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MRI in patients with breast
cancer undergoing neoadjuvant
chemotherapy: a longitudinal
cohort study
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Purpose: The primary aim of this study was to explore whether intravoxel

incoherent motion (IVIM) can offer a contrast-agent-free alternative to

dynamic contrast-enhanced (DCE)-MRI for measuring breast tumor perfusion.

The secondary aim was to investigate the relationship between tissue diffusion

measures from DWI and DCE-MRI measures of the tissue interstitial and

extracellular volume fractions.

Materials and methods: A total of 108 paired DWI and DCE-MRI scans were

acquired at 1.5 T from 40 patients with primary breast cancer (median age: 44.5

years) before and during neoadjuvant chemotherapy (NACT). DWI parameters

included apparent diffusion coefficient (ADC), tissue diffusion (Dt), pseudo-

diffusion coefficient (Dp), perfused fraction (f), and the product f×Dp

(microvascular blood flow). DCE-MRI parameters included blood flow (Fb),

blood volume fraction (vb), interstitial volume fraction (ve) and extracellular

volume fraction (vd). All were extracted from three tumor regions of interest

(whole-tumor, ADC cold-spot, and DCE-MRI hot-spot) at three MRI visits: pre-

treatment, after one, and three cycles of NACT. Spearman’s rank correlation was

used for assessing between-subject correlations (r), while repeated measures

correlation was employed to assess within-subject correlations (rrm) across visits

between DWI and DCE-MRI parameters in each region.

Results:No statistically significant between-subject or within-subject correlation

was found between the perfusion parameters estimated by IVIM and DCE-MRI
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(f versus vb and f×Dp versus Fb; P=0.07–0.81). Significant moderate positive

between-subject and within-subject correlations were observed between ADC

and ve (r=0.461, rrm=0.597) and between Dt and ve (r=0.405, rrm=0.514) as well as

moderate positive within-subject correlations between ADC and vd and between

Dt and vd (rrm=0.619 and 0.564, respectively) in the whole-tumor region.

Conclusion: No correlations were observed between the perfusion parameters

estimated by IVIM and DCE-MRI. This may be attributed to imprecise estimates of

fxDp and vb, or an underlying difference in what IVIM and DCE-MRI measure. Care

should be taken when interpreting the IVIM parameters (f and f×Dp) as surrogates

for thosemeasured using DCE-MRI. However, themoderate positive correlations

found between ADC and Dt and the DCE-MRI parameters ve and vd confirms the

expectation that as the interstitial and extracellular volume fractions increase,

water diffusion increases.
KEYWORDS

breast cancer, intravoxel incoherent motion, dynamic contrast enhanced MRI,
perfusion, repeated measures, correlations
1 Introduction

Breast cancer is one of the most prevalent cancers affecting

women globally, with about 2.3 million women diagnosed with the

disease and 685,000 deaths in 2020 (1). Patients with primary breast

cancer are often treated with neoadjuvant chemotherapy (NACT)

to downsize the tumor and increase the probability of breast-

conserving surgery (2). A non-invasive imaging technique that

can provide information on tumor cellularity and perfusion

during treatment would be beneficial, as reduced cellularity and

perfusion are promising indicators of patient response to

treatment (3).

Patients with breast cancer undergoing NACT often undergo

repeated dynamic contrast-enhanced (DCE) MRI scans for

treatment monitoring (4). DCE-MRI is a widespread technique

that can provide information on tumor perfusion and cellularity

through serial MRI scans acquired before and after the injection of a

gadolinium-based contrast agent (3). Furthermore, quantitative

estimation of perfusion-related parameters of breast tumors,

including tumor blood flow (Fb), blood volume fraction (vb),

along with hemodynamic and cellularity-related parameters:

capillary permeability–surface area product (PS); interstitial

volume fraction (ve), and extracellular volume fraction (vd;

calculated from the combination of blood volume and interstitial

volume fractions) can be achieved by employing a recently

developed DCE-MRI technique (5). However, certain safety

concerns exist regarding gadolinium administration, particularly

in patients with cancer who undergo repeated contrast-enhanced

scans (6). Therefore, alternative imaging techniques that can

provide equivalent perfusion and cellularity-related measurements

without administering a contrast agent are of interest.
02
Conventional diffusion-weighted imaging (DWI), which is not

used generally in breast cancer imaging, can be employed in

oncology treatment response monitoring through the apparent

diffusion coefficient (ADC). The ADC measures the diffusivity of

water molecules in the tissue and is assumed to serve as an indicator

of cellular density. As such, as tumor cellularity decreases in

response to treatment, the ADC value increases (7). The ADC is

therefore expected to be directly proportional to the DCE-MRI

measurements of the tissue’s interstitial and extracellular volume

fractions. However, few studies have examine this relationship, and

one study in breast tumors has challenged the expectation

suggesting that the ADC is incompletely understood (8, 9). Also,

blood in the microcirculation can contaminate the DWI signal

decay, contributing to the ADC value (10). A technique that can

potentially address the problems affecting both DCE-MRI and DWI

is intravoxel incoherent motion (IVIM), an advanced form of DWI.

