhoea, fatigue, decreased appetite,

decreased weight, and nausea (161). Encouragingly, it still showed

excellent anti-tumour activity in other tumours, renal cell carcinoma

and metastatic hepatocellular carcinoma, so it was approved for

treatment in 2015 and 2018 (162, 163). Of note, fewer patients

treated with the combination of lenvatinib and everolimus

experienced Grade 3 and 4 events compared with patients treated

with lenvatinib alone (163). In addition to the aforementioned

marketed and clinically evaluated antiangiogenic agents, several

novel tyrosine kinase inhibitors such as nintedanib, anlotinib, and

fruquintinib have shown strong antitumour activity in clinical trials,

making them promising candidates for antiangiogenic therapy

(164–167).
4 Anti-angiogenic therapy resistance
and combination therapy

Mechanisms of resistance include the upregulation of

alternative angiogenic pathways, recruitment of pro-angiogenic

bone marrow-derived cells, and tumour cell adaptation to survive

in a hypoxic environment. Overcoming resistance to anti-

angiogenic therapy remains a significant challenge in cancer

treatment. As mentioned above, tumours have different

angiogenic mechanisms, and tumour cells provide a way to

escape treatment, which increases the occurrence of drug
TABLE 1 Summary of markers of different tumor stem cells.

Tumour Type CSC Marker Reference

Breast Cancer CD44, CD55, CD133, ALDH1 (121–125)

Melanoma CD133, ABCB5, CD20,
CD271, SOX10

(122,
126–129)

Prostatic Cancer CD44, CD133, a2b1 (122, 130)

Hepatocellular
Carcinoma

CD133, EpCAM, CD90,
CD13, SALL4

(122,
131–134)

Lung Cancer CD133, CD44 (135, 136)

Glioblastoma CD133, CD90, CD15, L1CAM (137–140)

Colon Cancer CD133, CD44, CD166, CD24 (141–143)
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resistance (168). In a recent study, it was discovered that VM

formation is not contingent on the VEGF signalling pathway but

rather on Foxc2, which promotes blood vessel formation by

driving the ectopic expression of endothelial genes in tumour

cells (169). Bevacizumab treatment also contribute cells to induce

an endothelial phenotype through the IL8/CXCR2 pathway to

promote VM initiation in GBM (170). Besides inherent drug

resistance, vascular co-option may also lead to acquired

resistance of metastases against angiogenic therapy (171).

Vascular co-option mediates resistance to the anti-angiogenic

drug Sunitinib in tumours with lung metastasis (34).

Interestingly, vascular co-option was also associated with

adverse effects of bevacizumab in patients with colorectal cancer

liver metastases (168). Consequently, clinical treatment targeting

the VEGF signalling pathway alone may not be sufficient, and

selecting multi-target angiogenic tyrosine kinase inhibitors (TKIs)

to counteract compensatory angiogenesis could represent a novel

strategy (172).

Anti-angiogenic therapy targeting VEGF or VEGFR-2 has the

potential to enhance T cell trafficking to tumours, thereby reducing

immunosuppressive cytokines and regulatory T cells, which could

help overcome resistance to checkpoint inhibitor therapy (173). The

combination of antiangiogenic therapy and immunotherapy has

demonstrated superior antitumour properties and significantly

improved patient survival. In a phase III clinical trial of renal cell

carcinoma, researchers found that the use of bevacizumab

combined with the PD-1 inhibitor atezolizumab significantly

improved the overall survival and progression-free survival rates

of patients compared with sorafenib alone (174). Similarly,

nivolumab (anti-PD-1 antibody) plus cabozantinib showed

superior progression-free survival, overall survival, and objective

response compared with sunitinib for the treatment of renal cell
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carcinoma (175). Although promising results have been reported

with antivascular therapy combined with immunotherapy, some

failures cannot be ignored. For instance, in patients with advanced

non-squamous NSCLC, the combination of axitinib, paclitaxel, and

carboplatin did not demonstrate improved efficacy compared to

bevacizumab, paclitaxel, and carboplatin, and it was associated with

poorer tolerability (94). Thus far, a large number of promising

clinical studies are ongoing to explore the combination of

immunotherapy and anti-angiogenic therapies as a new

progression in tumour treatment (Table 2).
5 Conclusions

Since Folkman proposed the idea of targeting angiogenesis as

an anti-tumour therapy (1). Numerous studies have established a

significant association between vascular mechanism switching and

poor survival in clinical cancer patients, making it a potential

predictor of poor prognosis (38, 164). Many anti-angiogenic

therapies have been registered and developed to treat various

tumours, mainly targeting the VEGF signalling pathway.

However, it’s important to note that other non-sprouting

angiogenic mechanisms, such as vascular co-option and vascular

mimicry, are not entirely dependent on the VEGF signalling

pathway. Moreover, in clinical practice, the occurrence of

vascular mechanism conversion has been closely linked to

resistance to antiangiogenic therapy (6). The existence of

multiple angiogenesis mechanisms provides a new method for

inhibiting tumour cell metastasis. While some small molecule

drugs capable of targeting vascular co-option and vascular

mimicry have been reported, Table 3 lists some drugs and their

applications that can effectively inhibit different types of
TABLE 2 Ongoing clinical trials of anti-angiogenic combination immunotherapy.

