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setting: a scoping review
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Nuwan Dharmawardana1,2, Michael Z. Michael1,3

and Eng Hooi Ooi1,2

1College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia, 2Department of
Otolaryngology Head and Neck Surgery, Flinders Medical Centre, Adelaide, SA, Australia, 3Department
of Gastroenterology and Hepatology, Flinders Medical Centre, Adelaide, SA, Australia
This scoping review identifies themechanistic pathways of metformin when used

to treat head and neck cancer cells, in the pre-clinical setting. Understanding the

underlying mechanisms will inform future experimental designs exploring

metformin as a potential adjuvant for head and neck cancer. This scoping

review was conducted according to the Joanna-Briggs Institute framework. A

structured search identified 1288 studies, of which 52 studies fulfilled the

eligibility screen. The studies are presented in themes addressing hallmarks of

cancer. Most of the studies demonstrated encouraging anti-proliferative effects

in vitro and reduced tumor weight and volume in animal models. However, a few

studies have cautioned the use of metformin which supported cancer cell

growth under certain conditions.
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1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is the 6th most commonly

diagnosed cancer worldwide (1), with an overall five year survival of only 72% (2). The

key risk factors for developing HNSCC are consumption of carcinogens (tobacco, betel

quid, alcohol) and the oncogenic human papillomavirus (HPV) (3). The management of

HNSCC involves a multidisciplinary approach comprising surgical resection, radiotherapy

and chemotherapy (3). During the last few decades, there has been little advancement in the

chemotherapeutic options available (4).

HNSCC and its treatment(s) have significant consequences on patients’ daily functions

and quality of life. Despite recent advances in modern medicine, there remains a high risk

of local recurrence and distant metastases (5). Treatment options for local recurrences are
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generally limited to salvage surgery with minimal improvement in

overall survival rates (6, 7). There is an urgent need for novel

solutions to improve treatment opportunities for patients with head

and neck cancer.

Drug repurposing is the use of currently approved drugs for an

alternative indication (8), often reducing costs associated with drug

development and the time to clinical translation (9). Metformin is

an oral biguanide derived from the French lilac, Galega officinalis,

and is widely used as the first-line treatment for type 2 diabetes

mellitus. Other indications for metformin include polycystic ovary

disease, obesity and gestational diabetes, thereby demonstrating its

safety profile in a wide range of patients (10). The concept of

metformin having anti-tumor properties was first introduced by

Dilman in the early 1970s, using a derivative of metformin,

phenformin, to reduce tumor formation (11, 12). This concept

was revisited in 2005 following an epidemiological study that

suggested patients with type 2 diabetes taking metformin have a

reduced risk of cancer (13). This has since stimulated significant

interest in the potential of using metformin as a treatment

for cancer.

Metformin has been described to indirectly activate AMP-

activated protein kinase (AMPK) in the liver to reduce blood

glucose levels (14). AMPK is also described as a metabolic tumor

suppressor in cancer development (15). It has therefore been

hypothesized that metformin also acts directly on cancer cells by

activating the AMPK pathway (16, 17). However, there is increasing

evidence of alternative mechanistic pathways which are both

dependent and independent of AMPK. A systematic review on

this topic was conducted in 2015 including 11 studies (18). Since

then, there have been an additional 41 studies published on the

action of metformin in HNSCC, requiring an updated review.

Scoping reviews have been designed to systematically map the

available evidence and therefore suitable to address the aim of

this study (19). This scoping review aims to collate the reported

mechanisms of action of metformin in HNSCC in the pre-clinical

setting. Mapping the identified cellular pathways will help inform

study designs when using metformin, either alone or as a

combination therapy, for the treatment of head and neck cancer.
2 Methods

This scoping review followed the methodology published by the

Joanna Briggs Institute (20).
2.1 Search strategy

This search aims to identify published literature. To identify

keywords for the search strategy, an initial search of MEDLINE and

CINAHL using keywords (Head and neck cancer) AND

(Metformin) was conducted to screen for articles and develop full

search terms through a screen of the title, abstract and indexed

terms in consultation with a Flinders University librarian in March

2021. An updated search was conducted in May 2023. Details on the

search terms are provided in Supplementary Table 1. The databases
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subsequently searched include MEDLINE, CINAHL, Embase,

SCOPUS, and Cochrane. Reference lists of included studies were

reviewed to identify additional studies.
2.2 Inclusion criteria

This review systematically maps the available evidence from

studies that used cell culture and animal models in the pre-clinical

laboratory setting, specifically in HNSCC of mucosal origin: oral

cavity, oropharynx, hypopharynx, and larynx. The studies are

limited to English, with no limitation to the timeframe.
2.3 Exclusion criteria

The exclusion criteria are HNSCC of other subsites (salivary

gland, sinonasal cavity, nasopharynx and cutaneous). Studies using

results derived from reported contaminated cell lines (Hep-2, KB,

Ca9-22) (21–24) were also excluded. One study using a syngeneic

mouse model was also excluded as it utilized murine cancer cell

lines (25). Clinical studies involving patients are beyond the scope

of this review.
2.4 Study selection

Following the search, all identified studies were uploaded into

Covidence systematic review software (Veritas Health Innovation,

Melbourne, Australia) and duplicates were removed. Two

independent reviewers (LH and ND) screened studies based on

title and abstract assessment. Disagreements were resolved with a

full-text review and a discussion amongst the two reviewers. Full-

text review was then assessed against the inclusion and exclusion

criteria. The reasons for exclusion following full-text review are

listed in Figure 1 (PRISMA 2020) (26).
2.5 Development of themes

Studies were discussed according to the hallmarks and enabling

characteristics of cancer (27, 28). A few studies discussed properties

of metformin that do not fall within the described hallmarks and

will be discussed separately.
2.6 Data presentation

The described molecular pathways are compiled and illustrated

using BioRender (BioRender.com).
3 Results

A total of 1288 studies were identified with 829 remaining after

removal of duplicates, amongst which 52 studies met the inclusion
frontiersin.org
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criteria (Figure 1). The year, country and experimental designs of

the identified studies are provided in Supplementary Data 1 and

Supplementary Table 2. There has been an increase in the number

of studies published with a peak of 10 studies published in 2019.