It has been proposed that IVIM enables simultaneous assessment of

tissue diffusion and perfusion by separating the effects of the

microcirculation of blood in the capillary network (so-called

pseudo-diffusion) from water diffusion in the rest of the tissue.

This method requires DWI acquisitions with multiple b-values (low

and high) and fits a bi-exponential model to the data to estimate the

diffusion-related parameter Dt (tissue diffusion) and perfusion-

related parameters, including Dp (the pseudo-diffusion

coefficient), f (the perfused fraction), and their product f×Dp

(microvascular blood flow) (10, 11).

In the past decade, growing interest in exploring the potential

applications of IVIM in breast tumors has produced studies

differentiating benign and malignant tumors (12, 13). IVIM

perfusion-related parameters have also shown some promise for

evaluating breast tumor response to NACT (14–16). This in turn
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has reopened the question of whether IVIM could be used as a

contrast-agent-free alternative to DCE-MRI for measuring breast

tumor perfusion. Few studies have investigated the correlations

between IVIM and DCE-MRI perfusion-related parameters in

breast tumors and have produced contradictory results (17–19).

These studies examined correlations at a single visit; however, a

correlation between perfusion parameter changes caused by

treatment is meaningful and suggests that IVIM could be a

contrast-agent-free surrogate to the DCE-MRI method in

monitoring serial changes in tumor perfusion. Further, none of

these studies provided an absolute estimation of tumor blood flow;

they did not perform a direct comparison with the IVIM parameter

purported to measure microvascular blood flow (f×Dp).

The primary aim of this study was to investigate whether IVIM

and DCE-MRI perfusion-related parameters correlate and whether

IVIM can offer a contrast-agent-free alternative to DCE-MRI for

monitoring serial changes in tumor perfusion. The DCE-MRI data

were analyzed to estimate absolute tumor blood flow, blood volume

fraction, capillary permeability–surface area product, interstitial

volume fraction, and extracellular volume fraction (5). This study

assesses both between-subject and within-subject repeated

measures correlations between the perfusion parameters

estimated by IVIM and DCE-MRI (specifically perfusion fraction

versus blood volume fraction and microvascular blood flow versus

blood flow) in a cohort of patients with breast cancer imaged before

treatment and after one and three cycles of NACT. Analyzing both

correlations is valuable; between-subject correlation reveals the

potential for estimating DCE-MRI perfusion parameters using

IVIM at a given time, whereas within-subject repeated measures

correlations indicate the potential for estimating change in DCE-

MRI perfusion parameters using IVIM when assessing longitudinal

changes in the same patient. The secondary aim of this study was to

examine the correlation between tissue diffusion measures from

DWI and DCE-MRI measures of the tissue’s interstitial and

extracellular volume fractions. This would improve the

understanding of tissue diffusion measures and their changes in

response to treatment further, which are of interest for translation

into breast cancer imaging as markers of treatment response (20).
2 Materials and methods

2.1 Patients

The prospective study had local research ethics committee

approval, and written informed consent was obtained from all

subjects. The eligibility criteria for patient inclusion were: 1) 18

years of age and older; 2) pathological confirmation of primary

invasive breast cancer through a core needle biopsy; and 3)

scheduled to undergo NACT. Patients who had impaired kidney

function or contraindications to MRI were considered ineligible.

Recruited patients underwent a standardized NACT regimen

consisting of three cycles of epirubicin (90 mg/m2) and

cyclophosphamide (600 mg/m2) (one cycle every three weeks),
Frontiers in Oncology 03
followed by three cycles of docetaxel (100 mg/m2, one cycle every

three weeks). Patients with tumors positive for human epidermal

growth factor receptor 2 were treated with trastuzumab and/or

pertuzumab alongside docetaxel.
2.2 Image acquisition

MRI scans were performed at baseline (pre-treatment) and after

one and three (mid-treatment) cycles of NACT. All images were

acquired using a 1.5-T MRI scanner (Aera; Siemens) with the

patient in a head-first prone position. A dedicated 16-channel

breast coil (Sentinelle; Siemens) was used to image the breasts,

and a flexible array coil, placed on the patient’s back, was employed

to increase the signal from the descending aorta (21). The scanning

protocol included axial T2-weighted turbo spin-echo, axial T1-

weighted 3D spoiled gradient echo, inversion recovery, DWI, and

DCE-MRI sequences.

