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In the last decade, ferroptosis has received much attention from the scientific

research community. It differs from other modes of cell death at the

morphological, biochemical, and genetic levels. Ferroptosis is mainly

characterized by non-apoptotic iron-dependent cell death caused by iron-

dependent lipid peroxide excess and is accompanied by abnormal iron

metabolism and oxidative stress. In recent years, more and more studies have

shown that ferroptosis is closely related to the occurrence and development of

lung diseases. COPD, asthma, lung injury, lung fibrosis, lung cancer, lung infection

and other respiratory diseases have become the third most common chronic

diseases worldwide, bringing serious economic and psychological burden to

people around the world. However, the exact mechanism by which ferroptosis is

involved in the development and progression of lung diseases has not been fully

revealed. In thismanuscript, we describe themechanismof ferroptosis, targeting of

ferroptosis related signaling pathways and proteins, summarize the relationship

between ferroptosis and respiratory diseases, and explore the intervention and

targeted therapy of ferroptosis for respiratory diseases.
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1 Introduction

In 2003, DOLMA et al. discovered Erastin, an antioxidant that can inhibit glutathione

synthesis (1). Subsequently, another compound that activates non-apoptotic cell death,

RSL3, was discovered in 2008 by YAGODA et al. and YANG et al (2). In 2012, DIXON et al.

officially named iron-dependent nonapoptotic cell death “Ferroptosis” (3). Since then,

ferroptosis has been gradually well-known by domestic and foreign scholars, and has

aroused widespread concern.

Ferroptosis is a new mode of cell death, which is morphologically, biochemically and

genetically different from other forms of cell death (4). Morphologically, ferroptosis is

mainly characterized by decreased mitochondrial cristae, changes in the bilateral

membrane density of the mitochondrial membrane, and rupture of the outer membrane
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of the mitochondria, but the morphology and size of the cells

remain normal, and chromatin is not condensed (3). Biochemically,

ferroptosis continuously consumes intracellular glutathione,

resulting in decreased glutathione peroxidase 4 (GPX4) activity,

iron-dependent lipid peroxides cannot be reduced and metabolized

by GPX4, and Fenton reaction occurs in the form of divalent iron

resulting in mitochondrial reactive oxygen species (ROS)

accumulation. ROS production leads to DNA damage, metabolic

disorders, lipid peroxidation, and further promotes the

development of ferroptosis (5–7). Genetically speaking, ferroptosis

is a biological process regulated by multiple genes, which roughly

includes: iron overload, lipid peroxide accumulation, amino acid

metabolism disorders and other changes, and the specific regulatory

mechanism needs further study (8).

In addition to attacking the respiratory system of the human

body, ferroptosis also causes different degrees of damage to the

nervous system, cardiovascular system, digestive system, and

urinary system of the human body, seriously threatening human

healthy life (9) (Figure 1). With the deepening of studies on the

mechanism of ferroptosis, it has been found that ferroptosis plays a

role in various biochemical reactions such as cell growth, energy

metabolism, and DNA synthesis repair, which are associated with

the development of lung diseases (10–12). Increasing studies have

shown that ferroptosis plays a role in lung diseases by causing

pathological processes such as inflammatory cell infiltration,

endothelial cell damage, and disturbed cellular homeostasis (13–

15). Eventually, ferroptosis can cause respiratory diseases such as

chronic obstructive pulmonary disease (COPD), bronchial asthma,

lung injury, pulmonary fibrosis, and lung infection (16).
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In this paper, the mechanism of ferroptosis, the research

progress of ferroptosis in a variety of lung diseases, and the

related signaling pathways and proteins are targeted to provide

new ideas and insights for the prevention and treatment of lung

diseases in clinical practice (17).
2 Characteristics and mechanisms
of ferroptosis

2.1 Iron overload

Iron is an essential trace element in the body, and iron overload

is a key factor in the development of ferroptosis (18). Iron maintains

a dynamic balance in uptake, transport, utilization and regulation

and is essential to maintain the normal physiological activities of the

human body (19). Prostate six-transmembrane epithelial antigen 3

belongs to STEAP family and is an iron reductase that is able to

promote the reduction of Fe3+ to Fe2+ during iron metabolism (20).