Geographically, China has published the greatest number of studies

(n=26) since 2011. The experimental designs of the preclinical

studies are listed in Supplementary Table 3. A summary table of

the cell lines, their original anatomical subsites and the reported

mutations are provided in Supplementary Table 4. 29 HNSCC cell

lines were used, with the oral tongue being the most common

subsite. 4 cell lines were reported to be HPV-positive. The studies of

metformin as a single agent in vitro (n=44) are summarized in

Supplementary Table 5, metformin in combination with another

therapy in vitro (n=24) are summarized in Supplementary Table 6,

and metformin use in vivo (n=25) are summarized in

Supplementary Table 7. Metformin doses vary significantly from

10 mM (29) to 100 mM (30).
4 Discussion

In pre-clinical studies of mucosal HNSCC, metformin is

reported to modulate several hallmarks of cancer (31), resulting

in reduced cell growth in vitro and in vivo. Transcriptomic profiling

identified differentially expressed genes following metformin

treatment in HNSCC cell lines affecting all aspects of cancer

development (32). Numerous mechanisms have been proposed

and are summarized in this discussion.
4.1 Cellular uptake of metformin

Due to metformin’s hydrophilic properties, cellular uptake is

dependent on active organic cation transporters (OCTs) (33).

OCT3 is highly expressed in histological samples of dysplastic

oral lesions and well-to-moderately differentiated HNSCC tumors

but is significantly reduced in poorly differentiated tumors (34, 35).
Frontiers in Oncology 03
The viability of HN4 cell lines, which lack OCT3 expression, was

not affected by metformin treatment (34). Further support was

provided by the knockdown of OCT3 xenograft mouse models,

which also demonstrated reduced activation of AMPK and

increased mammalian target of rapamycin (mTOR) activity,

negating the inhibitory effects of metformin (34, 36). These

studies demonstrate that OCT3 is necessary for metformin to

affect HNSCC cells. Therefore, cancer cells in poorly

differentiated HNSCC, with low or no OCT3 expression, may not

be affected by metformin. Future studies could investigate how

HNSCC differentiation status and OCT3 expression may affect the

response of metformin clinically.
4.2 Cellular metabolism

4.2.1 Pyruvate metabolism
The Warburg Effect, first discussed by Otto Warburg in 1956, is

a metabolic shift in cancer cells that leads to the production of ATP

via aerobic glycolysis, rather than oxidative phosphorylation,

despite the presence of abundant oxygen (37). Many mechanisms

contribute to this metabolic shift; with one being the oncogenic

phosphoinositide-3-kinase (PI3K)/AKT/mTOR pathway,

increasing glucose uptake and glycolysis (38, 39). Metformin

targets the Warburg effect by activating AMPK to downregulate

the mTOR pathway which in turn reduces HIF-1a, increases
pyruvate dehydrogenase (PDH), and increases the conversion of

pyruvate to acetyl-CoA rather than lactate (Figure 2). The

chemotherapeutic agent, 5-fluorouracil (5-FU) has also been

reported to inhibit AKT and mTOR, thereby reducing the

downstream Warburg effect. The combination of metformin and

5-FU demonstrated a greater reduction in cell or tumor

proliferation and an increase in apoptosis compared to single

agents alone in vitro and in vivo, both acting on this mechanistic

pathway (40).

Hypoxia-inducible factor (HIF)-1ɑ is activated in the hypoxic

tumor environment, which in turn stimulates pyruvate
FIGURE 1

PRISMA flow chart for inclusion of studies.
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dehydrogenase kinase (PDK) to inactivate pyruvate dehydrogenase

(PDH) (41). This prevents the conversion of pyruvate to acetyl-

CoA, instead promoting pyruvate conversion to lactate. As a result,

lower PDH and higher HIF-1ɑ are present in patients with oral SCC
compared to those with oral premalignant lesions (42). Metformin

treatment reduced HIF-1ɑ, upregulated PDH mRNA and reduced

heat shock protein 90 (HSP90), resulting in reduced cell

proliferation and migration, increased apoptosis, and DNA

fragmentation (42). Furthermore, metformin is reported to work

synergistically with dichloroacetate (an inhibitor of PDK) in

reducing cell viability (43) (Figure 2). While mechanisms were

not explored, dichloroacetate is expected to prevent the inactivation

of PDH and allow pyruvate to progress into the tricarboxylic acid

cycle (Figure 2) (44).

Malic enzyme 2 catalyzes the conversion of malate to pyruvate

by reducing NADH to NADPH within the mitochondria and plays

a key role in redox balance and energy production (45). It

modulates AMPK/AKT pathways, p53 function, cellular

differentiation, glutamine oxidation and reactive oxygen species

(ROS) production to promote the survival of cancer cells (45).

Analysis of The Cancer Genome Atlas (TCGA) data demonstrates

that overexpression of malic enzyme 2 in HNSCC is linked with

lower overall survival (46). Metformin reduced malic enzyme 2 in

both wild-type p53 (HN30) and mutant p53 (HN31) cell lines,

which activate both p21 and ROS to induce senescence

(46) (Figure 2).