Trial
Identifier

Treatment Cancer Types Phase Date Status

NCT02684006 Avelumab + Axitinib mRCC III 2016 Active, not recruiting

NCT03024437 Atezolizumab + Bevacizumab + Entinostat RCC II 2017 Suspended

NCT02366143 Atezolizumab+ Bevacizumab+ Chemotherapy NSCLC III 2018 Completed

NCT03463876 SHR-1210+ Apatinib HCC、GC、EGJC II 2019 Completed

NCT03434379 Atezolizumab+ Bevacizumab HCC III 2020 Completed

NCT03141177 Nivolumab+ Cabozantinib RCC III 2021 Active, not recruiting

NCT04732598 Atezolizumab + Bevacizumab + Paclitaxel BC III 2021 Active,not recruiting

NCT02811861 Pembrolizumab+ Lenvatinib RCC III 2021 Active, not recruiting

NCT05357417 Utidelone+ Bevacizumab BC II 2022 Recruiting

NCT05256472 Cadonilimab+ Axitinib RCC II 2022 Recruiting

NCT05485883 Tislelizumab+ Lenvatinib RCC II 2022 Recruiting

NCT06215651 Cadonilimab+ lenvatinib HCC II 2024 Not yet recruiting
Atezolizumab (anti-PD-L1 antibody); Pembrolizumab (anti-PD-1 antibody); Avelumab (anti-PD-L1 antibody); Nivolumab (anti-PD-1 antibody); SHR-1210 (anti-PD-1 antibody); Cadonilimab
(anti-PD-1 antibody); Utidelone (anti-tubulin antibody).
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angiogenesis mechanisms, but their efficacy lacks confirmation

from clinical trials. Further exploration of different mechanisms

can help scientists identify key molecular targets to develop more

targeted drugs. Additionally, given the widespread application and

clinical significance of anti-angiogenic therapy, there is a need to

promote the development of new and more effective anti-

angiogenic drug combination therapies to enhance efficacy.

Understanding how different angiogenic mechanisms are

switched during tumour development requires more research to

determine whether different types of cancer and metastatic sites

favour specific forms of angiogenesis, thereby enabling better

management of these mechanisms. In summary, this review

provides and highlights the need for a deeper understanding of

the molecular mechanisms of tumour angiogenesis. This may

facilitate the development of new and more effective anti-

angiogenic drugs, bringing more clinical benefits to cancer

patients and anti-tumour treatments.
Author contributions

RZ: Writing – review & editing, Writing – original draft. YY:

Writing – review & editing. HG: Writing – review & editing. XH:

Supervision, Writing – review & editing.
Funding

The author(s) declare that financial support was received for

the research, authorship, and/or publication of this article. This

work was supported by Jilin Scientific and Technological

Development Program [20230508066RC], Special Project for

Health Research Talents of Jilin Province [2022scz04] and

Innovation and Entrepreneurship Talent Funding Project of

Jilin province [2023QN05].
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
TABLE 3 Summary of current drugs targeting angiogenesis.

Target Drug Molecular
Target
or Function

Indications References

Sprouting Angiogenesis

Bevacizumab VEGF-A CRC, RCC,
NSCLC, CC,
GBM, OVC

(176)

Ramucirumab VEGFR2 CRC, HCC,
NSCLC,
SA, GEJA

(177–179)

Sorafenib VEGFR2,
PDGFR, FGFR1

HCC, RCC, TC (29, 180)

Regorafenib VEGFR1/2/
3, PDGFR

CRC,
HCC, GIST

(179, 181, 182)

Sunitinib VEGFR2, PDGF RCC (183)

Axitinib VEGFR1/2/
3, PDGFR

RCC (184)

Apatinib VEGFR2 SA, GEJA (185)

Vascular co-option

OS2966 b1 integrin GBM (36)

XAV939 Wnt/b-catenin GBM (186)

Vasculogenic mimicry

Ginsenoside Rg3 VE−cadherin/
EphA2/
MMP9/MMP2

PAAD (87)

Norcantharidin PI3-K/MMPs/
Ln-5g2

GBC (90)

Salinomycin Rho-GTPases BC (187)

Luteolin VEGF, Notch GC (12)

Resveratrol VEGFR1/
VEGFR2

MEL (188)

Brucine EphA2/MMP-2/
MMP-9

BC (189)

R8-modified
epirubicin-
dihydroartemisinin
liposomes

VE-cadherin/
TGF-b/MMP-2/
HIF-1

NSCLC (190)

Galunisertib TGF-b1, Akt, GBM (191)

Dequalinium-
modified paclitaxel
plus
ligustrazine micelles

VEGF, MMP2,
TGF-b1,
E-cadherin

NSCLC (192)

SB225002 CXCR2 GBM (170)

Entinostat VEGF-A BC (193)

Verteporfin Ang2, MMP2,
VE-cadherin,
a-SMA

PDAC (194)

Niclosamide miR-124, STAT3 OSCC (195)
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