The axial DWI was acquired using a spectral attenuated

inversion recovery fat-suppressed, 2D single-shot spin-echo echo-

planar imaging sequence (repetition time/echo time: 7200/59 ms,

flip angle: 90°, field of view: 340×136×169 mm, matrix size:

280×116×34, slice thickness: 4 mm, acceleration factor: 2,

acquisition time: 5 min 31 s) performed at six b-values (0, 50,

100, 200, 400, and 800 s/mm2; gradient system: strength 45 mT/m,

slew rate 200 T/m/s)). The high b-value of 800 s/mm2 was chosen in

line with consensus recommendations for breast DWI (22). ADC

maps were generated by the scanner software after DWI acquisition.

This step was followed by a 3D non-selective inversion recovery

-prepared spoiled gradient echo sequence (repetition time/echo

time: 2.8/0.93 ms, flip angle: 8°, field of view: 340×340×180 mm,

matrix size: 128×128×36, slice thickness: 5 mm, acceleration factor:

2, inversion recovery - repetition time: 3000 ms, overall acquisition

time: 4 min 20 s), performed at four inversion times (100, 600, 1200

and 2800 ms) to estimate T1. Both breasts, the aortic arch and part

of the descending aorta were included in the field of view (21).

Afterwards, interleaved high temporal resolution (HTR) and

high spatial resolution (HSR) DCE-MRI sequences were employed

(5). The dynamic series consisted of 93 HTR images interleaved

with 8 HSR images acquired as follows (10×HTR, 1×HSR, 43×HTR,

[1×HSR, 5×HTR] repeated seven times, and finally 5×HTR). The

HTR dynamic images were acquired using a T1-weighted 3D

spoiled gradient echo sequence (repetition time/echo time: 2.37/

0.73 ms, flip angle: 25°, field of view: 340×340 ×180 mm, matrix size:

128×128×36, slice thickness: 5 mm, acceleration factor: 2×2,

acquisition time: 2 s). For the HSR images, a fat-suppressed T1-

weighted 3D spoiled gradient echo sequence (repetition time/echo

time: 4.1/1.2 ms, flip angle: 10°, field of view: 340×340 ×180 mm,

matrix size: 384×384×128, slice thickness: 1.4 mm, acceleration

factor: 3, and acquisition time: 36 s) was employed. The HTR and

HSR images were acquired with the same geometry as the inversion

recovery sequence. Using an automated power injector (Spectris

Solaris EP), gadolinium-based contrast agent (Dotarem, Guerbet

Laboratories) was administered intravenously (0.1 mmol/kg) at the
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start of the eleventh HTR-DCE-MRI image, followed by saline

(20 ml at a rate of 3 ml/s). A second inversion recovery T1 estimate

(bookend) was performed (23) after all eight HSR (and 88 HTR

images) images were obtained. Then, the last five HTR images

were acquired.
2.3 Image analysis

MRI data were processed using in-house programs developed in

MATLAB (MathWorks, USA). The DWI images (including ADC

maps) were rigidly aligned to the corresponding HSR, HTR and

inversion recovery images to match the slice position with no

interpolation of the DWI data, and HTR and HSR subtraction

images were generated to improve tumor visibility. The location of

the largest tumor for each patient was determined using HSR DCE-

MRI images from the baseline MRI, confirmed by a breast

radiologist. Then, a whole-tumor region of interest was generated

using a 3D region-growing algorithm based on the enhanced

tumor’s signal intensity in HSR subtraction images, while

avoiding obvious necrotic areas manually. Two smaller single-

slice regions of interest (5×5 pixels) within the whole-tumor
Frontiers in Oncology 04
region were generated to reduce the possibility of tumor

heterogeneity compromising subsequent correlation analysis.

These small regions comprised the region with the lowest ADC

on the ADC map (cold-spot region) (22) and the region with the

highest SI on the HTR subtraction images (hot-spot region). All

three regions were propagated to the corresponding DWI, inversion

recovery and HTR images for further analysis (Figure 1). The spatial

location of the smaller regions generated for each tumor were

allowed to vary at each MRI visit as the tumor responded to NACT.