4.2.2 Glucose metabolism
TP53 is a gene that encodes for the p53 protein and is frequently

mutated in HNSCC. HNSCC cells are highly dependent on glucose

for survival with mutated (mut) TP53 preferencing glycolysis over
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mitochondrial respiration (47, 48). 2-deoxy-D-glucose (2-DG) is a

glucose analogue that competitively inhibits glucose uptake and

prevents further glycolysis (49). Therefore, targeting glucose

metabolism with 2-DG, in combination with metformin in the

isogenic cell lines HN30 and HN31, reduced overall cell numbers

(47) (Figure 3). A follow-up study performed by the same

investigators analyzed the differing responses to 2-DG and

radiation in cells with mutTP53 compared to wtTP53 (48) to find

mutTP53 cell lines more radioresistant than wtTP53. Cell lines with

mutTP53 were found to have less mitochondrial reserve, with a

greater dependence on glycolysis, thus rendering them more

susceptible to glycolysis inhibitor 2-DG which increased their

radiosensitivity. In contrast, cells with preserved wtTP53 prefer

mitochondrial oxidative phosphorylation resulting in relative

insensitivity to glycolytic inhibition by 2-DG. Metformin can

inhibit mitochondrial respiration in both mutTP53 and wtTP53,

reducing oxygen consumption rates, leading to a compensational

increase in glycolytic activity (48). As a result, the combination of

metformin and 2-DG significantly impacts on the glycolytic activity

in wtTP53 cells that are less sensitive to 2-DG treatment. Depending

on the TP53mutational status, radio sensitization could occur using

2-DG with or without metformin (48) (Figure 3). This appears

paradoxical, as the study describes using combination drugs (2-DG

and metformin) in wtTP53 cells which are more radiosensitive but

only using one drug (2-DG) for mutTP53 cell lines. However, it is

an interesting concept to use 2-DG and metformin in combination

to target the two metabolic pathways.

4.2.3 Glutamate metabolism
Glutamine is another important fuel for the proliferation and

survival of HNSCC cells (50). Glutaminase 1 (GLS1) is a key
FIGURE 2

Metformin regulates mitochondrial energy metabolism.
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enzyme converting glutamine to glutamate which is subsequently

transformed to ɑ-ketoglutarate for the Krebs cycle (Figure 2). The
TCGA database reports GLS1 to be highly expressed in HNSCC cell

lines (51), stimulating an interest in using the selective glutaminase

inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl

sulfide (BPTES) in cancer treatment. The increase in GLS1

expression suggests altered glutamine metabolism in HNSCC cells

allows for glutamine-dependent growth. The combination of

BPTES and metformin reduced cell growth, cell viability and

increased apoptosis by targeting apoptosis and cell cycle pathways

(51). To induce cell cycle arrest, BPTES increased p21 while

metformin reduced Cyclin E2 and cyclin B1/CDK1 complexes.

Both BPTES and metformin were able to trigger the Caspase 3/

PARP cascade to induce apoptosis (51) (Figure 4).
4.3 Proliferative signals

4.3.1 AMPK/mTOR pathway
AMPK is a protein kinase that is essential in the restoration of

energy homeostasis in response to metabolic stress with mTOR

being one of its downstream targets (52). Metformin alone was

demonstrated to reduce viability, proliferation, and colony

formation in vitro (36, 53–56) and reduce tumor volume and

weight in vivo (36, 55, 56). Treatment of HNSCC cell lines with

metformin resulted in G0/G1 cell cycle arrest, activation of AMPK,

and reduction in mTOR, p-S6K, p4EBP and p70S6K (36, 55–

57) (Figure 2).

Dasatinib, a kinase inhibitor used for the treatment of chronic

myeloid leukemia, activates AMPK by reducing ATP through the

inactivation of ERK. The activation of AMPK by metformin goes on
Frontiers in Oncology 05
to induce endoplasmic reticulum stress which degrades EGFR

through the c-Cbl lysosome pathway, resulting in apoptosis (58)

(Figure 2). With both dasatinib and metformin activating AMPK,

synergistically they reduce cell viability, increase apoptosis in vitro

and reduce tumor volume in a HNSCC xenograft model (58).

4.3.2 Cell cycle arrest
Cell cycle dysregulation in cancer cells can result in uncontrolled

division (59). The TCGA data showed overexpression of cell cycle

regulators cyclin D1, cyclin-dependent kinase (CDK) 4 and CDK6 in

HNSCC, which are associated with poor survival (60). Normal cell

cycle progression from G1 to S-phase requires Cyclin D1, CDK4, and

CDK6 to phosphorylate retinoblastoma protein (pRb) and release

transcription factor elongation factor (EF) 2 (61). Downstream

targets of mTOR, cyclin D1 and associated CDK4, and CDK6, are

downregulated due to metformin treatment (55, 62, 63) (Figure 5).

The level of CDK inhibitors (p21 and p27) increased in some studies

(63, 64) but not in others (55). Metformin also activates p38, which

inhibits JNK/STAT 3/AKT with subsequent reduction in cyclin D1

mRNA and protein levels (62) (Figure 5). Additionally, Sikka et al.

proposed that metformin inhibits protein translation via inhibition of

translation initiation protein 4E-BP1 and EF2 through upstream

regulator AMPK (64), subsequently reducing expression of cyclin D1,

cyclin E, CDK2, and CDK4, resulting in cell cycle arrest

(64) (Figure 5).

Chen et al. described metformin inhibiting Aurora A through

Late SV40 Factor (LSF) (65) (Figure 5). Aurora-A plays an

important role in the progression of G2/M transition and over-

expression has been found to correlate with advanced TNM staging

and poorer prognosis (66). Interestingly, Chen reported no change

in cell cycle distribution despite a reduction in cell viability, colony
FIGURE 3

Metformin and 2-DG target metabolic pathways in cell lines with or without TP53 mutations.
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formation and the ability to migrate or invade. This is in contrast to

other studies where both metformin (55, 60, 62–64) and Aurora-A

inhibitors (67) resulted in cell cycle arrest.
4.4 Growth suppressors

4.4.1 Increase radiosensitivity in TP53 mutant
cells by increasing reactive oxygen species

Skinner et al. demonstrated using gene sequencing of 74

HNSCC samples that TP53 mutations are predictive of increasing

risk of locoregional recurrence, poorer overall survival, and the

likelihood of radio resistance. “Disruptive” TP53 mutations have a

worse outcome than “wild-type” or “non-disruptive” mutations

(68). Radiation was able to activate p21 and ROS in cell lines

with wild-type and non-disruptive TP53 mutations to induce

senescence, but not those with disruptive mutations (Figure 6).

