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Clinical acceptance and
dosimetric impact of
automatically delineated elective
target and organs at risk for head
and neck MR-Linac patients
Vesela Koteva1*, Björn Eiben1, Alex Dunlop2, Amit Gupta3,
Tarun Gangil1, Kee Howe Wong4, Sebastiaan Breedveld5,
Simeon Nill 1,2, Kevin Harrington6 and Uwe Oelfke1,2

1Radiotherapy Physics Modelling, Division of Radiotherapy and Imaging, The Institute of Cancer
Research, London, United Kingdom, 2The Joint Department of Physics, The Royal Marsden Hospital
and The Institute of Cancer Research, London, United Kingdom, 3Head and Neck Unit, The Royal
Marsden National Health Service (NHS) Foundation Trust and The Institute of Cancer Research,
London, United Kingdom, 4Head and Neck Unit, The Royal Marsden National Health Service (NHS)
Foundation Trust, London, United Kingdom, 5Department of Radiotherapy, Erasmus University
Medical Center (MC) Rotterdam, Rotterdam, Netherlands, 6Targeted Radiotherapy, Department of
Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
Background: MR-Linac allows for daily online treatment adaptation to the

observed geometry of tumor targets and organs at risk (OARs). Manual

delineation for head and neck cancer (HNC) patients takes 45-75 minutes,

making it unsuitable for online adaptive radiotherapy. This study aims to

clinically and dosimetrically validate an in-house developed algorithm which

automatically delineates the elective target volume and OARs for HNC patients in

under a minute.

Methods: Auto-contours were generated by an in-house model with 2D U-Net

architecture trained and tested on 52 MRI scans via leave-one-out cross-

validation. A randomized selection of 684 automated and manual contours

(split half-and-half) was presented to an oncologist to perform a blind test and

determine the clinical acceptability. The dosimetric impact was investigated for

13 patients evaluating the differences in dosage for all structures.

Results: Automated contours were generated in 8 seconds per MRI scan. The

blind test concluded that 114 (33%) of auto-contours required adjustments with

85 only minor and 15 (4.4%) of manual contours required adjustments with 12

only minor. Dosimetric analysis showed negligible dosimetric differences

between clinically acceptable structures and structures requiring minor

changes. The Dice Similarity coefficients for the auto-contours ranged from

0.66 ± 0.11 to 0.88 ± 0.06 across all structures.
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Conclusion: Majority of auto-contours were clinically acceptable and could be

usedwithout any adjustments. Majority of structures requiringminor adjustments

did not lead to significant dosimetric differences, hence manual adjustments

were needed only for structures requiring major changes, which takes no longer

than 10 minutes per patient.
KEYWORDS

clinical acceptability, dosimetric impact, MR-Linac, automated delineation, head and
neck cancer
1 Introduction

Every radiotherapy treatment starts with a generation of a

treatment plan specifying a clinically optimized dose distribution

and its delivery parameters for each patient. In our head and neck

cancer (HNC) radiotherapy protocol, a treatment plan is initially

generated based on a CT scan, prescribing 65 Gy to the primary target

and 54 Gy to the elective target (the combined volume of the neck

lymph nodes excluding the overlap of the nodes and the primary

tumor) delivered in 30 fractions. The treatment plan is usually based

on a CT scan, acquired one or more weeks before the treatment (1).

However, this plan does not consider anatomical changes during

treatment, risking compromised clinical goals and increased toxicity

(1–7). For instance, the parotid glands may move closer to high-dose

regions, posing a risk of overdosing these sensitive organs. Figure 1A

shows a patient’s scan acquired during their final fraction (fraction

30) with overlayed contours of the parotid glands, spinal cord and

brainstem from the patient’s initial scan. Hence, if we simply copy the
02
contours from the initial to the final scan the parotid glands would be

partially located outside of the patient’s external outline and the

spinal cord and brainstem would not be at the correct position.

Patient anatomy changes, even with radiotherapy masks, necessitate

adapting contours to ensure accurate dose delivery.

