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Background: Breast cancer continues to be a significant global health issue,

necessitating advancements in prevention and early detection strategies. This

review aims to assess and synthesize research conducted from 2020 to the

present, focusing on breast cancer risk factors, including genetic, lifestyle, and

environmental aspects, as well as the innovative role of artificial intelligence (AI) in

prediction and diagnostics.

Methods: A comprehensive literature search, covering studies from 2020 to the

present, was conducted to evaluate the diversity of breast cancer risk factors and

the latest advances in Artificial Intelligence (AI) in this field. The review prioritized

high-quality peer-reviewed research articles and meta-analyses.

Results: Our analysis reveals a complex interplay of genetic, lifestyle, and

environmental risk factors for breast cancer, with significant variability across

different populations. Furthermore, AI has emerged as a promising tool in

enhancing the accuracy of breast cancer risk prediction and the personalization

of prevention strategies.

Conclusion: The review highlights the necessity for personalized breast cancer

prevention and detection approaches that account for individual risk factor

profiles. It underscores the potential of AI to revolutionize these strategies,

offering clear recommendations for future research directions and clinical

practice improvements.
KEYWORDS

breast cancer, risk factors, artificial intelligence (AI), medical history, metabolic factors,
reproductive and hormonal factors, lifestyle factors, environmental influence
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1 Introduction

Over the past decade, breast cancer has remained a leading

cause of mortality among women globally, driving an intensive

search for effective prevention and early detection strategies. During

2020, more than 2.3 million women were diagnosed, of which 33.5%

died (1). Despite significant advances in understanding biological

mechanisms and risk factors of breast cancer, substantial challenges

persist in the personalized clinical management and preventive

intervention. This work aims to evaluate and synthesize the

evidence available on breast cancer risk factors, ranging from

genetic predispositions and lifestyle to environmental influences,

with a particular interest in recent technological advancements,

including AI, in predicting and detecting the disease. We pose two

critical research questions: 1) What are the main risk factors

associated with the development of breast cancer, and how do

these vary among different populations and age groups? 2) How do

recent technological advancements based on Artificial Intelligence

(AI) help the detection and prevention of breast cancer? Guided by

the hypothesis that the variability in breast cancer risk factors

among different populations suggests that prevention and early

detection strategies must be personalized, considering genetic,

lifestyle, and environmental factors to be effective, this review

seeks to identify areas of consensus and discrepancy in the

scientific literature. Highlighting the need for personalized

strategies that consider variability among populations and age

groups, we aim to provide clear recommendations that guide

future research and clinical practices towards more effective

prevention and early detection of breast cancer.

The paper is organized as follows. In Section 2, the methodology

for selecting and reviewing papers is described. Section 3 shows the

results with particularly emphasis to the bibliometric study and risk

factor categories. A discussion and some conclusions are in Sections

5 and 6, respectively.
2 Methodology

The methodology of the paper involved a comprehensive

bibliographic development and analysis, which steps are described

in Figure 1.
2.1 Literature search and eligibility criteria

Our review concentrated on studies published between 2020

and 2024, with a focus on breast cancer risk factors. We sourced

these from databases like PubMed, Scopus, and Web of Science.

We included research papers that provided insights into

demographic, genetic, lifestyle, and environmental influences

on breast cancer risk, alongside studies utilizing AI for

enhancing risk prediction and classification. Exclusion criteria

were set for articles published prior to 2020 and those not

directly examining the outlined risk factors. English language

has been mainly used for the selection.
Frontiers in Oncology 02
2.2 Study selection and data extraction