However, the combination of metformin and radiotherapy

increased radiosensitivity in cells with disruptive TP53 mutations

by increasing ROS (Figure 6). This was further supported by a

reduction in clonogenic survival in vitro and reduced tumor

growth in vivo when metformin and radiation were used in

combination (68).
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4.5 Reducing genome instability
and mutation

4.5.1 Reduce malignant transformation
Metformin was also shown to reduce the development of

premalignant lesions in a 4-nitroquinoline 1-oxide (4NQO)

rodent model. 4NQO is a water-soluble carcinogen that simulates

the step-wise progression of human tobacco-related HNSCC in the

oral cavity of the rodent (69). In mice treated with metformin (via

intra-peritoneal injection), there was a reduction in the basal

proliferation of the hyperplastic regions on the tongue and the

number, size, and progression of the oral lesions to malignancy (39).

This study supports the use of metformin as a chemoprevention

measure for the development of premalignant lesions, which may

be beneficial in high-risk patients with leukoplakia.
4.6 Senescent cells

Cell senescence is an outcome for many CDK inhibitors, aiming

at cell cycle arrest, rendering them viable but unable to proliferate

(60). Senescence-associated secretory phenotype (SASP) can act to

either inhibit or promote cancer by secreting inflammatory

cytokines. Metformin has been shown to act as a senostatic drug

by reducing the release of tumor-promoting cytokines (interleukin

(IL)6, IL8, monocyte chemoattractant protein, GRO-family

chemokines) into the medium after treatment with CDK4/6

inhibitor LY2835219 (Ademaciclib) in oral squamous cell

carcinoma (OSCC) cell lines, without changing senescence-

inducing cytokines (IL1a, IL1b, transforming growth factor

(TGF)-b, chemokine ligand 5) via the mTOR/STAT3 and IL6/

STAT3 pathways (60) (Figure 5). The addition of metformin to

LY2835219 did not change the proportion of senescent cells but

changed the cytokines secreted by these cells. This study

demonstrated the mechanisms that allow metformin and CDK

inhibitors to work together to promote cell senescence.
4.7 Cell death

The evasion of cell death is a hallmark of cancer (70). In some

instances, metformin induced apoptosis in HNSCC cells (54, 55). Anti-

apoptotic proteins Bcl-2 and Bcl-xL were down-regulated (62) while

pro-apoptotic protein Bax was up-regulated (55, 63). The combination

of metformin and histone deacetylase inhibitor 4SC-202 increased Bax,

p53 and intrinsic apoptosis (cleaved caspase-9, cleaved caspase-3,

cleaved- PARP), but not extrinsic apoptosis marker caspase-8 (71).

This pro-apoptotic characteristic has been validated in vivo with

increased apoptotic tumor cells detected with TUNEL staining (55, 71).

4.7.1 Autophagy
Autophagy is a physiological process of cellular degradation and

recycling in response to stress and damage (72). Autophagy is

complex and can function both as a tumor suppressor by
FIGURE 4

Metformin and BPTES target both cell cycle regulatory proteins and
apoptotic pathways.
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progressive cellular consumption or as a tumor promoter by

sustaining survival through catabolic degradation (72). In other

cancer types, metformin has been reported to both stimulate and

inhibit autophagy (73). In this review of HNSCC, studies

demonstrate that metformin can both decrease (74) and increase

(62, 75), autophagy.

Metformin increased the markers of vesicle nucleation and

elongation, LC3B and Beclin-1, which represented autophagy (62)

(75). This involved activating p27 via both AMPK/mTOR and

MEK/ERK/RSK pathways (62) (Figure 7). Even though metformin

alone reduced cell viability and increased apoptosis and autophagy,

the anti-tumor effects were further enhanced when metformin was

combined with the autophagy inhibitor hydroxychloroquine in

vitro and in vivo (75).

In contrast, primary OSCC cells co-cultured with normal oral

fibroblasts (NOF) in transwell chambers, produced an environment

with high concentrations of ROS and intercellular ATP,

significantly increasing the growth of OSCC (74). The presence of

NOFs promoted autophagy and mitophagy proteins, LC3B and

BNIP3, and autophagosome-lysosome fusion to sustain

proliferation. In this instance, metformin reduced the tumor-

promoting autophagy by inhibiting LC3B and BNIP3 (74)

(Figure 7). However, in this co-cultured OSCC model, NOFs

inhibit AMPK by stabilizing the mitochondrial membrane

potential and reduce metformin-induced apoptosis; thereby

preventing a reduction in cell proliferation (74).
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These studies present interesting and opposing effects of

metformin on autophagy. The activation of autophagy by

metformin in FaDu cells resulted in a dose-dependent reduction

in cell viability (62). While metformin was reported to inhibit

tumor-promoting autophagy initiated by NOFs in the co-culture

model, it did not result in a reduction in OSCC cell proliferation

(74). The NOFs represent the tumor microenvironment, better

reflecting the in vivo interactions of cancer cells with their

surrounding supporting cells. The protective effect of NOFs and

other environmental factors may be overlooked in monocultures

and warrants consideration in future research.
4.8 Reducing invasion and metastasis

The Hippo pathway plays a critical role in modulating cell

proliferation and cellular phenotypes (76). Yes-associated protein

(YAP) is an oncogene within the Hippo pathway that is frequently

overexpressed in the HNSCC invasive front and associated with

tumor aggressiveness, nodal metastasis, epithelial-mesenchymal

transition (EMT) progression and drug resistance (76). Metformin

is reported to activate the Hippo pathway, which reduces the

expression of YAP and subsequent mTOR and c-Myc expression

(63) (Figure 8). As a result, the combination of metformin and

verteporfin, a YAP inhibitor, has an additional inhibitory effect on

cell cycle and proliferation than either agent alone (63).
FIGURE 5

The mechanisms of action of metformin affecting the cell cycle in HNSCC. The regulation of proteins (marked as up or downward arrows) in
response to metformin is referenced accordingly.
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4.8.1 Epithelial-mesenchymal transition
EMT plays a key role in cancer progression, invasion, and

metastasis. It is a biological process of polarized epithelial cells

transitioning to mesenchymal phenotypes and is frequently

initiated and regulated by hypoxia and the STAT3-TWIST

pathway (77, 78). In the hypoxic environment, metformin

reduced proliferation, migration, invasion and EMT by

decreasing mTOR, HIF-1a, PKM2, STAT3 and EMT markers

(78) (Figure 9).