Adaptive radiotherapy (ART) using an MR-Linac allows for

real-time treatment plan adaptation based on daily anatomical

changes (8, 9). In order to adapt the treatment plan, the ROIs

need to be re-delineated on the daily scan while the patient is on the

treatment couch. This requires organ delineation in less than one

minute (10). Manual delineation, taking around 45 minutes, is

infeasible for HNC patients within acceptable time frames. Current

practice involves deformable image registration, but it requires

initial manual delineation, lasting 45 to 75 minutes, and is prone

to inaccuracies, often requiring additional manual adjustments due

to imperfect results (11, 12).

In the past decade numerous groups have investigated

automatic delineation using deep convolutional neural networks
frontiersin.org
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FIGURE 1

(A) Example of anatomical changes where contours of the parotid glands (orange: right parotid, yellow: left parotid), spinal cord (green) and
brainstem (pale green) obtained from the initial scan are overlayed with the scan of the patient from the last fraction (fraction 30). (B) General
workflow of the study split into three main groups: data acquisition, where a clinician manually contours all available data, training and testing where
the model is trained to learn the manual contours and tested to produce a set of contours on an unseen scan, and last, validation where the model
has been validated based on clinical acceptability, dosimetric impact and geometric analysis.
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(CNNs) and have shown their great potential (13–16). The

assessment of automatically generated contours typically relies on

metrics like Dice similarity coefficient (DSC) and geometric

measures such as Hausdorff distance. This study seeks to employ

an in-house model for automatic delineation of the elective target

volume and OARs, reducing delineation time for HNC patients,

and assess the clinical acceptability and dosimetric impact of the

auto-contours.
2 Materials and methods

A graphical representation of the complete workflow is shown

in Figure 1B.
2.1 In-house model for
automated delineation

The dataset employed in this study comprised 52 MR-Linac

scans, 14 T1-weighted and 38 T2-weighted, obtained from 52

patients diagnosed with HNC. All scans were acquired using the

7MV (flattening filter free - FFF) Elekta Unity MR-Linac (Elekta

AB, Stockholm, Sweden) with magnetic strength of 1.5T. A

radiation oncologist thoroughly examined all available scans for

each of the 52 patients, selecting a single scan per patient based on

optimal imaging quality. Each scan was resampled via SimpleITK

(Insight Software Consortium) (17, 18) to cover the HN region with

an in-plane resolution of 0.6 x 0.6 mm2, slice thickness of 1.1 mm

and dimensions (x, y, z) = (768, 768, 420), where z represents the

number of slices, while x and y represent the number of pixels of

each slice. From the available scans, 38 originated from the

MOMENTUM study (19) and 14 were provided by the Royal

Marsden Hospital (RMH), UK. The radiation oncologist

delineated the neck nodes (levels 1a-5), parotid glands, spinal

cord, brainstem, inferior pharyngeal constrictor muscle (IPCM),

superior and middle pharyngeal constrictor muscle (SMPCM)

and mandible.

A deep convolutional neural network (CNN) was trained to

reproduce the manually-delineated (ground truth) structures. The

CNN had a typical 2D U-Net architecture with 58 layers in total

inc luding batch normal izat ion and act ivat ion layers

(Supplementary Material provides more details. The MR scans

were fed into the network slice-by-slice (20). This approach

makes use of deep learning using Python (version 3.7) and the

open-source libraries Tensorflow (21) and Keras both Google,

Menlo Park, California, United States (22). The model was

trained utilizing the computational power of an NVIDIA Tesla

V100 GPU. Although some studies favor 2.5D and 3D U-Nets over

2D U-Nets (23, 24), providing this extra information doesn’t

consistently enhance accuracy (15). Additionally, 2D CNNs are

more computationally efficient than 2.5D or 3D U-Nets, requiring

fewer resources for processing. We believe the available MRI scans

have sufficient resolution for the task. Training a 3D network would

demand decreased resolution and spatial size, risking loss of

important features. Furthermore, 2D U-Nets require less data and
Frontiers in Oncology 03
are less prone to overfitting than 3D U-Nets, potentially leading to

better generalization.

Leave-one-out cross-validation was used (25). This technique

takes all but one patients as input for training and uses the

remaining patient for testing. This is repeated until predictions

are made for all patients. All images were downsampled by a factor

of 2 before being fed to the network which was trained for 40 epochs

with a learning rate of 0.0001. We used the Dice loss, optimizing it

with the Adam optimizer (26, 27). Data augmentation was applied

through rotation within ±3°, zoom up to ±10% and vertical/

horizontal shifts up to 10% of the original image size.