The study selection process meticulously filtered approximately

250 article by titles, abstracts and keywords, to determine their

relevance to breast cancer risk factors and AI applications. A deeper

process based on a complete reading of the papers narrowed the

focus to 112 articles that met our inclusion criteria and offered

important information on the topic. This approach ensured that

only the most relevant studies were included, providing a detailed

exploration of breast cancer risk factors and the role of AI in risk

management. A bibliometric analysis was realized for setting

frequencies and relationships among risk factors. Finally, these

risk factors were systematically classified into categories, as

detailed in Table 1.
2.3 Analysis and classification

This classification was based on the analysis of risk factors

available in various articles, which were then grouped according to

characteristics to derive the respective classifications. Regarding risk

factors, they were classified into groups corresponding to

“Demographic and Genetic Factors”, “Reproductive and

Hormonal Factors”, “Metabolic Factors”, “Medical History” and

“Lifestyle and Environmental Factors.” Additionally, a new

independent category was created to group papers that include

studies with artificial intelligence models, named “Use of AI in Risk

Prediction”. A simple Natural Language Processing (NLP) word

count was used to identify the risk factors most frequently

mentioned in each paper.
2.4 Documentation and conclusion

This methodology involved the following steps: conducting an

exhaustive literature search across major scientific databases;
Literature Search and Eligibility Criteria

Study Selection & Data Extraction

Analysis & Classification

Documentation & Conclusion

FIGURE 1

Flow chart of the methodology.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1356014
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Nicolis et al. 10.3389/fonc.2024.1356014

Frontiers in Oncology 03
applying inclusion and exclusion criteria, and to narrow down the

selection from approximately 250 papers to 112 most relevant

papers; employing techniques for a more deep analysis of the risk

factors mentioned across the selected papers and categorizing the

identified risk factors into specific groups for a structured analysis.

This methodology not only ensures a comprehensive understanding

of the existing research landscape but also supports the

identification of key risk factors for breast cancer, facilitating a

more precise and evidence-based analysis.
3 Results

By applying the above methodology, we show the results of the a

systematic literature review of the selected 112 papers and we describe

the main findings for each category of risk according to Table 2.
3.1 Bibliometric analysis

In this section we provide a bibliometric analysis using the

Bibliometrix package of R software (114).

In order to facilitate a deeper understanding of how keywords

interconnect across the collection of reviewed papers, a keyword

network graph is shown in Figure 2. The graph highlights the

thematic ties and focal points within the research landscape under

examination. In the Figure 2 we can see the most interconnected

and frequent keywords are: female, breast tumor, breast cancer and

breast neoplasms.

Figure 3 displays the distribution of bibliographic authors by

country. In this chart, ‘MCP’ represents Multiple Country

Publications, indicating research papers co-authored by

individuals from various nations, while ‘SCP’ signifies Single

Country Publications, denoting research executed solely by

authors within the same country. This visual representation

clearly indicates that the United States is at the forefront in terms
TABLE 1 Keywords and descriptions for breast cancer risk factors and
AI research.

Risk Factor Keywords and search

Demographic and Genetic Factors

Age Breast cancer age risk, age-related
breast cancer

Race or ethnicity and
geographic location

Breast cancer ethnicity, racial disparities in
breast cancer, geographic variation
breast cancer

Family History Family history breast cancer risk, hereditary
breast cancer

Genetic mutations HER2 (Human Epidermal Growth Factor
Receptor 2), Genetic and Molecular Factors

Economic factors Socioeconomic status breast cancer risk,
Socioeconomic impact breast cancer, economic
disparities breast cancer

Reproductive and Hormonal Factors

Menarche (age at
first menstruation)

Menarche breast cancer risk, hormonal
exposure breast cancer

Menopause (age at menopause) Menopause breast cancer risk, hormonal
exposure breast cancer

Breastfeeding and Parity
(number of
fullterm pregnancies)

Breastfeeding breast cancer risk reduction,
parity breast cancer correlation

Hormonal factors (use of
hormone replacement therapy,
contraceptives, etc

HRT (hormone replacement therapy) breast
cancer risk, contraceptives breast cancer

Metabolic Factors

Diabetes Insulin resistance breast cancer, glycemic
control breast cancer, type 2 diabetes

Metabolism Thyroid function breast cancer,

Medical History

Breast density Breast density cancer risk, mammographic
density breast cancer

Other cancers and diseases Comorbidity breast cancer risk, second
primary cancer breast cancer