Among them, FPN is the only transporter known to be intracellular

iron and is present in all transport cells (21). Heme oxygenase 1

(HO-1) is a major regulator of the antioxidant system, which

inhibits lipid peroxidation and protects cells from ferroptosis (22,

23) (Figure 2).

Regulation of iron metabolism is divided into systemic

regulation by hepcidin, which is produced by hepatic secretion,

and intracellular regulation by the iron regulatory protein (IRP)/

iron response element (IRE) system (24, 25).In iron overload, the

balance of the two major systems regulated by iron in the human

body breaks, and excessive divalent iron ions induce ferroptosis by

producing hydroxyl radicals through the Fenton reaction.
2.2 Lipid peroxidation

Lipid peroxidation plays a central role in the development of

ferroptosis, and lipid peroxidation requires three steps: synthesis of

membrane polyunsaturated fatty acids (PUFAs) containing

phospholipid substrates, free radical priming, and enzyme

induction (26).

2.2.1 Phospholipid substrate synthesis
PUFAs involved in membrane phospholipid synthesis contain

multiple carbon-carbon double bonds and more fragile carbon-

hydrogen bonds and are therefore more sensitive to oxidation (27).

It is esterified by lysophosphatidyltransferase 3 (LPCAT3) and

incorporated into membrane phospholipids to form the ferroptosis

lipid peroxidation substrate PUFA-PL, which turns on downstream

peroxidation (28). Downregulation of LPCAT3 or ACSL4 causes

substrate depletion for lipid peroxidation and reduces the risk of

ferroptosis (29).

2.2.2 Free radical-mediated lipid oxidation
Peroxidative degradation of PUFA-PL initiated by free radicals

can be divided into three stages: initiation, propagation and
FIGURE 1

Ferroptosis is involved in the progression of a variety of organ and
system diseases, such as the body’s nervous system, cardiovascular
system, digestive system, and urinary system. AIH, autoimmune
hepatitis; AMD, age-related macular degeneration; AKI, acute kidney
injury; COPD, Chronic obstructive pulmonary disease; CD, Crohn’s
disease; FECD, Fuchs’ endothelial corneal dystrophy; I/R injury,
ischemia-reperfusion injury; MI, myocardial infarction; NDDs,
neurodegenerative diseases; PVL, periventricular leukomalacia; TBI,
traumatic brain injury.
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termination (30). In the initial stage, labile iron, stored intracellularly

as ferritin or iron-sulfur clusters, undergoes Fenton reaction and

Haber-Weiss re ‐ action with hydrogen peroxide and forms hydroxyl

radicals centered on oxygen with peroxyl radicals (31). In the

propagation stage, LOOH captures the hydrogen atoms of adjacent

lipids through free radicals and undergoes the Fenton-like reaction

under the catalysis of ferrous ions, generating alkoxy free radicals (LO ·)

and triggering lipid free radical chain reactions to form lipid

oxidation cascades, while producing some secondary products such

as malondialdehyde (MDA) and 4-hydroxynonaldehyde (4-HNE)

(32). Finally, the antioxidant system is abnormal, the peroxide

substrate is depleted, the cascade terminates, and causes severe

damage to the cell membrane (33).

2.2.3 Enzyme-mediated lipid oxidation
During the enzymatic process, the lipoxygenase (LOXs or

ALOXs) family and nadph- cytochrome P450 reductase (POR)

are critical to turn on lipid peroxidation during ferroptosis (34).

ALOXs/LOXs are iron-containing dioxygenases that catalyze

binding of free PUFAs in biofilms, promote PUFA-containing

lipid oxidation, and accelerate ferroptosis progression (35).

2.2.4 Deprivation of cysteine and glutathione
(GSH)depletion

Cysteine is a sulfur-containing amino acid that can be

synthesized endogenously via the transsulfuration pathway or
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acquired from extracellular cystine by cystine glutamate reverse

transporter (System Xc-) (36).