We timed the generation of contours on a 3D scan and

evaluated geometrically using DSC, mean surface distance (MSD)

and 95th percentile Hausdorff distance (HD95). The DSC shows

how good the overlap between the auto-generated and manual

contour is (1 for complete, 0 for none). The MSD represents the

mean distance between each point of the auto-contour to the closest

point from the manual contour. HD95measures the largest distance

among the closest 95% of the points from both contours (28).
2.2 Clinical acceptance

A clinical acceptance test by a second oncologist with 13 years

of clinical experience assessed 684 contours—half manual, half

model-generated. About 57% of model contours had DSC above

0.8, while 9% scored below 0.6. For detailed breakdown of the exact

number of structures from the different groups of DSC that were

presented to the oncologist we refer the reader to the

Supplementary Data. To perform a ‘blind test’ the oncologist had

no prior knowledge which contours were manual and which were

auto-generated. The same patient and contours were presented to

the oncologist on two separate days without their knowledge. The

oncologist stated if the contours are clinically acceptable and if not,

they stated the level of adjustments required from 1 to 5 (1 =

minimal adjustments, 5 = complete re-contouring), similar to the

method presented in (29). Afterwards a detailed breakdown was

performed to find how many model-generated contours from each

DSC group were classed as clinically acceptable and requiring

minor and major adjustments.
2.3 Dosimetric impact

The dosimetric impact of the model-generated structures was

evaluated. Using our standard clinical template, new treatment

plans were optimized using the automatically generated contours

and compared to dose distributions derived from the ground truth

contours for 13 of the patients. These 13 patients were chosen as

contours of the primary target volume were available, whereas

contours of the primary target were not provided for the

remaining patient population. To create the elective planning

target volume, a margin of 3 mm was used around the combined

volume of the left and right neck nodes, subtracting the primary

planning target volume. The dosimetric impact was evaluated on

the neck nodes separately without adding a margin. As quality
frontiersin.org
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indicators we selected the mean dose delivered to the parotid

glands, pharyngeal constrictor muscles (PCMs) and mandible,

maximum dose delivered to spinal cord and brainstem, and dose

delivered to 95% of the volume of the neck nodes for both

automated and manual structures. The results are presented as

the absolute differences between the two respective doses

normalized as a percentage of the prescribed dose of 65 Gy. Our

findings are separated into three groups:
Fron
1. dos imetr ic impact on st ructures c lass ified as

clinically acceptable

2. dosimetric impact on structures that required minor

changes (levels 1-2)

3. dosimetric impact on structures that required major

changes (levels 3+).
Furthermore, we asked the oncologist to perform the required

adjustments manually for several patients and recorded the time it

would take to amend the contours. We compared the dosimetric

results to the average absolute dosimetric difference between dose

delivered to manually delineated structures and the corresponding

automated and later on manually adjusted contours.

Approximate representation of the dosimetric impact for best,

median, and worst algorithm performances was shown, analyzing

cases from Figure 2A. The evaluation included median performance

for neck nodes and parotid glands, worst and median performance

for spinal cord, worst performance for brainstem, and worst,

median, and best performance for mandible. Limited target

volume information precluded analysis for other examples, so

structures with similar DSC values were selected for assessment.
3 Results

3.1 In-house model for
automated delineation

The network took an average of 32 hours to train (range 16-48

hours), while full 3D MRI organ delineation completed within 8

seconds. Figure 2A displays model-generated structures overlaying

manually delineated contours, showcasing best, median, and worst

performances based on DSC on a contour-by-contour basis.

Average DSCs were 0.71 ± 0.17/0.77 ± 0.11, 0.84 ± 0.12/0.85 ±

0.10, 0.75 ± 0.13, 0.88 ± 0.06, 0.66 ± 0.11, 0.63 ± 0.15, and 0.84 ±

0.06 for left/right neck nodes, left/right parotid glands, spinal cord,

brainstem, SMPCM, IPCM, and mandible, respectively. Further

details on DSC, MSD, and HD95 are in Figure 2B.
3.2 Clinical acceptance

The blind test showed that 114 (≈ 33%) of the auto-generated

contours required adjustments. The mean score of adjustments was

M =  1:89 (range 1-4) with a median score of ~M =  1. From the

manually delineated structures 15 (≈ 4.4%) required editing with mean
tiers in Oncology 04
score M =  1:60(range 1-3) and median eM =  1. Figure 3A shows

detailed breakdown of the number of ROIs requiring adjustments.