Lifestyle Factors

Alcohol consumption Alcohol consumption breast cancer risk

Cigarette smoking Smoking and breast cancer link

Obesity and Body Mass
Index (BMI)

obesity breast cancer correlation, dietary
factors affecting breast cancer

Poor nutrition Dietary fats and breast cancer, Nutritional
deficiencies and breast cancer

Physical inactivity Exercise breast cancer risk reduction, physical
inactivity breast cancer

Stress, anxiety, or depression Stress and breast cancer risk, depression
impact on breast cancer, anxiety breast
cancer correlation

(Continued)
TABLE 1 Continued

Risk Factor Keywords and search

Environmental Factors

Exposure to radiation Radiation exposure breast cancer risk,
ionizing radiation breast cancer

Exposure to chemicals Endocrine disruptors breast cancer risk,
chemical exposure and breast cancer

Environmental pollutants and
heavy metals

Explore research on how air quality and
exposure to pollutants correlate with breast
cancer incidence,
Research the relationship between exposure to
industrial byproducts and breast
cancer development

Use of AI in Risk Prediction

AI breast cancer detection, predictive models Breast Cancer.
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TABLE 2 Summary of risk factors and characteristics in breast cancer research literature.
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of the volume of scientific publications, with significant

contributions in both national (SCP) and international (MCP)

collaborations, followed by China, evidencing a robust level of

scientific output and cooperative engagement in these nations.

Conversely, the author network depicted in Figure 4 illustrates

clustering among authors who have contributed to more than five

publications. Those with a higher publication frequency are

represented by larger circles, visually highlighting the most

prolific contributors within the network.
3.2 Breast cancer risk factors

In this Section, we provide a detailed analysis of breast cancer risk

factors identified by the reviewed works as represented in Table 2.
Frontiers in Oncology 10
3.3 Demographic and genetic factors
• Age: Age plays a crucial role in breast cancer incidence and

outcomes, particularly impacting middle-aged and older

women. Studies like (53) and (33) investigate treatment

efficacy and risk factors, especially in younger women.

Demographic factors, including age, are highlighted by (67)

and (110). Mortality rates, notably rising in women under 50

and over 70, are observed by (65), underscoring age’s

significance. Associations between reproductive history and

breast cancer subtypes in women aged ≤50 are explored by

(24) (42). focuses onmammographic density’s relation to risk

in women aged 40 to 74. Lastly (46), emphasizes age-specific

preventive measures for women aged 30–39.
FIGURE 2

Keyword network visualization in breast cancer research.
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Distribution of countries of bibliographic authors.
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• Race or ethnicity and geographic location: Research

underscores significant variations in breast cancer

predisposition across ethnicities and geographic locations,

influenced by genetic, environmental, and socioeconomic

factors. Studies like (112) emphasize diverse risk prediction

models’ necessity, especially for Asian women. Disparities

persist despite similar treatments, as shown by (4) among

Black and White women. Meanwhile (12), and (18) identify

genetic susceptibility in Egyptian and Arab populations.

Geographical variations, highlighted by (29), highlight the

need to adopt personalized approaches. These findings

emphasize the multifaceted nature of breast cancer risk

and treatment strategies across diverse populations.

• Family History: The presence of a family history significantly

impacts the assessment and management of breast cancer

risk (110). reveals that 35.5% of women with a familial

history face a high lifetime risk, yet only 23.9% receive

enhanced screening (13). demonstrates the effectiveness of

machine learning, achieving 77.78% precision in risk

prediction. In addition (77), identifies specific germline

variants linked to susceptibility. Furthermore, the

integration of polygenic risk scores with family history, as

demonstrated by (91), significantly alters surveillance

recommendations. Overall, these findings underscore the

crucial role of family history in personalized breast cancer

care and risk management.

• Genetic mutations, such as BRCA1 (Breast Cancer Gene 1)

and BRCA2 (Breast Cancer Gene 2): Genetic mutations,

particularly in BRCA1 and BRCA2 genes, significantly

increase hereditary breast cancer risk. Studies like (92)

analyze the role of germline CHEK2 (Checkpoint Kinase

2) variants, while (97) advocate personalized prevention

strategies (98). identifies genetic loci associated with

contralateral breast cancer risk, and (3) explores

molecular links between obesity and breast cancer. These

findings emphasize the multifactorial nature of breast

cancer, requiring tailored risk assessment and management.