Glutathione is a g-amide bond- and thiol-containing tripeptide

with antioxidant effects and integrated detoxification, and prevents

lipid peroxidation in ferroptosis by providing electrons to GPX4

(37). Glutathione is stored in the human body as reduced (GSH)

and oxidized (GSSG) forms and plays a key role in the antioxidant

system (38). In addition to erastin-induced GSH reduction

enervates GPX4 and raise ROS levels (39, 40). In addition, unlike

the above system Xc- response, some cytokines can cause

glutathione depletion directly by inhibiting GSH ligase, resulting

in ferroptosis.
3 Ferroptosis-related signaling
molecules and signaling pathways

Ferroptosis is significantly associated with the physiology and

pathology of many diseases, and the related signaling pathways and

regulators of ferroptosis are important ways to regulate ferroptosis.

Therefore, five related pathways of ferroptosis, AMPK signaling,

Activating transcription factor 4(ATF4), BECN1 signaling, NOX4

signaling, Yes associated protein/transcription costimulator with

PDZ-binding domain (YAP/TAZ), will be discussed below to

provide new targets for future disease therapy and new drug

research (Figure 3).
FIGURE 2

Mechanism of iron overload. Iron maintains a dynamic balance in uptake, transport, utilization and regulation, is absorbed into mucosal epithelial cells in
the form of Fe2+, reduces Fe3+ in response to STEAP3, transports it to the cytoplasm through FPN, binds to ferritin and stores in the iron pool of the iron
storage system. Finally, divalent metal transporter 1 (DMT1) releases iron ions from endosomes into labile iron pools in the cytoplasm. In response to H2O2,
Fe2+ initiates a chain reaction of free radical lipid peroxidation via the Fenton reaction, ultimately leading to ferroptosis. Regulation of iron is systemic
regulation of hepcidin produced by hepatic secretion and intracellular regulation of the iron regulatory protein (IRP)/iron response element (IRE) system.
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3.1 AMPK signaling

It is well-known that the body maintains a dynamic balance of

nutrient energy metabolism, and homeostasis will be imbalanced

when the body produces stress, and glucose deprivation causes

excessive ROS production leading to energy stress, indicating that

glucose deprivation induces ferroptosis (41). AMPK, as an

important sensor of energy metabolism in the body, opens an

energy stress protection program that inhibits cellular ferroptosis

by regulating the synthesis of unsaturated fatty acids (42). Overall,

AMPK-induced energy stress, a protective mechanism, appears to

prevent ischemia-reperfusion injury in body organs (43).
3.2 ATF4 signaling

ATF4, a basic leucine zipper protein, is an important factor

involved in the regulation of mitochondrial stress, pathological

stress, apoptosis, inflammation, related pathways, and proteins

(44). Under stress conditions, the expression of ATF4 is up-

regulated by phosphorylating and activating eukaryotic

translation initiation factor 2a (elF2a), and ATF4 regulates gene

expression after entering the nucleus, which has an effect on the

development, growth, metabolic function, and oxidative response of

the body. ATF4-C/EBP homologous protein (CHOP) is an

important pathway to regulate pathological phenomena such as

ER stress, ROS production, lipid peroxidation, and iron

metabolism, and inhibition of this pathway prevents the
Frontiers in Oncology 04
progression of ferroptosis-related diseases such as acute lung