No clear DSC-adjustment correlation was observed. Generally,

DSC>0.8 indicated clinically acceptable contours (except PCMs).

DSC between 0.6 and 0.8 showed acceptability or minor changes (3

neck nodes needed major adjustments). DSC < 0.6 usually required

major amendments. Due to the small size of the PCMs, most results

scored DSC between 0.6 and 0.8 and majority were classed as

requiring minor adjustments and when the DSC was below 0.6

majority of contours required major adjustments. Only 2 PCMs had

DSC above 0.8 and one of them was clinically acceptable, whereas

the other one required minor amendments. Of 196 contours with

DSC≥0.8, 180 were acceptable, 16 needed minor adjustments; 39

out of 72 contours (DSC 0.7-0.8) were clinically acceptable, 32

needed minor adjustments, and one (neck node) required major

changes. In the next group, 7 out of 43 structures (DSC 0.6-0.7)

were acceptable, 31 needed minor adjustments, and 3 required

major changes. Lastly, 2 out of 30 structures (DSC<0.6) were

acceptable; 5 needed minor adjustments, and 23 required major

changes. Detailed breakdown in Supplementary Material. Clinical

acceptance test was performed for majority of the best, median and

worst performance of the model except for the worst performance

for neck nodes and best performance for the parotid glands. Based

on the other results, most likely the neck nodes contours for the

worst performance would have required major adjustments, while

the best performance contours of the parotid glands would have

been clinically acceptable. Figure 4 shows detailed outcomes

for other cases. All structures (except PCMs) from best and

median performance were clinically acceptable; PCMs needed

minor adjustments.

No correlation was found between amendment level and

manual correction time. Average time for model-generated

structure correction is 7.5 minutes per patient: 1min 27s for OAR

with minor adjustments (levels 1-2) and 4mins 23s for neck nodes

with the same adjustments level. For level 3+ adjustments, it takes

1min 4s for OAR and 4mins 39s for neck nodes. When presenting

contours on two days, initially, the oncologist suggested level 1

corrections for SMPCM and right neck nodes, but later deemed all

regions clinically acceptable.
3.3 Dosimetric impact

The results of the dosimetric impact analysis are shown in

Figure 3B. The median absolute difference between dose delivered

to auto-generated and manual contours for structures requiring no

changes and structures requiring levels 1-2 amendments were very

close and under 5% of prescribed dose. The average dosimetric

difference between dose delivered to algorithm-generated, manually

adjusted contours and manually delineated contours was in most

cases higher than the median differences. Dosimetric difference was

higher for structures requiring adjustments of levels 3+. Figure 4

shows the dosimetric impact of the structure for which the model

had best, median and worst performance or closest to these DSC

values if information for the primary target was missing. DSCs of
frontiersin.org
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the structures used for this analysis were in the range of 0.44 - 0.87

for neck nodes, 0.48 - 0.91 for parotid glands, 0.35 - 0.87 for spinal

cord, 0.64-0.93 for brainstem, 0.52 - 0.79 for SMPCM, 0.42 - 0.79 for

IPCM, and 0.55 - 0.91 for Mandible. For all structures from the best

and median performance of the model, the dosimetric difference is

under 5% of prescribed dose.
4 Discussion

This study investigates the clinical acceptability and dosimetric

impact of automatically obtained contours of the elective target

volume and OARs required for treatment planning on MR-Linac
Frontiers in Oncology 05
HNC patients’ data. It was found that majority of automated

contours (≈ 67%) were clinically acceptable and in general the

ones that require minor adjustments do not lead to significant

dosimetric differences.