• Economic factors: Economic factors significantly impact

breast cancer risk and outcomes (86). reveals disparities in
tiers in Oncology 11
access to systemic anticancer therapies based on geographic

and sociodemographic factors. Similarly (36), notes a social

gradient in cancer incidence in Costa Rica (51). links higher

education levels to increased breast cancer risk (2).

emphasizes local demographic factors in TNBC (Triple-

Negative Breast Cancer) treatment, while (32) highlights

access disparities in Colombia. Finally (70), stresses the

importance of socio-demographic indices and public health

policies in addressing breast cancer burden in

developing countries.
3.4 Reproductive and hormonal factors
• Menarche (age at first menstruation): Early menarche

increases breast cancer risk due to prolonged hormonal

exposure (26). links higher anti-Müllerian hormone levels

to early menarche, indicating elevated risk. Conversely (72),

suggests later menarche protects against certain breast

cancer subtypes. Lifestyle changes, like plant-based diets,

are crucial in mitigating risk, as emphasized by (49).

• Menopause (age at menopause): Late menopause increases

breast cancer risk due to prolonged hormonal exposure

(111) . l inks menopausal hormonal changes to

chemotherapy side effects severity. Conversely (20),

emphasizes fat distribution’s role in postmenopausal

breast cancer risk (26). associates lower anti-Müllerian

hormone levels with earlier menopause, indicating

elevated risk. Conversely (72), suggests later menopause

as a risk factor for certain breast cancer subtypes. Lifestyle

factors like higher BMI and caloric intake heighten post-

menopausal breast cancer risks, as noted by (49).

• Breastfeeding and Parity (number of full-term pregnancies):

Parity and breastfeeding reduce breast cancer risk (80).

analyzes parity’s influence across birth cohorts, showing

changing risk patterns (26). links anti-Müllerian hormone

levels to age at menarche and parity, aiding risk assessment
FIGURE 4

Co-authorship network analysis in scientific research.
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(64). studies parity’s impact on breast cancer incidence,

highlighting rising rates in younger women (72). meta-

analysis reveals subtype-specific risks, emphasizing tailored

prevention strategies.

• Hormonal factors (use of hormone replacement therapy,

contraceptives, etc.): Hormonal factors like hormone

replacement therapy and contraceptives influence breast

cancer risk (3). highlights obesity’s role in breast cancer,

especially in postmenopausal women (10). emphasizes

hormonal imbalances’ impact, urging further research

(59). finds no significant difference in breast cancer risk

with Hormone Replacement Therapy among BRCA

mutation carriers. These findings emphasize the

importance of hormonal markers like estrogen and

progesterone receptors in breast cancer treatment (3, 10,

59). Additionally (21), and (72) explore lifestyle factors like

diet and reproductive behaviors, highlighting hormonal

influences on breast cancer risk.
3.5 Metabolic factors
• Diabetes: Elevated levels of insulin can promote cellular

proliferation and reduce apoptosis, thus facilitating the

development and progression of mammary neoplasms

(3). elucidate obesity’s pivotal role in breast cancer (BC)

risk, particularly postmenopausal women, citing hormonal

imbalances and insulin resistance among its mechanisms.

They reveal how obesity-driven molecular changes, like

increased estrogen and insulin levels, contribute to BC via

specific signaling pathways. Conversely (34), find a

significant correlation between genetic predisposition to

Type 2 Diabetes Mellitus (T2DM) and poorer breast

cancer-specific survival (HR = 1.10, 95% CI = 1.04–1.18,

P = 0.003), emphasizing the potential causal impact of

T2DM on BC outcomes.