injury (45).
3.3 NOX4 signaling

NOX4 is the main source of ROS production in cells, and it

produces large amounts of superoxide through electron reduction

reactions of NADPH. Among the NOX isoforms of the human

gene, NOX4-mediated oxidative stress specifically impacts cell

development and atrophy and is involved in the development of

lung disease (46). By downregulating NOX4 expression, it was able

to inhibit intracellular ROS accumulation, infiltration of

inflammatory cells, as well as mitochondrial dysfunction, further

indicating that Nox4 is involved in apoptosis through oxidative

stress pathways (47). Therefore, knockdown of NOX4 factor or

drug intervention may inhibit ferroptosis in cells.
3.4 YAP/TAZ signaling

The YAP/TAZ, as a pair of recently elucidated transcriptional

regulators, is involved in the regulatory mechanism of Hippo

signaling pathway and also plays an important role in cell

differentiation, tissue homeostasis, organ development, and cancer

development in the body (48). The expression of YAP/TAZ has

been demonstrated in a variety of tumors and is significantly

associated with anti-tumor therapy, clinical prognosis (49).
A B

C D

FIGURE 3

Ferroptosis-related signaling molecules and signaling pathways. (A) AMPK promotes complex BECN1-SLC7A11 formation mediated by AMPK, thereby
inducing promotion of lipid peroxidation and ferroptosis. (B) ATF4 expression is elevated in cancer and promotes cell survival and tumor growth by
inducing genes involved in amino acid metabolism and oxidant defense. (C) NOX4 is the main source of ROS production in cells and is able to
inhibit intracellular ROS accumulation and protect against ferroptosis by downregulating NOX4 expression. (D) YAP/TAZ enters the nucleus to
promote expression of EMP1, TFRC, and ACSL4, so cells are sensitive to ferroptosis.
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4 Ferroptosis defense pathways

Among the protective mechanisms against peroxidative damage,

GSH/GPX4 axis is considered to be a major factor in the progression

against ferroptosis, while non-GPX4-dependent antioxidant pathways

also play an important role in the regulation of ferroptosis (Figure 4).
4.1 GSH/GPX4 axis

GSH, as the main free radical scavenger in cells, maintains

biosynthesis from three amino acids, Cys), glycine, and glutamate,

and resists ferroptosis progression and lipid peroxidation (50).

Glutathione peroxidase 4 (GPX4) is an antioxidant enzyme

containing selenocysteine (Ser) that uses GSH as a substrate to

catalyze the reduction of PLOOH to non-toxic PLs-alcohol (PL-OH)

and prevent the occurrence of ferroptosis using its unique catalytic

ability (51, 52). The System Xc- is the core precursor of GSH synthesis

and an important cofactor for GPX4 to scavenge membrane lipid

peroxides and reduce oxidative stress, which plays a key role in

inducing the development of ferroptosis (53).
4.2 NAD(P)H/FSP1-CoQ axis

Ferroptosis suppressor protein 1 (FSP1), formerly known as

AIFM2, is a flavoprotein that was identified to be closely associated
Frontiers in Oncology 05
with ferroptosis and independent of the GPX4-GSH pathway (54).

FSP1 is modified by N-terminal myristoylation and targets a variety

of cell membrane structures including cytoplasmic membranes,

Golgi apparatus, and perinuclear structures, and mutating the

myristoyl modification site of FSP1 loses its FSP1-mediated anti-

ferroptosis function (55). As NAD(P) H-dependent ubiquinone

(CoQ) oxidoreductase, FSP1 inhibits the occurrence of lipid

peroxidation by reducing the incomplete oxidation product of

CoQ/ubiquinone to ubiquinol (CoQH2), while indirectly

promoting a-tocopherol regeneration (vitamin E, a natural fat-

soluble antioxidant) and jointly resisting ferroptosis.
4.3 GCH1/BH4/DHFR axis

Guanosine triphosphate cyclohydrolase 1 (GCH1) exerts its

powerful anti-gpx4 inhibitory effect on ferroptosis by activating

tetrahydrobiopterin (BH4) and dihydrobiopterin (BH2) (56).

GCH1 selectively prevented the consumption of phospholipids

containing two polyunsaturated fatty acid acyl tails, and increased

BH4/BH2 to inhibit lipid peroxidation and iron ion denaturation

(57). Another mechanism by which BH4 inhibits ferroptosis

reduces CoQ to CoQH2 to enhance resistance to ferroptosis.

Supplementation of BH2 in vitro promotes regeneration and

protects cells from ferroptosis through the turnover of BH4 (58).