With the increasing interest in deep learning-based strategies

for automated segmentation in radiation oncology, numerous

groups have developed their own in-house models. Kieselmann

et al. (15) have developed a model, similar to the one presented in

this study, for delineating the parotid glands on MRI, reporting

average DSC of 0.85 ± 0.11, which is comparable to our achieved

DSC of 0.84 ± 0.12/0.85 ± 0.10 for left/right parotid glands,

respectively. Dai et al. (30) have also developed a very similar

model for multi-organ delineation on MRIs, reporting again
A

B

FIGURE 2

(A) Examples of the automatically generated contours (yellow) overlaid onto the manually delineated contours (red), representing the model's best,
median, and worst performances determined by the DSC scores on a case-by-case basis. (B) Box plot showing the obtained range of the DSCs,
MSDs, HD95s for all structures.
frontiersin.org
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comparable results with average DSCs of 0.89 ± 0.06, 0.85 ± 0.06/

0.86 ± 0.05, 0.77 ± 0.15 and 0.82 ± 0.10 for brainstem, left/right

parotid gland, spinal cord and mandible, respectively. Their

achieved average DSCs are marginally higher for the brainstem

and the spinal cord, however they have not attempted to delineate

the elective target volume. Korte et al. (31) and Kawahara et al. (32)

have developed models to delineate the parotid gland and elective

target volume levels II and III with Korte et al. investigating three

different CNN, whereas Kawahara et al. compares CNNs to
Frontiers in Oncology 06
generative adversarial networks (GANs). Both groups achieve

similar results for the parotid glands equivalent to the ones from

the other discussed studies. Korte et al. have achieved 0.708 ± 0.053/

0.715 ± 0.071 and 0.561 ± 0.100/0.573 ± 0.105 for left/right level II

and level III, respectively. Kawahara et al. have shown that GANs

have better performance when delineating the elective target

volume with DSCs of 0.80/0.81 and 0.77/0.75 for left/right level II

and level III, respectively. In comparison, we have achieved 0.71 ±

0.17/0.77 ± 0.11 for left/right neck node, however our contour is the
A

B

FIGURE 3

(A) Detailed breakdown of the number of automated and manual contours that were clinically acceptable, as well as requiring each level of
corrections from 1 to 5. (B) Box plots illustrating dosimetric impact on structures that were clinically acceptable (not requiring any change),
structures requiring minor changes (levels 1-2), and structures requiring changes of levels 3+. Plots show absolute difference in dose delivered to
95% of the volume of the neck nodes (top left), absolute difference in mean dose delivered to the parotid glands (top middle), absolute difference in
maximum dose delivered to the spinal cord (top right), absolute difference in maximum dose delivered to the brainstem (bottom left), absolute
difference in mean dose delivered to the pharyngeal constrictor muscles (PCMs) (bottom middle), and absolute difference in mean dose delivered to
the mandible (bottom right). Blue horizontal lines represent the average dosimetric difference between dose delivered to algorithm-generated
manually adjusted contours and manually delineated contours.
frontiersin.org
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combined volume of all levels 1a-5, therefore we cannot fairly

compare our results.

Prior studies have predominantly focused on geometric

evaluations, neglecting clinical acceptability. A 2020 review by

Vrtovec et al. (33) highlighted this gap, emphasizing the scarcity

of studies assessing the clinical viability of automated contours.

Recent research post-2020 delves into the impact of auto-contours

on HNC patient workflows (29, 34–36). Wong et al. (29) and Zhong

et al. (35) mirrored a methodology similar to this study, seeking

expert opinions on clinical acceptability or required adjustments for

auto-contours. Zhong et al. found a majority of auto-contours

clinically acceptable, aligning with this study, while Wong et al.

reported that most required minor adjustments. Thor et al. (34) and

Radici et al. (36) explored dosimetric impacts, with Thor et al.

optimizing treatment plans using auto-generated contours and

Radici et al. recalculating doses on auto-contours using original

clinical plans. Notably, these studies utilized CT scans. Liu et al. (37)

reviewed deep learning-based segmentation in the HN region,

finding superior brainstem segmentation accuracy on MR scans

(DSC 0.92) than CT (DSC 0.86). Other CT-based studies, He et al.