• Metabolism: Metabolic processes play a crucial role in

modulating breast cancer risk, significantly influencing

hormonal levels and cellular dynamics. Alterations in

metabolism, including imbalances in lipid and glucose

metabolism, can lead to endocrine changes and alterations

in the cellular microenvironment that favor mammary

carcinogenesis. Metabolism plays a crucial role in breast

cancer risk, with various factors influencing susceptibility

(113). found that high-density lipoprotein cholesterol

(HDL-C) significantly affects breast cancer risk, suggesting

a metabolic component to cancer development (9).

identified associations between insulin-like growth factor

1 (IGF-1) levels and fasting blood glucose with breast cancer

risk, emphasizing the complexity of metabolic factors.

Additionally (13), integrated genetic mutations and

demographic factors to predict breast cancer risk,

highlighting the importance of considering metabolic
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pathways in risk assessment. These findings underscore the

multifaceted nature of metabolism-related risk factors in breast

cancer susceptibility (113) (9) and (13).
3.6 Medical history
• Breast density: Breast density complicates cancer detection

in the sense that it can make more difficult for

mammograms to identify cancerous tumors due to the

tissue’s thickness or opaqueness. Additionally, high breast

density is considered an independent risk factor for

developing breast cancer. This is because denser breast

tissue contains more connective and glandular tissues,

which can potentially hide tumors and it is also associated

with a higher likelihood of cancer development (11). found

a sixfold risk difference between densest and least dense

categories (42). investigated this relationship across a

cohort of 21,150 women, confirming the effectiveness of

automated density assessments in predicting breast cancer

risk. Similarly (69) emphasizes higher risk in younger

women with lower BMI (46). explores mammography-

based risk assessment for early screening. These studies

underscore the importance of considering mammographic

density in breast cancer risk assessment and screening.

• Other cancers and diseases: The presence of other cancers

may indicate heightened risk for breast cancer (107).

developed prognostic nomograms for breast cancer

patients with lung metastasis (66). addressed disparities in

colorectal and breast cancer screenings (83). revealed

screening rate disparit ies among females with

schizophrenia (106). noted a slight increase in primary

lung cancer risk post-radiotherapy for breast cancer.
3.7 Lifestyle factors
• Alcohol consumption: Alcohol consumption significantly

increases breast cancer risk, even with moderate intake (85).

revealed odds ratios between 1.82 to 5.67, indicating a

notable association (40). highlighted a high prevalence

(18.34%) of risky drinking among Australian women,

exceeding weekly guidelines. These studies emphasize the

importance of preventive measures. These findings

underscore the link between alcohol intake and breast

cancer risk, highlighting the need for preventive measures

(35, 51).

• Cigarette smoking: Cigarette smoking contributes to breast

cancer risk, with global estimates from (41) showing it

accounted for 5.1% of deaths and 5.2% of DALYs in 2019.

They emphasize anti-tobacco policies, particularly in low

SDI regions (80). found smoking’s heightened impact in
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younger Asian cohorts, highlighting the need for tailored

prevention strategies.

• Obesity and Body Mass Index (BMI): Obesity, particularly

postmenopause, significantly increases breast cancer risk,

impacting hormonal levels and inflammation. Studies like

(3) highlight obesity’s role in altering molecular pathways,

while (102) emphasize its association with higher estrogen

levels, especially in postmenopausal women (19). stresses

lifestyle interventions for reducing breast cancer risk in

obese postmenopausal women. Additionally (71), found

BMI significantly influences breast cancer prognosis,

particularly in premenopausal women with specific

cancer subtypes.

• Poor nutrition: Poor nutrition, characterized by diets high

in fats and sugars, increases breast cancer risk. Studies like

(103) highlight the positive impact of tailored lifestyle

interventions, while (16) suggest higher plasma vitamin D

levels may offer protection (21). and (49) emphasize the

association between Western diets and increased risk,

contrasting with the protective effect of plant-based diets.

Additionally (62), and (94) address dietary misconceptions

and socio-demographic factors influencing nutritional risk,

advocating for comprehensive approaches in breast

cancer care.

• Physical inactivity: Physical inactivity increases breast

cancer risk, while exercise helps regulate hormones and

maintain a healthy weight. Studies like (19) emphasize its

benefits in reducing recurrence risk. Tailored interventions,

as shown by (103), positively impact survivors’ quality of

life (49). link low physical activity to higher risk, especially

in post-menopausal women. Additionally (91), propose

personalized surveillance integrating lifestyle factors for

better outcomes.