Upregulation of TWIST1 promotes EMT and cancer

invasiveness which is associated with poorer prognosis (79).

Metformin and histone deacetylase inhibitor, 4SC-202, reduced

EMT via the STAT3/TWIST1 axis (80). The drug combination is

proposed to target STAT 3 via two different mechanisms:

metformin suppresses STAT3 through activation of the AMPK/

mTOR pathway and 4SC-202 suppresses histone deacetylase 3

enzymatic activity, preventing it from forming a complex to

activate STAT3 (80) (Figure 9).
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4.9 Nonmutational
epigenetic reprogramming

Epigenetic regulation alters gene expression, without altering

the DNA sequence, by DNA methylation, histone modification or

through the effects of non-coding RNA (81).

4.9.1 DNA Methylation
Tet methylcytosine dioxygenase 2 (TET2) is considered a tumor

suppressor protein which converts 5-methylcytosine (5mC) to 5-

hydroxymethylcytosine (5hmC) (82). Expression of TET2, and

subsequently 5hmC, are reduced in HNSCC resulting in an

alteration of gene expression to develop more aggressive features

(83). Metformin, along with other treatments such as 5-azacytidine

and Vitamin C are reported to increase the expression of TET2 and

5hmC (Figure 10), resulting in reduced proliferation and migration,

but increased apoptosis (83).

4.9.2 Non-coding RNA
Small nucleolar RNA host gene 7 (SNHG7) is a long non-coding

RNA with oncogenic potential. It affects several transcription factors

and signaling pathways by targeting microRNAs (miRNA) (84).

High expression of SNHG7 correlates with increased tumor size,

differentiation, advanced TNM staging, metastases, taxol

chemotherapy resistance and radio resistance (85). Metformin was

reported to inhibit HNSCC cell growth and increase apoptosis by

silencing SNHG7 through the activation of S-adenosylhomocysteine

(SAH) which upregulates DNA methyltransferase 1 (DNMT1),

leading to increased methylation of the SNHG7 promoter (85)

(Figure 10). Metformin’s action is likely a result of activating the

S-adenosylhomocysteine hydrolase (SAHH), an enzyme that

hydrates SAH into adenosine and homocysteine (86, 87). By

targeting SNHG7, metformin appears to increase chemosensitivity

to taxol and increase radiosensitivity (85).

MicroRNA-21-5p (miR-21-5p), a known oncogenic miRNA

(88), is often over-expressed in HNSCC. It reduces the expression of

the tumor suppressor gene Programmed Cell Death 4 (PDCD4)

(89). Metformin, when used at supraphysiological doses of 50-100

mM, is reported to reduce miR-21-5p and increase the expression of

PDCD4 (30, 90) (Figure 9). However, a metformin dose of 50-100

mM is unlikely to be achievable in vivo and therefore difficult to

translate clinically.

LIN28 is a major developmental regulator and, therefore, an

important target in cancer research. It can transform cancer cells

into cancer stem cells (91) by inhibiting the maturation process of

tumor suppressor miRNA let-7 (92). When metformin was

combined with LIN28 inhibitor, C1632, it demonstrated a

reduction in proliferation, migration, invasion in vitro, and a

reduction in tumor weight and size in vivo (91). In addition,

metformin induces Dicer expression via AMPK (93), which is key

to the maturation of pre-let7 to miRNA let7 (91). HMGA2 is a non-

histone chromosomal protein that regulates chromatin structure

which promotes cell cycle entry and inhibition of apoptosis in
FIGURE 6

Metformin combined with radiotherapy targets disruptive TP53
mutations to cause cell senescence.
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human malignancies (94). It is a downstream target of tumor

suppressor let-7 and was synergistically reduced when OSCC cell

lines were treated with the C1632 and metformin combination. The

proposed mechanism of this synergistic outcome of metformin and
Frontiers in Oncology 09
C1632 is two-pronged - C1632 inhibits LIN28, allowing the primary

mRNA (pri-let7) to be converted to let7; metformin activates

AMPK which activates Dicer, converting pre-let7 to let7

(91) (Figure 10).

Metformin was also found to target circular RNAs (circRNA)

which regulate miRNAs (95). Circ_0003214 was noted to be highly

expressed while tumor suppressor miR-489-3p was under-

expressed in HNSCC (95). Increased level of ADAM10 in OSCC

is reported to contribute to migration and invasion (96). Metformin

reduces circ_0003214 which subsequently increases miR-489-3p

and reduces its target ADAM10 (95) (Figure 10). This was reflected

in the reduction of cell viability and colony formation in vitro and

reduced tumor weight and volume in vivo (95).
4.9.3 Alternative splicing
Aberrant splicing events can result in cancer (97). Metformin is

reported to be involved in 1521 alternative splicing events involved

in processes including: centrosome function, DNA damage, ATPase

activity, RIG-I-like receptor signaling pathway and Wnt signaling

(98). Among them, exon 3 skipping of nucleotide binding protein 2

(NUBP2), an ATP-binding protein, was increased following

metformin treatment (98). Metformin induces a splicing switch to

the canonical long isoform, which in turn reduces intracellular ATP

to inhibit cancer cell proliferation and reduce colony formation (98).