(38) and Zhang et al. (39) reported successful auto-segmentation of
Frontiers in Oncology 07
HN region organs-at-risk (OARs). Our results showed improved

parotid gland segmentation and comparable brainstem

performance. Although spinal cord DSC was slightly lower, it

remained comparable to inter-observer variability DSC. Strijbis

et al. (40) segmented individual levels of the lymph nodes,

achieving a combined structure DSC of 0.86, exceeding our model

in geometrical evaluation. While the results showcase an impressive

performance, it is noteworthy that the sizes of the available datasets

for CT scans significantly surpass those for MR images. We expect

an enhancement in the performance of our model as the dataset size

expands. Moreover, these studies only reported geometrical results

without dosimetric or clinical acceptability analyses. This study, to

the best of current knowledge, is the first obtaining autocontours for

elective target volumes and this set of crucial OARs (per clinical

protocol) using MR-Linac HNC patient data. It specifically

investigates both clinical acceptability and dosimetric impact, a

facet rarely explored in prior research.

The geometric evaluation revealed lower DSC scores for neck

nodes and PCMs. Larger HD95 values for the spinal cord and neck

nodes suggested misclassified voxels and incomplete delineation.

Instances with DSC below 0.6 led to increased Mean Surface
FIGURE 4

Clinical acceptance of exact examples from the best, median and worst performance of the model. Dosimetric difference evaluated for exact
examples (orange circle) if information of the primary target was available, or with closest DSC (blue cross) to the exact example if primary target
information was not available.
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Distance (MSD) and HD95 (see Figure 2). Detailed analysis

highlighted misclassifications in various regions across multiple

patients (left neck nodes for 10 patients, right neck nodes - 3

patients, left parotid - 4 patients, right parotid - 2 patients, SMPCM

- 7 patients, IPCM - 16 patients, and mandible - 1 patient). Larger

organs, like the neck nodes and spinal cord, resulted in higher

maximum MSD and HD95 values due to their size. In some cases

(refer to Figure 2A), correct classification was limited to specific

areas, causing substantial differences in MSD and HD95 for lower

DSC cases. The dataset’s mix of T1- and T2-weighted MRIs, with

differing contrasts, most likely impacted the deep learning model’s

performance. Studies have shown that when multiple oncologists

delineate the neck nodes, the DSC ranges between 0.67 - 0.82 (41).

Van der Veel et al. (42) have found that the mean DSC of the inter-

observer variability is 0.82/0.83, 0.78, 0.88, 0.50/0.53/0.53, and 0.90

for left/right parotid glands, spinalcord, brainstem, superior/

middle/inferior pharyngeal constrictor muscles, and mandible,

respectively. Expectedly, due to their small size, PCMs had lower

DSC values compared to other regions (43). However, the obtained

value still closely aligns with the inter-observer variability DSC

similar to the rest of the ROIs.

The blind test found that about 67% of model-generated and

approximately 95.6% of manual contours were clinically acceptable.

Approximately 75% of required adjustments for model-generated

contours were only minor (mean level of changes: 1.89), with only

around 8% of all aut-contours needing major adjustments (levels 3-4).

The oncologist noted that PCMs are generally thin (3 mm), but slight

widening was observed on number of presented examples. We

explored the relationship between DSC metrics and clinical

acceptability criteria, building on Heilemann et al.’s (44) suggestion

of a DSC threshold above 0.7 for clinical acceptability. However, due to

size-dependent characteristics, smaller ROIs may still be deemed

acceptable with DSC below 0.7. Our results indicated that DSC

below 0.6 tended to signify major adjustments, and while higher

DSC values generally suggested better clinical acceptability, a

straightforward correlation between DSC and adjustment levels was

not apparent. Corrections didn’t consistently correlate with the time

required for manual adjustments, averaging 7.5 minutes per patient for

non-clinically acceptable contours. Evaluation time averaged about 1.5

minutes per patient for the oncologist. Therefore, the entire process—

generating, evaluating, and potentially adjusting some structures -

averages under 10 minutes per patient, significantly quicker than

manual delineation. The different clinical acceptability outcome for

the same patient on different days suggests subjectivity, potentially

addressable with deep learning strategies.