• Stress, anxiety, or depression: Chronic stress may impact

breast cancer risk (57). links stress, anxiety, and depression

to reduced quality of life in survivors (103). shows positive

outcomes in QoL (Quality of Life) indicators with home-

based interventions despite pandemic challenges.
3.8 Environmental factors
• Exposure to radiation: Exposure to ionizing radiation, like

from radiotherapy, elevates breast cancer risk, especially

when received at a young age. Studies explore various

factors (38): concluded that exposure to chest radiation

therapy significantly elevates breast cancer risk, with

individuals who have undergone such treatments facing a

notably higher likelihood of developing the disease. Similarly

(57), mention that receiving chest radiation therapy was

significantly associated with a higher risk of breast cancer,

with an Adjusted Odds Ratio (AOR) of 6.43, indicating a

more than sixfold increase in risk compared to those who had
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not received such therapy (98). found that genetic variations

can influence an individual’s susceptibility to radiation

toxicity (106). discusses lung cancer risk post-radiotherapy

(111); links menopause to chemotherapy side effects; and

(22) reported a high radiodermatitis incidence (98.2%) in

breast cancer patients undergoing radiotherapy, with BMI

and statin use affecting severity, and hydrogel showing

protective effects.

• Exposure to chemicals: Chemicals like endocrine disruptors

may disrupt hormonal balance, potentially contributing to

breast cancer (105). evaluates CDK4/6 inhibitors’ toxicity in

metastatic breast cancer, stressing personalized treatment

strategies due to varying drug profiles.

• Environmental pollutants, specific exposures and heavy

metals: Environmental pollutants, including heavy metals

and air pollution, contribute to breast cancer risk (6). found

altered levels of metals like copper and cadmium in breast

cancer patients (96). investigated air pollution’s association

with postmenopausal breast cancer risk, finding a

significant 18% risk increase with a 10 µg/m3 rise in

PM10 levels in 2007.
4 The role of artificial intelligence
models for detecting breast cancer

The integration of artificial intelligence (AI) in breast cancer

management spans various aspects, including diagnosis, recurrence

prediction, survival rate estimation, and treatment response

assessment. Studies like (5) demonstrate the effectiveness of

machine learning models, achieving 80.23% accuracy in

diagnosing early-stage breast cancer. Key risk factors identified

for breast cancer included levels of glucose, age, and resistin. This

approach demonstrates the potential of machine learning in

enhancing breast cancer diagnostic processes by effectively

selecting critical risk factors. Similarly (8), utilizes NLP and

machine learning to predict breast cancer recurrence,

emphasizing the efficacy of the OneR algorithm. The main

clinical data used in the paper for predicting breast cancer

recurrence involve a wide range of factors extracted from

electronic health records (EHR). These include diagnostic

symptoms, medications, lab results, medical recommendations,

past medical history, procedures, family history, imaging,

endoscopic assessments, anesthesia types, allergies, and other

clinical documents. NLP algorithms were developed to extract

these key features from the medical records. Notably (81),

highlights Support Vector Machine (SVM) as the most accurate

algorithm for breast cancer prediction, achieving an accuracy of

97.2%. The characteristics of the cell nuclei present in the images,

are used as inputs for the SVM. They include, Radius, Texture, Area,

Perimeter, Smoothness, Compactness, Concavity, Concave points,

Symmetry, and Fractal dimension. These attributes are determined

from the digitized images and serve as the basis for the SVM model

to classify instances into benign or malignant categories.
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For detection purposes, most of the papers use mammography

images for training deep learning models, by assuming these

algorithms are able to detect anomalies in the breast tissue. In

this context, a comprehensive review is provided by (14) focusing

on various ANN models such as Spiking Neural Network (SNN),

Deep Belief Network (DBN), Convolutional Neural Network

(CNN), Multi layer Neural Network (MLNN), Stacked

Autoencoders (SAE), and Stacked De-noising Autoencoders

(SDAE). The review highlights the effectiveness of these models

in improving diagnosis accuracy, precision, recall, and other

metrics, with particular success noted in models like ResNet-50

and ResNet-101 within the CNN algorithm framework. Instead,

clinical data have been considered by (17) which developed a

Machine Learning (ML) system for classifying breast cancer and

diagnosing cancer metastases using clinical data extracted from

Electronic Medical Records (EMRs). The best results have been

obtained by a decision tree classifier which achieved 83% accuracy

and an AUC (Area Under the Curve) of 0.87, demonstrating the

potential of ML models based on blood profile data to aid

professionals in identifying high-risk metastases breast cancer

patients, thereby improving survival outcomes.