4.9.4 Histone modification
Metformin treatment of HNSCC cell lines induced acetylation

of the lysine residue of histone H3 protein (H3K27ac) (32).

H3K27ac is an enhancer of transcription. Transcriptomic
FIGURE 7

Metformin affects autophagy in HNSCC cells.
FIGURE 8

Metformin and verteporfin on the Hippo/YAP pathway.
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profiling revealed metformin affects transcripts involved in the cell

cycle, ribosome, oncogenes, tumor suppressors, metabolism and

cytokines via H3K27ac (32).
4.10 Cancer stem cells

Cancer stem cells (CSCs) are a small subpopulation of the cells

within a tumor that have self-renewal and differentiating abilities.

These cells are easily cultured and highly tumorigenic with distinct

surface markers such as CD44, CD133 and ALDH (99).

Metformin reduced HNSCC CSC markers (NOTCH1, STAT3,

CD44, JAGGED) and stemness-related transcription factors

(OCT4, SOX2, KLF4, c-Myc, NANOG), suggesting it has an
Frontiers in Oncology 10
impact on CSCs (29, 56, 100) (Figure 11). When combined with a

high dose of curcumin (100 mM), it reduced proliferation and

increased apoptosis in cancer cell lines (53). This activity was

supported in a 4NQO rodent model when metformin was

combined with low-dose curcumin, demonstrating decreased

carcinogenesis progression with reduced expression of NF-kB,

pS6 and the CSC profile (100).

In contrast, Kuo et al. showed that low-dose metformin

increased cell proliferation in laryngeal cancer stem cells and

ALDH+ CSC, but reduced proliferation in ALDH- non-CSC

(101). Metformin increased stemness markers and protected

CSCs against cisplatin. However, this protective effect was not

observed in non-stem cells, resulting in a reduction in

proliferation (101). Metformin is known to inhibit mitochondrial
FIGURE 9

Metformin inhibits epithelial-mesenchymal transition.
FIGURE 10

The epigenetic consequences of metformin exposure.
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complex I. However, in vitro and in silico data suggest that

metformin binds strongly and inhibits mitochondrial complex III

activity, which reduces ROS production (101). Reduced ROS is

essential to maintain and promote CSC, whereas it has the opposite

effect on non-CSC (101) (Figure 11). Therefore, Kuo et al. proposed

that metformin reduces proliferation by targeting non-CSC, but

protected CSCs which then causes treatment resistance. This study

is important to highlight the heterogeneity of a cancer cell

population and how the different cell types within the tumor may

respond differently to metformin.

Patient-derived cancer organoids are generated from

pluripotent stem cells and differentiate into a three-dimensional

complex structure of various cell types (102). This model, consisting

of CSCs, allows a more accurate representation of human cancer

and may affect metformin’s anti-proliferative activity.
4.11 Tumor microenvironment

Tumors are surrounded by fibroblasts, immune cells,

inflammatory cells, epithelial, endothelial, mesenchymal cells, and

the extracellular matrix, Together, they make up the tumor

microenvironment (103). The tumor microenvironment plays an

active role in the promotion of tumor survival and progression. This

section discusses how metformin can affect various factors in the

tumor microenvironment.

4.11.1 Stromal fibroblasts
Cancer-associated fibroblasts (CAFs) surround the tumor and

secrete various factors to support and promote cancer cell growth

(104). Co-culturing primary OSCC with normal oral fibroblasts

(NOF) increases proliferation and autophagy (74) as discussed

earlier (Section 5.7.1).

Metabolic coupling, also termed “reverse Warburg effect”,

occurs when the cancer stroma metabolically supports the cancer

cells by catabolite transfer. Monocarboxylate transporters (MCTs)
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are essential for the cancer cells to undergo metabolic coupling.

Caveolin-1(CAV1) is a membrane protein frequently

downregulated in CAFs and associated with tumor aggressiveness

(105). Xenografts with CAV1 knockdown fibroblasts did not show a

significant impact on tumor growth when treated with metformin,

suggesting CAV1 is essential for metformin’s action (105). In a co-

injection rodent model with fibroblasts, treatment with metformin

decreased metabolic coupling by reducing cancer cell MCT1 and

restoring fibroblast CAV1 expression (105) (Figure 12).

Integrin beta 2 (ITGB2) is a subunit of integrin and a cell surface

glycoprotein that regulates cell survival, proliferation, and movement.

It is involved in the control of metabolic pathways by coordinating

intracellular and extracellular signaling (106). ITGB2 is upregulated

on OSCC CAFs membrane and cytoplasm. It is associated with

higher TNM staging, greater depth of invasion, shorter survival, and

early recurrence (106). The presence of ITGB2, whether on CAFs or

overexpressed on NOFs, was able to promote tumor cell proliferation

by activating the PI3K/AKT/mTOR pathway resulting in increased

glycolysis, generating pyruvate which is then converted to lactate.

Lactate exits CAFs through MCT4, enters cancer cells through

MCT1, and is used by mitochondrial complex I to generate NADH

(106) (Figure 12). Metformin targets the electron transport chain,

disrupting the availability of NAD+ that is required for the oxidation

of lactate for cancer cells. Zhang et al. concluded that even though the

presence of ITGB2 on the CAFs in the tumor microenvironment

promotes OSCC proliferation, it also makes them more sensitive to

the effect of metformin.

Cellular communication network factor 1 (CCN1/Cyr16) is a

regulatory protein of the tumor microenvironment and is over-

expressed in many cancers including HNSCC (107). Metformin

reduces Cyr16 and its downstream target p-AKT resulting in a

reduction in cell viability in cell line SCC25 (108) (Figure 12).