For DCE-MRI, these three regions were used to estimate T1

relaxation-times from both sets of inversion recovery images. A

further region of interest was drawn in the descending aorta to

generate signal intensity -time curves and estimate T1 before and

after gadolinium-based contrast agent injection for measurement of

the arterial input function (21). The signal intensity -time data were

converted to gadolinium-based contrast concentration-time using a

bookend T1 correction with an iterative scheme (21, 23). A two–

compartment exchange model was fitted to the DCE-MRI data, and

tumor blood flow, blood volume fraction, capillary permeability–

surface area product and interstitial volume fraction were estimated

(24). Then, the extracellular volume fraction (the sum of interstitial

and blood volume fractions) was calculated. For each region of
FIGURE 1

Example of seeding a tumor in a 45-year-old woman with invasive ductal carcinoma in the left breast and generating three regions of interest
(whole-tumor, cold-spot, and hot-spot). First, the tumor was seeded on the HSR subtraction images, and the whole-tumor region of interest was
generated (top row). Then, two smaller regions of interest (5×5 pixels) were generated within the whole-tumor region (cold-spot (middle row) and
hot-spot regions (bottom row)). The whole-tumor region of interest encompasses all the slices in which the tumor appears, while the cold-spot and
hot-spot regions originate in only a single slice (not necessarily the same slice). All three regions were propagated to the corresponding DWI,
inversion recovery, and HTR images for further analysis.
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interest, a tissue uptake model (described by parameters blood flow,

blood volume fraction, and capillary permeability–surface area

product) and a one–compartment model (described by

parameters blood flow and extracellular volume fraction) were

also fitted to the DCE-MRI data (24). The final model to use in

the correlation analysis was selected based on the corrected Akaike

information criterion test (cAIC) to evaluate which model best fits

the data (25, 26).

For DWI, the mean signal intensity for each b−value was

extracted from the three regions (27). The IVIM parameters were

estimated by fitting the bi-exponential model to the mean signal

intensity vs b-value data using an over-segmented approach, where

tissue diffusion and perfusion fraction were estimated first and then

pseudo-diffusion (28). The monoexponential model was also fitted

to the mean signal intensity vs b-value, and the ADC value for each

region of interest was estimated (28). The two model equations are

detailed in the Supplementary Material (Appendix A). This step was

conducted blinded to the DCE-MRI parameter values. Further, a

simulation study was performed to assess the bias and precision of

the IVIM parameter estimates with 6 b-values in comparison with

12 b-values (methods and results are provided in Appendix B,

Supplementary Material).
2.4 Statistical analysis

Due to the non-normal data distribution, the DWI and DCE-

MRI data were summarized using the median (interquartile range).

Friedman’s test with Bonferroni correction (Bonferroni post hoc

test) was performed for each parameter from the baseline MRI to

determine whether parameter differences existed between the three

regions of interest (whole-tumor, cold-spot, and hot-spot). To

determine the between-subject correlation between IVIM and

DCE-MRI parameters for each region, the mean value of each

parameter for each patient was calculated by dividing the sum of

parameter values from all MRI visits by the number of times the

parameter was estimated; then, the parameter value for each visit

where the parameter was estimated was replaced by its subject

mean. The weighted correlation coefficient, r, was calculated

between the mean DWI and DCE-MRI parameters for each

region of interest using the Spearman’s rank correlation test (29)

(r<0.2, very weak; 0.2≤r<0.4, weak; 0.4≤r<0.7, moderate; 0.7≤r<0.9,

strong; r≥0.9, very strong correlation) (30). This statistical method

was followed to exploit the properties of data with multiple

measures while addressing the issue of non-independence among

observations and the impact of NACT (29). Statistical analyses were

performed using SPSS software for Windows (v.25.0, Chicago, IL).

All tests were two-sided, and a p-value of less than 0.05 was

considered statistically significant.

To determine the correlation between changes in the IVIM and

DCE-MRI parameters induced by treatment, the repeated measures

correlation test (rmcorr) was utilized via the rmcorr-shiny app (31,

32). The rmcorr-shiny app computes a repeated measures

correlation coefficient (rrm) that considers the dependence
Frontiers in Oncology 05
between repeated measurements. This analysis involves

determining the correlation between two parameters while

accounting for between-subject variation. The rmcorr-shiny app

fits separate parallel lines to each patient’s data utilizing a shared

slope but permitting the intercept to differ per patient.

The orientation of these parallel lines represents the correlation’s

sign (positive or negative), while the slope denotes the

correlation’s magnitude.

The results of repeated measures correlation for each region

were summarized in tables as: rrm, degrees of freedom, 95%

confidence interval, and a p-value. The 95% confidence interval

for each rrm were determined using bootstrapping with 1000

resamples. The degrees of freedom (df) were computed based on

the formula df = N(k-1) – 1, where N is the total number of patients

and k is the (average) number of repeated measures per patient (31).