The dosimetric impact revealed higher average absolute

dosimetric differences for contours needing more adjustments, with

outliers stemming from OAR proximity to high-dose regions and

steep dose falloff. Achieving the clinical goal for the elective target

volume heavily relies on precise contours; expanding the exposed

range to cover any shape often meets goals but lacks clinical

acceptability. Median dosimetric differences between clinically

acceptable contours and those needing minor adjustments (levels 1-

2) are quite similar. PCMs and neck nodes requiring minor

adjustments show slightly lower median values than clinically

acceptable ones. Except for the spinal cord, average dosimetric
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differences between algorithm-generated manually adjusted contours

and manual delineated ones surpass median dosimetric differences

between automated and manual contours. In most cases, contours

needing minor changes can be used without significant dosimetric

impact changes. Higher dosimetric differences are observed for

contours needing level 3+ changes, representing only 8% of

automated contours. Correcting these takes an average of about 1.5

minutes per organ, varying with organ size. Notably, the dosimetric

analysis for best, median, and worst performance echoed general

findings, highlighting an intriguing case where brainstem

misclassification led to a significant dosimetric difference despite

being categorized as needing only level 1 adjustments (see Figure 2A).

After thorough evaluation, we are confident in the algorithm’s

effectiveness for contouring the parotid glands, brainstem, and

mandible. While the outcomes for pharyngeal constrictor muscles

were less satisfactory, a detailed dosimetric investigation showed

minimal dosimetric differences in most cases. The algorithm shows

promise for automating segmentation of the elective target volume

and spinal cord, though additional refinements are needed

for precision.

A key limitation in this and similar studies conducted on MR

scans, is the limited availability of high-quality data. There are vast

amounts of delineated CTs available, however consistent planning

MRI data collection has only recently started. We utilized the

entirety of the accessible data, resulting in a composite dataset

with both T1 and T2-weighted MR-Linac scans. This combination

may have negatively affected automated segmentation precision.

Future research could explore using separate models for T1-

weighted and T2-weighted scans, aiming for improved

segmentation accuracy through such differentiation. Some of the

other limitations of the current study were that primary target

information was provided only for 13 of the patients. This allowed

us to perform dosimetric analysis only for a small proportion of the

patient population and cannot state for certain that the findings will

remain the same when tested on larger patient population. Future

studies would benefit of primary target information for all patients

in order to perform more generalized dosimetric analysis.

Furthermore, contouring of the primary target cannot be

attempted with the current available data. Delineation of primary

target varies among experienced clinicians and requires additional

sequences (e.g., T1 post Gd or T2 SPAIR) along with endoscopic

findings to aid contouring, accounting for natural anatomical

barriers to tumor spread, such as air or bone. Another limitation

is our reliance on contours delineated by a single oncologist as the

ground truth. The clinical acceptability test showed that not all of

these contours would be considered acceptable by another expert,

highlighting the influence of inter-observer variability specifically,

for smaller ROIs such as the pharyngeal constrictor muscles, the

DSC is relatively low, ranging between 0.50 and 0.53. To enhance

the model’s learning, incorporating contours from multiple experts

would be beneficial. Furthermore, evaluating the results by only one

oncologist could lead to personal bias. Therefore, incorporating

clinical acceptability evaluations by multiple different experts for

each task could offer a robust solution to enhance the validity and

reliability of our findings. However, our oncologists have been

through multiple quality assurance exercises aligned with
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established international benchmarks, such as the Gregoire et al.

(45) atlas for nodal contouring. This ensures the reliability of the

‘clear’ pass or fail outcome derived from this assessment.
5 Conclusion

Majority (67%) of contours of the elective target volume and

organs at risk for HNC patients automatically generated by an in-

house developed model were found to be clinically acceptable and

could be used for treatment planning without any manual

adjustments. Among structures categorized as unfit for clinical

use, the majority (≈75%) required only minor adjustments and

the dosimetric impact showed that not performing the changes did

not lead to significant dosimetric differences in most scenarios.

Significant dosimetric differences could be observed for this group

only if the ROIs or parts of ROIs were located exactly at the steep

dose gradient. The model reliably contoured the parotid glands,

brainstem, and mandible. The outcomes for the pharyngeal

constrictor muscles were acceptable and the dosimetric impact

analysis reveals minimal differences in most cases. While the

algorithm shows promise for automating segmentation of the

elective target volume and spinal cord, refinements could be

performed for acquiring required precision in these areas. The

analysis for the structures requiring major adjustments led to the

conclusion that the time required for these adjustments to be made

is minimal (on average 1min 4s per OAR and 4mins 39s per nCTV).

Thus, delineation for HNC patients could be significantly sped up

and the presented model could be used for initial delineation and

subsequent re-delineation for each treatment fraction.
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