4.11.2 DNp63
DNp63 is the predominant p63 isoform and is frequently

overexpressed in HNSCC (109). It is essential for regulating
FIGURE 11

Metformin and cancer stem cells.
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adhesion molecules and can influence the tumor microenvironment

(110). The combination of metformin with histone deacetylase

inhibitor, 4SC-202, synergistically reduced cell proliferation and

colony formation in vitro, and reduced tumor weight and volume in

vivo (71). The combination treatment destabilized oncogene DNp63
in a post-translational manner by increasing protein ubiquitination

and proteasome-mediated degradation through ubiquitin E3 ligase,

WWP1(Figure 13) (111), which led to reduced fibronectin resulting

in reduced cell matrix adhesion (111) and increased apoptosis (71).

Metformin in a glucose-deprived environment, or used in
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combination with 2-DG, further enhanced the effects of reduced

DNp63 (Figure 13) (111).

4.11.3 Nerve growth factor receptor
Nerve growth factor receptor (NGFR) is a transmembrane

protein that promotes cell survival, and its overexpression in OSCC

is linked with poorer prognosis (112). Proteolytic processing withɑ-
secretase and ?-secretase cleaves NGFR into two components: NGFR-

N and the intracellular domain (ICD). NGFR-N degrades p53 (113),

while ICD activates the NF-?B pathway (114), both leading to tumor
FIGURE 13

The effect of metformin in combination with other treatments (4SC-202 and 2-DG) on DNp63a.
FIGURE 12

The effect of metformin on the tumor microenvironment.
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progression. Metformin was shown to inhibit NGFR proteolysis by

reducing the expression of ɑ-secretase and ?-secretase genes, thereby

reducing cell proliferation and growth (Figure 14).

4.11.4 Tumor hypoxia
The rapid proliferation of cells and lack of vasculature within a

solid tumor can result in tumor hypoxia, which contributes to

chemo- and radio-resistance (115). Higher cisplatin concentrations

were required when HNSCC cells were grown in a hypoxic (1% O2)

compared to a normoxic (20% O2) environment (116). Metformin

was shown to inhibit hypoxia-induced NF-?B and thereby

downregulate HIF-1a expression and downstream proteins

GLUT-1 and Bcl-2 in vitro and in vivo, potentially through the

activation of AMPK (116) (Figure 14). Qi et al. then showed the

IC50 of cisplatin was significantly less when used in combination

with metformin during hypoxia, suggesting metformin sensitizes

HNSCC cells to cisplatin and reduces chemoresistance despite

hypoxia (116). However, it is important to also note that

metformin has been reported to protect esophageal SCC from

cisplatin by reducing the formation of cisplatin-DNA adduct

complexes (117). These two studies (116, 117) differ in the

concentration of oxygen and may suggest metformin is more

effective against cells in a more hypoxic environment.

Gefitinib is an effective epidermal growth factor receptor tyrosine

kinase inhibitor in lung cancer but has not been approved by the FDA

for use in HNSCC (118). Hypoxia has also been shown to induce
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gefitinib resistance by inducing EMT (118). In HNSCC in vitro and in

vivo models the combination of metformin and gefitinib reduced

HIF-1ɑ, cyclin D1 and EMT to overcome hypoxia-induced gefitinib

resistance (118) (Figure 14). Clinical trials combining metformin and

gefitinib are underway in lung cancer (NCT01864681,

NCT03071705; www.ClinicalTrials.gov), however, such trials have

not been considered for HNSCC. These two studies (116, 118)

suggest that the addition of metformin to cisplatin and gefitinib

may reduce the development of hypoxia-induced chemoresistance in

HNSCC and may be worth further investigation.

Tumor hypoxia contributes to radio resistance, and metformin

was reported to increase tumor oxygen saturation and hemoglobin

concentration using non-invasive photoacoustic imaging in an

orthotopic xenograft rodent model (119). This study suggests that

metformin may target tumor tissue and supports its use as a

radiosensitizer (119). It is the first study that demonstrated

metformin modulates tumor oxygenation in HNSCC without

increasing the vessel count. This suggests metformin increased

tumor oxygen saturation by reducing oxygen consumption (119).

However, the benefit of metformin is temporary, with oxygen

saturation returning to baseline 48 hours after cessation.

4.11.5 Immune modulation
The immune microenvironment plays a role in protecting

tumors from chemotherapy by producing pro-tumor mediators

(120). Tumor-associated macrophages (TAM) contribute to
FIGURE 14

Metformin in the hypoxic tumor microenvironment.
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chemotherapy resistance (121). Hypoxia in the tumor

microenvironment polarizes macrophages to M2-macrophages

(M2-TAM) via HIF-2ɑ, which secretes C-C motif chemokine

ligand 15 (CCL15). CCL15 then reacts with the C-C motif

chemokine receptor (CCR1) on the tumor cell surface to activate

NF-?B, promoting gefitinib resistance. Metformin was found to

inhibit CCL15 secretion by M2-TAM and reduce CCR1 expression

in HNSCC cells (Figure 14); therefore, reducing the development of

drug resistance when used in combination with gefitinib (122).

Metformin has also been reported to impact both the peripheral

blood and tumor infiltrating natural killer (NK) cells (123).

Metformin-treated NK cells increased NK cell cytotoxicity

compared to vehicle control. This is likely a result of metformin

increasing pSTAT1, which stimulates an increase in perforin

secretion. Perforin plays an important role in forming

transmembrane pores and subsequent apoptosis in tumor cells

(124). Metformin also inhibits mTOR and pSTAT3, with

subsequent impact on the tumor promoting chemokine C-X-C

motif ligand 1 (CXCL1). This prevents interaction with CXC

receptor 2, which then reduces the proliferation and progression

of cancer cells (125). A comprehensive diagram has been included

in Crist et al’s paper and therefore not replicated here (123).
4.12 Polymorphic microbiomes

The tumorigenesis of HPV-positive HNSCC relies on the

inhibition of p53 by HPV viral proteins E6 and E7. Hoppe-Seyler

demonstrated that metformin was able to reduce E6 and E7

expression in HPV-positive HNSCC and cervical cancer cells in a

dose- and time-dependent manner, but this was reversible after

changing to metformin-free media (126). Exploration of the

mechanistic pathways has only been performed in cervical cancer

cell lines HeLa and SiHa cells and not in HNSCC, but the results

suggested that PI3K is key in the suppression of E6 and E7 proteins.