The rmcorr test was initially conducted to identify statistically

significant results (P-value < 0.05), then bootstrapped 95%

confidence intervals were calculated. A correlation result was

considered meaningful and significant only if the magnitude of

the correlation coefficient was ≥ 0.4, the P-value was less than 0.05,

and the bootstrapped 95% confidence intervals excluded zero. Since

this is a preliminary exploration study focusing on hypothesis

generation, P-values for the correlation tests were reported as raw

values and were not corrected for multiple comparisons. An upper

estimate of the repeatability of the DWI and DCE-MRI parameters

was calculated from a subset of baseline and cycle 1 studies (details

included in Appendix C, Supplementary Material).
3 Results

In this study, 40 female patients were eligible and enrolled

between August 2015 and April 2018 (median age 44.5 (39, 53)

years). MRI data were obtained for all patients at baseline and 37

patients after one and three cycles of NACT (three withdrew

following baseline MRI). However, the MRI data acquired after

three NACT cycles from two patients were excluded from the

analysis because no tumor was apparent on their MRI scans. This

exclusion resulted in 112 MRI studies with DWI and DCE-MRI

acquisitions. Table 1 presents the clinical characteristics of

the patients.

Four DCE-MRI scans—two at baseline and two after three

NACT cycles—were excluded because one patient could not

tolerate the whole imaging protocol, two had technical issues (the

back coil was switched on and off sporadically), and one moved

during the DCE-MRI acquisition, leaving 108 studies with paired

DWI and DCE-MRI data acquisitions (Figure 2). Based on the cAIC

results, 75 DCE-MRI data sets were analyzed using the two–

compartment exchange model, 20 using the tissue uptake model,

and 13 using the one–compartment model.

Smaller regions of interest (cold-spot and hot-spot regions)

were generated from 91 out of 108 studies: 34 at the baseline, 33

after one NACT cycle, and 24 after three NACT cycles (some

tumors shrank below the 5x5 pixels threshold during NACT). DCE
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data sets were fitted using the two-compartment exchange/tissue-

uptake/one-compartment models for 68/13/10 cold-spot regions

and for 72/9/10 hot-spot regions.

For DWI data analysis, there were a number of cases where

estimates of the IVIM parameters pseudo-diffusion and perfusion

fraction reached one of their limiting values, and these parameters

were excluded from the statistical analyses (2 cases from the whole-

tumor region, 8 from the cold-spot region, and 4 from the hot-

spot region).
3.1 Estimated DWI and DCE-MRI
parameters from the three regions
at baseline

There were significant differences between the parameter values

estimated in whole-tumor, cold-spot, and hot-spot regions for all
Frontiers in Oncology 06
DWI and DCE-MRI parameters, with the exception of pseudo-

diffusion and extracellular volume fraction (P=0.88 and 0.2,

respectively). Detailed results, including pairwise comparisons

(Bonferroni-corrected), are presented in the Supplementary

Material (Supplementary Table A1).
3.2 Correlation between averaged DWI and
DCE-MRI parameters from three MRI visits
(between-subject correlation)

No significant correlations were discovered between the IVIM

and DCE-MRI perfusion-related parameters (perfusion fraction

with blood volume fraction, and microvascular blood flow with

blood flow) in the three tumor regions (P=0.146–0.379, Table 2,

Supplementary Table A2, Supplementary Table A3). However, for

whole-tumor regions, ADC exhibited a significant moderate

positive correlation with tumor T1 and interstitial volume fraction

(r = 0.603 and 0.461, respectively). Similarly, Dt demonstrated a

significant moderate positive correlation with tumor T1 and

interstitial volume fraction (r = 0.631 and 0.405, respectively).

(Figure 3, Table 2).

In the cold-spot regions, significant moderate positive

correlations were found between tumor T1 and both measures of

tissue diffusion ADC and Dt (r= 0.632 and 0.588, respectively).

pseudo-diffusion demonstrated a significant moderate negative

correlation with blood flow (r = -0.400, Supplementary Table A2).

In hot-spot regions, ADC and Dt displayed significant moderate

positive correlations with tumor T1 (r=0.520 and 0.460, respectively,

Supplementary Table A3).
3.3 Repeated measures correlations
between DWI and DCE-MRI parameters
(within-subject correlation)

Table 3 lists the repeated measures correlation results computed

between the DWI and DCE-MRI parameters estimated

from the whole-tumor regions of interest. No statistically

significant correlations were discovered between the IVIM and

DCE-MRI perfusion-related parameters of the study’s primary

interest (perfusion fraction versus blood volume fraction and

microvascular blood flow versus blood flow; P=0.815 and 0.229,

respectively). However, ADC and Dt displayed significant moderate

positive correlations with interstitial volume fraction (rrm=0.597

and 0.514, respectively) and extracellular volume fraction

(rrm=0.619 and 0.564, respectively) (Figure 3).

The median DWI and DCE-MRI parameter values estimated at

the three MRI visits from the cold-spot and hot-spot regions

exhibited patterns similar to those of the whole-tumor regions

but with much more variability (Figure 4, Supplementary Figure

A1); repeated measures correlation results in the cold-spot and

hot-spot regions are presented in Supplementary Data only

(Supplementary Table A4, Supplementary Table A5).
TABLE 1 Clinical characteristics of all the enrolled patients.