Regarding treatment response assessment (28), employs CNNs to

predict treatment response in breast cancer patients undergoing

chemotherapy, achieving high accuracies for various parameters. The

study integrates both imaging and non-imaging data for the inputs of

the models included longitudinal multiparametric MRI data (dynamic-

contrast-enhanced MRI and T2-weighted MRI), demographics, and

molecular subtypes. The use of advanced imaging techniques alongside

clinical and molecular data indicates the need for a personalized

treatment planning and assessment in breast cancer care (73).

demonstrates deep learning’s superior performance in risk

identification compared to traditional Machine Learning (ML)

methods. Important inputs for their models include age, resistin

levels, global burden of disease (GBD) relative risk upper values,

glucose, adiponectin, high BMI (binary), MCP-1, leptin, relative risks

from meta-analyses, obesity (binary), and insulin levels. These inputs

were selected based on their relevance and low redundancy for

predicting breast cancer, highlighting the potential of deep learning

to complement traditional screening methods by identifying

individuals at risk non-invasively and affordably. In survival rate

prediction (63), evaluates ML’s role, highlighting challenges like data

preprocessing and model validation. review 31 studies, mainly from

Asia, to predict the 5-year survival rate of breast cancer. It is highlighted

that among the papers reviewed, the most used algorithms are decision

trees (61.3%), artificial neural networks (58.1%) and support vector

machines (51.6%), where clinical and molecular information was used

to build predictive models (73). used a database of 116 women, of

which 52 were healthy and 64 had been diagnosed with breast cancer.

The information included demographic and anthropometric data. The

application of Deep Learning was considered the best evaluated

method for breast cancer prediction, among algorithms such as

SVM, Neural Networks, Logistic Regression, XGBoost, Random

Forest, Naive Bayes and Stochastic Gradient. Lastly, studies like (88)

predict patient satisfaction post-mastectomy, revealing that 45.2% of

women experienced improved satisfaction with their breasts. These

findings underscore the potential of AI in enhancing various aspects of
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breast cancer management, from diagnosis to patient satisfaction

assessment. A novel approach that integrates Machine Learning

(ML) algorithms with Explainable Artificial Intelligence (XAI) has

been recently developed to enhance the understanding and

interpretation of predictions made by ML models. In the context of

breast cancer research (95), introduced a Hybrid Algorithm combining

ML and XAI techniques aimed at preventing breast cancer. This

innovative methodology enables the identification and extraction of

key risk factors, such as high-fat diets and breastfeeding habits, to

accurately differentiate between patients with and without breast cancer

among Indonesian women. Risk indicators, such as auxiliary nodes and

breast density, can also be extracted by the images by using deep

learning (7, 56, 84).
5 Discussion

Upon reviewing multiple studies on breast cancer and its

associated risk factors, several key findings emerge.
• Demographic and genetic factors play a crucial role in

influencing breast cancer risk. This review highlights the

crucial impact of age, with a notable increase in breast

cancer incidence and outcomes, particularly affecting

middle-aged and older women, as well as younger

demographics in certain contexts. The significance of race,

ethnicity, and geographic location is underscored,

emphasizing the variability in breast cancer predisposition

across different populations due to a mix of genetic,

environmental, and socioeconomic factors. Family history

and specific genetic mutations, such as BRCA1 and BRCA2,

are identified as key risk determinants, necessitating

personalized prevention and management strategies.