Metformin induced only a reversible reduction in the oncoproteins,

suggesting senescence was not achieved. Furthermore, metformin

also counteracted the pro-senescent effects when combined with

chemotherapeutic agents Etoposide and Doxorubicin in this study

(126).These findings suggest that metformin could potentially

interfere with senescence in the presence of oncoproteins E6 and

E7 and should be used with caution when combined with other

chemotherapy drugs. This should also be further investigated before

extrapolating the results to HPV-positive HNSCC cell lines.
4.13 Limitations of the included studies

Several limitations need to be acknowledged when translating

these pre-clinical findings into clinical treatment. The doses of

metformin used for in vitro studies are generally much higher in

concentration than the reported physiological concentrations in the

systemic circulation, with one in vitro study using up to 100 mM

metformin (30). Therapeutic doses of metformin in human systemic

circulation, approximately 10-40 mM, may not be sufficient to affect

tumor growth (127), therefore alternative modes of delivering
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metformin to the tumor cells may need to be explored. Song et al.

designed a metformin-cisplatin nanoparticle that is activated by laser

and targets ligand low-density lipoprotein receptor which is specific

to the hypoxic centers of HNSCC (128). Metformin sensitized the

effect of cisplatin in cell culture and in vivo. This novel method of

drug delivery was able to target the xenograft tumor with high doses

of cisplatin (10 mg/kg) combined with metformin (1 mg/kg) to

overcome the low systemic concentration of metformin and reduce

potential toxicities. Drug delivery methods incorporating metformin

in micro- and nanoparticles are currently being explored to

overcome low oral bioavailability and to target dose delivery for

effective cancer treatment (129).

Cancer cell culture provides an invaluable model for investigating

mechanistic pathways, but several factors may limit the relevance to

responses in human disease. Cell culture growth medium provides a

protected environment favoring cell growth, containing high

concentrations of glucose, essential nutrients, growth factors,

various hormones, and antibiotics, which are non-physiological. As

a result, cells growing in this favorable environment may require

higher doses of metformin. The in vitro studies discussed largely use

cancer cells grown in a monolayer. Again, this is not reflective of the

in vivo environment where solid tumors are 3D structures, consisting

of differentiated cell types and CSC, constantly influenced by their

microenvironment. This review discussed the different impact

metformin has on CSC (101), hypoxic regions (116) and

surrounding cells (105). 3D models such as spheroids or organoids

can potentially address some of these issues.

The in vivo animal studies discussed used varying doses of

metformin, with diverse methods of administration (oral intake,

intraperitoneal injection or xenografts pre-treated with metformin),

for a variable duration of treatment. Furthermore, xenograft models

largely employ immunodeficient animals, which do not fully reflect

how the human immune system interacts with cancer development.

None of the studies measured metformin concentration in the

animal systemic circulation, nor correlated the doses to the

human systemic circulation, which is worth exploring.

In most of these pre-clinical studies, HNSCC cells have been

classified as a single entity, whereas clinically HNSCC vary

significantly depending on the subsite origin, differentiation

status, and HPV status (currently only clinically relevant to

oropharyngeal SCC). These factors impact pathophysiology,

disease development and treatment response. Moving forward, a

better description of cell line characteristics (including subsites,

HPV status, and mutations) will be important for accurate

interpretation of metformin response, characterization of the

molecular pathways involved, and clinical translation.
4.14 Summary

This scoping review provides a comprehensive presentation of

the biological actions of metformin in HNSCC in the pre-clinical

setting. A vast array of pathways has been presented and discussed,

with many impacting the hallmarks of cancer. While the AMPK/

mTOR pathway is the most well-described mechanistic action

of metformin in HNSCC, there is a growing focus on metformin’s
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role in epigenetic regulation and the surrounding tumor

microenvironment. It is important to be aware that even though

each study focuses on a select pathway, metformin acts through

many pathways simultaneously.

A recently updated meta-analysis, including 14694 patients in

11 cohort studies, concluded that adjuvant metformin use benefits

overall survival, disease-free survival and disease-specific survival in

HNSCC patients (130). This review raises the concept that HNSCC

disease stratification, such as OCT3 expression, TP53mutation, and

HPV status, may improve the clinical outcomes when using

metformin. The response to metformin may also be affected by

the surrounding tumor microenvironment, hypoxia and the

heterogeneity within each tumor.

These studies are encouraging and support ongoing research

into the use of metformin as an adjuvant treatment for HNSCC.

However, epidemiological studies suggest that metformin is

unlikely to be used as a monotherapy to effectively treat HNSCC.

Combining metformin with existing or novel treatments provides

an opportunity to exploit the benefit of metformin at lower doses.

This review highlights additive or synergistic responses when

metformin is combined with other therapies, ranging from

compounds such as curcumin to radiation treatment. Validation

in 3D models using co-cultured spheroids or organoids could

provide valuable and novel information on metformin’s impact

on surrounding cells, hypoxia and cancer stem cells.
5 Conclusion

Metformin is a widely used medication with a proven safety

profile that demonstrates anti-tumor properties in HNSCC. This

comprehensive scoping review of the pre-clinical literature

summarizes the proposed mechanisms of action of metformin on

HNSCC cancer cells, the surrounding tumor microenvironment,

and animal models. Further validation of metformin combinations

in 3D cancer models will provide interesting and valuable

information. It is important to consider the limitations of in vitro

and in vivo animal models when designing clinical trials to further

explore the benefit of metformin. Metformin is at the forefront of

drug repurposing and presents an exciting and promising agent for

use as an adjuvant therapy in the treatment of HNSCC.
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