Characteristic Number or
Median (Interquartile range)

Number of patients 40

Age (years) 44.5 (38.8, 53.0)

Tumor volume (cm3)

At baseline (N= 40) 5.45 (2.16, 16.27)

After one cycle of NACT (N= 37) 4.1 (1.57, 8.83)

After three cycles of NACT (N= 35) 2.15 (0.53, 5.8)

Tumor grade

II 15

III 25

Tumor type

Invasive ductal carcinoma 38

Inflammatory breast cancer 1

Mucinous carcinoma 1

Estrogen receptor status

Positive (+) 28

Negative (-) 12

Progesterone receptor status

Positive (+) 18

Negative (-) 20

Not evaluable 2

Human epidermal growth factor 2 status

Positive (+) 15

Negative (-) 25
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4 Discussion

Despite the examination of 108 paired DWI and DCE-MRI

datasets, no statistically significant between-subject or within-

subject repeated measures correlations were found between the

IVIM and DCE-MRI perfusion parameters of the study’s primary

interest (perfusion fraction versus blood volume fraction and

microvascular blood flow versus blood flow). These findings align

with previous breast cancer studies, which also found no correlation

between any IVIM perfusion parameters and DCE-MRI parameter

related to perfusion, Ktrans (transfer constant) (18, 19). Ktrans may

not solely reflect tumor blood flow but also vessel permeability (33).

The present study went further by estimating tumor blood flow and

blood volume fraction from DCE-MRI during NACT, but still

found no correlations. One possible explanation for the lack of

correlation might be significant tissue heterogeneity in tumors; the

parameters were estimated from the whole-tumor regions. Where

possible, two smaller regions of interest (5×5 pixels) in each

whole-tumor region were generated to reduce the likelihood of

heterogeneity. It was assumed that these smaller regions would be

more homogenous. However, no clear correlations were found in

these smaller regions, and the data were observed to be more

variable than the whole-tumor region, as reflected by the number

of outliers and a wider range in the box plot scale (Figure 4,
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Supplementary Figure A1). An alternative method for future

studies that might aid in selecting homogeneous tumor regions

could be histogram analysis of pixel-wise IVIM and DCE-MRI

parameter maps; however, the possibility of finding a homogeneous

tumor region in the IVIM and DCE perfusion-related parameter

maps to examine the correlation would require further investigation

and validation.

Imprecision in the estimates of microvascular blood flow and

blood volume fraction, in particular, is a potential issue that may

have masked correlations between the IVIM and DCE-MRI

perfusion parameters. A previous report recognized that the

precision with which pseudo-diffusion is estimated is poor (34),

and the estimate of blood volume fraction in another study was

reported to be very imprecise (35), which was reflected in our

calculated upper estimate of its repeatability (Appendix C,

Supplementary Material). The estimation of blood volume

fraction, against which the perfusion fraction derived from IVIM

is compared, becomes difficult when tumor capillaries are

excessively leaky (24). In this study, out of 108 DCE-MRI

datasets, a one-compartment model was preferred in 13 cases,

and an estimate of blood volume fraction and capillary

permeability–surface area product was not possible in those 13.

It is also possible that IVIM and DCE-MRI reflect different

underlying physiology. IVIM does not estimate perfusion in a
FIGURE 2

The flow chart illustrates the number of recruited patients, excluded DCE-MRI data, and the final number of MRI studies with paired DWI and DCE-
MRI data acquisitions.
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classical way but estimates flow in the direction of the diffusion

encoding gradient, whereas DCE-MRI measures the delivery of

blood and subsequent distribution of contrast agent in the tissue, on

a different time scale (36). Furthermore, it has been suggested that a

single pseudo-diffusion coefficient is insufficient to describe the

complex diffusion properties of the vascular signal (37). The

inconsistent patterns of response to treatment seen in the median

values of perfusion fraction versus blood volume fraction and

microvascular blood flow versus blood flow may support this

suggestion (Figure 4).