Economic factors also emerge as crucial, with disparities

in access to care and outcomes spotlighted. Collectively,

these findings underscore the necessity for tailored breast

cancer prevention and treatment approaches that consider

the intricate interplay of demographic and genetic factors.

• Early menarche, late menopause, parity, breastfeeding, and

hormonal therapies like hormone replacement therapy and

contraceptives highly influence breast cancer risk. These

factors are intricately linked with hormonal exposure over a

woman’s lifetime, affecting her breast cancer susceptibility.

This review emphasizes the need for awareness and

consideration of these factors in breast cancer risk

assessment, suggesting lifestyle modifications and

preventive strategies tailored to individual reproductive

histories and hormonal exposure profiles.

• The relationship between metabolic factors, such as diabetes

and overall metabolism, play an important role in the

context of breast cancer risk. In particular, conditions like

insulin resistance and alterations in lipid and glucose

metabolism can influence breast cancer development by

affecting hormonal levels and cellular processes. Our review

suggests that understanding the impact of these metabolic

factors is crucial for developing targeted prevention
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strategies and emphasizes the need for further research to

explore the intricate connections between metabolic health

and breast cancer risk.

• Medical history, specifically breast density and the history of

other cancers, can influence breast cancer risk. In particular,

dense breast tissue can obscure mammograms, making

detection more challenging, and emphasizes the independent

risk factor that high breast density presents. Additionally, the

history of other cancers may indicate an elevated risk for breast

cancer. This work underscores the importance of considering

an individual’s medical history in breast cancer risk

assessments and the need for personalized screening strategies.

• Lifestyle factors such as alcohol consumption, cigarette

smoking, obesity, poor nutrition, and physical inactivity,

highlight their significant roles in increasing breast cancer

risk and the necessity of addressing these modifiable risk

factors through public health interventions and individual

lifestyle changes to reduce breast cancer incidence. This

review underscores the potential of preventive measures

and lifestyle modifications in mitigating breast cancer risk,

emphasizing the importance of holistic approaches in breast

cancer prevention strategies.

• Environmental factors like radiation exposure, chemicals, and

pollutants, play a significant role in breast cancer risk. The

cited works emphasize the need for awareness and protective

measures against these exposures. Highlighting the complexity

of breast cancer etiology, our work calls for comprehensive

research to better understand the interactions between

environmental factors and genetic predisposition, and for

public health strategies to minimize exposure and mitigate

breast cancer risk.

• The description of role of artificial intelligence (AI) models in

detecting breast cancer illustrates the significant potential AI

has in enhancing diagnostic accuracy, predicting recurrence,

estimating survival rates, and assessing treatment response.

Highlighting various studies, this review shows that machine

learning algorithms, such as Support Vector Machines (SVM)

and Convolutional Neural Networks (CNNs), have achieved

notable success. This discussion emphasizes AI’s

transformative impact on breast cancer management,

advocating for further research and integration of AI

technologies to tailor detection and treatment approaches,

ultimately improving patient outcomes.
A detailed description of the results of each work will be

presented in Section 3.2. This analysis advocates for a

multifaceted approach to prevention, screening, and treatment,

reflecting the complex nature of breast cancer risk factors.
6 Conclusion

Our research reveals a breakthrough in early detection of breast

cancer with machine learning models demonstrating an impressive

diagnostic accuracy of 80.23%. The bibliographic review and
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analysis of the last 5 years in this field allowed us to identify the

transformative impact of AI both in the identification of risk factors

and in the improvement of diagnostic accuracy. Our analysis, unlike

previous studies such as those by (69) (89), and (35), goes beyond

updating risk factor inventories to show the fundamental role of

sophisticated risk algorithms. AI. These tools, particularly SVM,

have achieved an accuracy rate of up to 97.2% in locating breast

cancer, which is a significant leap over traditional diagnostic

methods by using a wider range of datasets, including images and

clinical details including risk factors for your diagnosis.

Future explorations should delve into AI’s ability to tailor breast

cancer detection and treatments, thereby improving patient-

specific outcomes.
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10. Arceo-Martıńez MT, López-Meza JE, Ochoa-Zarzosa A, Palomera-Sanchez Z.
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