In contrast, this study found moderate positive between-subject

and within-subject repeated measures correlations between the

diffusion parameters (ADC and Dt) and interstitial volume

fraction, as well as a moderate positive within-subject repeated

measures correlation between the diffusion parameters and

extracellular volume fraction. These positive results are important,

as this is the first time they have been observed in breast cancer (8),

and support the current understanding of these imaging

parameters. A positive between-subject correlation between ADC

and interstitial volume fraction was previously determined in head

and neck cancers (9) suggesting that these parameters are related to

tissue microstructure. The ADC and Dt values reflect the diffusion

of water molecules in tissue, which is affected by cellular density,

membrane permeability and extracellular volume (7), and vd is a

direct measure of the extracellular volume fraction (24) while ve is a

parameter that reflects the volume fraction of the interstitial space

within the tissue, which can be influenced by such factors as cellular
Frontiers in Oncology 08
density and extracellular matrix deposition. A prior study revealed

that tumor cellularity is inversely proportional to ve, vd, and ADC

values (38). Therefore, the observed between-subject correlation of

the diffusion coefficients and interstitial space may suggest that

breast tumors with a high cellular density tend to have a small

interstitium and increased diffusion restriction, whereas tumors

with a low cellular density tend to have a large interstitium and less

diffusion restriction. The observed positive within-subject repeated

measures correlations could result from the fact that ADC/Dt, ve,

and vd exhibited similar patterns of change in response to

treatment, wherein the values were increasing during the three

MRI time-points (Figure 4).

Furthermore, a moderate positive between-subject correlation

between the diffusion coefficients and tumor T1 was observed in this

study. Tumor T1 measures tissue relaxation time, which can be

affected by tissue water and fat content, macromolecule

concentration and hydration state (39). Thus, this positive

correlation may be because breast tumors with high cellular

density and a small extracellular space have a decreased free-

water content, resulting in low diffusion coefficient values and

short tumor T1 (12, 39).

The present study has some limitations. First, this study was

performed on a limited sample size using a 1.5 T MRI scanner, which

may limit the statistical power of the results. However, this is the first

study that assesses both between-subject and within-subject repeated

correlations between the perfusion parameters estimated by IVIM

and DCE-MRI in a cohort of breast cancer patients undergoing
TABLE 2 Correlation between averaged DWI and DCE-MRI parameters from three MRI visits (Whole-tumor region).

Parameter Tumor T1 Fb PS ve vb vd

ADC r 0.603** 0.026 0.305 0.461* -0.173 0.302

P-value <0.001 0.873 0.056 0.004 0.286 0.058

N 40 40 40 37 40 40

Dt r 0.631** 0.014 0.266 0.405* -0.135 0.302

P-value <0.001 0.932 0.097 0.013 0.406 0.058

N 40 40 40 37 40 40

Dp r -0.251 0.172 -0.051 -0.360 -0.006 -0.213

P-value 0.118 0.289 0.755 0.029 0.971 0.187

N 40 40 40 37 40 40

f r 0.187 0.121 0.186 0.093 -0.144 0.079

P-value 0.248 0.457 0.251 0.584 0.375 0.628

N 40 40 40 37 40 40

f×Dp r -0.020 0.143 0.071 -0.126 -0.041 0.001

P-value 0.903 0.379 0.663 0.457 0.802 0.995

N 40 40 40 37 40 40
r, correlation coefficient; N, sample siz;. ADC, apparent diffusion coefficient; Dt, tissue diffusion; Dp, pseudo-diffusion coefficient; f, perfused fraction; f×Dp, microvascular blood flow; Fb, blood
flow; PS, capillary permeability–surface area product; ve, interstitial volume fraction; vb, blood volume fraction; vd, extracellular volume fraction.
Values in bold indicate significant correlation results: * r ≥ 0.4 and P<0.05.
** r ≥ 0.4 and P<0.001.
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NACT with a primary focus on hypothesis generation rather than

testing; therefore, the results can be used to direct future studies.

Second, the DWI data were acquired with only 6 b-values, four of

which were low (≤ 200 s/mm2). In a clinical protocol, it is not

practical to acquire DWI data with a large number of b-values.

Nevertheless, the simulation study showed that using 6 b-values will

not result in appreciably worse outcomes for most parameters,
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though the precision of microvascular blood flow was lower than

with 12 b-values (details provided in Appendix B, Supplementary

Material). Further, a previous study showed that a small number of b-

values is not the main source of errors in IVIM parameter estimates.

Intra-patient variability is significant; they found that the precision in

the estimates of the IVIM parameters with only 4 b-values was better

than the test-retest repeatability of those same parameters estimated
A

B

C

FIGURE 3

Scatter plots show moderate positive (A) between-subject and (B) within-subject repeated measures correlations between the diffusion coefficients
(ADC and Dt) and the interstitial volume fraction (ve), as well as moderate positive (C) within-subject repeated measures correlation between the
diffusion coefficients (ADC and Dt) and the extracellular volume fraction (vd). Each line in the scatter plots (B, C; repeated measures correlations)
shows the fit for a single patient.
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with 16 b-values (34). Third, a pixel-wise comparison of IVIM and

DCE-MRI parameter maps was not performed in this study, although

it might be valuable. Instead, the images were analyzed by following

the recommended approaches of the International Breast Diffusion-

Weighted Imaging Working Group (22), which included volumetric

sampling and focused regions of interest (i.e., smaller single-slice

regions on the darkest part of the ADC map). No correlations were

observed between perfusion fraction versus blood volume fraction

and microvascular blood flow versus blood flow in these smaller

regions, but they showed more variability in the estimates instead

(Supplementary Figure A1), suggesting that a pixel-wise analysis

might yield similar outcomes. Fourth, rigid registration was

employed for aligning the DCE and DWI images and this

approach may not have been sufficient to correct DWI distortions.

As such, the accuracy of spatial co-registration could have been

affected, potentially influencing the findings reported, particularly in

the smaller regions. Therefore, future work incorporating pixel-wise

analysis following rigorous DWI and DCE-MRI image registration is

needed to further investigate these relationships. Finally, the

repeatability of the DWI and DCE-MRI parameters was not

formally investigated. It was challenging to justify performing a

repeated baseline DCE-MRI scan that required an additional
Frontiers in Oncology 10
injection of gadolinium contrast because the patients were due to

undergo multiple NACT cycles and MRI scans. Instead, an upper

estimate of the repeatability of the DWI and DCE-MRI parameters

was calculated from a selection of baseline and cycle 1 studies

(Appendix C, Supplementary Material).

In conclusion, this preliminary study investigated both between-

subject and within-subject repeated measures correlations between

DWI and DCE-MRI parameters in a cohort of patients with breast

cancer imaged before and after one and three cycles of NACT. No

statistically significant correlations were observed between the

perfusion parameters estimated by IVIM (perfusion fraction and

microvascular blood flow) and those estimated by DCE-MRI (blood

flow and blood volume fraction). The two techniques may reflect

different underlying physiology, and/or estimates of the IVIM and

DCE-MRI parameters in the current study are largely imprecise.

Therefore, care should be taken when interpreting the IVIM

perfusion parameters as surrogates for those measured using DCE-

MRI until their underlying pathophysiologic interpretation and

relationship to the DCE-MRI perfusion parameters are elucidated

by further research. However, the moderate positive within-subject

repeated measures correlations found between the diffusion

parameters and DCE-MRI measures of the tissue’s interstitial and
TABLE 3 Repeated measures correlations between DWI and DCE-MRI parameters estimated from Whole-tumor region.

Parameter Tumor T1 Fb PS ve vb vd

ADC rrm 0.035 -0.361 -0.138 0.597** 0.226 0.619**

df 67 67 54 37 54 47

P-value 0.775 0.002 0.309 <0.001 0.094 <0.001

95% CI -0.18, 0.253 -0.605, 0.01 -0.452, 0.253 0.203, 0.785 -0.012, 0.432 0.383, 0.82

Dt rrm 0.043 -0.32 -0.045 0.514** 0.165 0.564**

df 67 67 54 37 54 47

P-value 0.724 0.007 0.741 <0.001 0.224 <0.001

95% CI -0.217, 0.279 -0.544, 0.036 -0.339, 0.312 0.103, 0.716 -0.052, 0.373 0.305, 0.785

Dp rrm 0.125 0.336 0.157 -0.127 -0.208 0.078

df 65 65 53 37 53 46

P-value 0.313 0.005 0.253 0.442 0.127 0.597

95% CI -0.08, 0.268 0.092, 0.502 -0.08, 0.397 -0.311, 0.074 -0.402, -0.02 -0.221, 0.304

f rrm 0.04 -0.182 -0.237 0.354 0.165 0.297

df 65 65 53 37 53 46

P-value 0.748 0.139 0.081 0.027 0.229 0.04

95% CI -0.201, 0.229 -0.423, 0.137 -0.477, 0.034 0.017, 0.583 -0.19, 0.418 0.068, 0.509

f×Dp rrm 0.055 0.029 -0.059 0.215 -0.035 0.252

df 65 65 53 37 53 46

P-value 0.661 0.815 0.668 0.188 0.799 0.084

95% CI -0.178, 0.228 -0.169, 0.265 -0.222, 0.123 -0.066, 0.444 -0.261, 0.187 -0.023, 0.445
rrm, repeated measures correlation coefficient; df, degrees of freedom; CI, confidence interval; ADC, apparent diffusion coefficient; Dt, tissue diffusion; Dp, pseudo-diffusion coefficient; f, perfused
fraction; f×Dp, microvascular blood flow; Fb, blood flow; PS, capillary permeability–surface area product; ve, interstitial volume fraction; vb, blood volume fraction; vd, extracellular
volume fraction.
Values in bold indicate significant correlation results: * rrm ≥ 0.4, P<0.05, and bootstrapped 95% CIs excluded zero.
** rrm ≥ 0.4, P<0.001 and bootstrapped 95% CIs excluded zero.
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extracellular volume fractions confirms the expectation that as these

volumes increase, water diffusion increases.
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