In addition, higher levels of GCH1 were also detected in a large

number of lung cancer tissue samples.
FIGURE 4

Defense Pathways of Ferroptosis. GPX4 specifically catalyzes the loss of oxidative activity of lipid peroxides in a glutathione (GSH)-dependent
manner and is thought to be a major factor in the progression against ferroptosis. FSP1 does not rely on glutathione to convert ubiquinone to
reduced ubiquinone on cell membranes and can inhibit peroxidation and protect against ferroptosis. DHODH traps free radicals to inhibit lipid
peroxidation in mitochondria by regulating dihydroubiquinone production in the inner mitochondrial membrane. The GCH1/BH4 pathway acts as an
endogenous antioxidant pathway, and GCH1 mainly protects cells from ferroptosis through the antioxidant effect of BH4. NRF2 protects body cells
from ferroptosis by up-regulating multiple signals through antioxidant effects. FSP1, ferroptosis suppressor protein 1; GPX4, glutathione peroxidase 4.
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4.4 Mitochondria DHODH

DHODH, located on the inner mitochondrial membrane, is

able to catalyze pyrimidine nucleotide synthesis, and its loss of

activity leads to the accumulation of lipid peroxides in

mitochondria and triggers the development of ferroptosis in

GPX4-low expressing cells (59). DHODH inhibits lipid

peroxidation by converting mitochondrial CoQ to CoQH2, unlike

FSP1 localized outside the membrane, ectopic expression of FSP1

does not protect cells from ferroptosis (60). The application of the

DHODH inhibitor brequinar inhibited the growth of tumor cells

with low GPX4 expression in vitro, and the combined treatment of

brequinar and the SLC7A11 inhibitor sulfasalazine abolished the

growth of tumor cells with high GPX4 expression (61).
4.5 Keap1-Nrf2-ARE axis

Nuclear factor erythroid 2-related factor 2 (NRF2) is a

transcription factor involved in cellular oxidative responses that

advance iron storage, curb iron uptake, limits ROS production, and

ultimately regulates ferroptosis in the activated state (62, 63). In

addition to its role in iron metabolism, NRF2 regulates basal and

inducible glutathione synthesis expression of SLC7A11 and g-
glutamylcysteine synthetase (g-GCS) to protect against ferroptosis.

Additionally, NRF2 accelerates the progression of ferroptosis by

increasing Fe2+ from the labile iron pool by regulating heme

oxygenase 1 (HO-1) (64, 65).
5 Small-molecule modulators
of ferroptosis

5.1 Small molecule inducers of ferroptosis

RSL3 and erastin are small molecule compounds that induce

ferroptosis in tumor cells with mutations in the oncogene RAS (66,

67). RSL3 acts by inhibiting the enzymatic activity of GPX4 and

irreversibly inactivates GPX4, in which Altretamine and Withaferin

A as anti-tumor drugs can directly inhibit GPX4-mediated

ferroptosis in tumor cells and provide new strategies for anti-

tumor therapy (68, 69).
5.2 Small molecule inhibitors of ferroptosis

Inhibitors of ferroptosis act by inhibiting lipid peroxidation and

iron accumulation. Fer-1 and Lip-1 act as aromatic amine

antioxidants and are able to prevent lipid ROS accumulation and

inhibit ferroptosis (70). By downregulating 5-lipoxygenase (5-LOX),

zileuton and N-acetylcysteine protect cells from lipid peroxidation

caused by reactive oxygen species generation (71, 72). ACSL4

esterifies free fatty acids and is a key enzyme in regulating lipid

composition. Rosiglitazone, pioglitazone, and troglitazone specifically

inhibited ACSL4 activity to prevent ferroptosis and cellular lipid
Frontiers in Oncology 06
oxidation (73). In addition, another sign of ferroptosis is iron

overload, and the iron chelators desferrioxamine (DFP) have the

effect of inhibiting ferroptosis.
5.3 Regulation of ferroptosis by
natural compounds

Recently, an increasing number of natural products have been

isolated from natural resources as reagents for drug development

for the treatment and prevention of diseases (74). These natural

compounds are able to maintain effects such as iron homeostasis in

the body, which are associated with inhibition of ferroptosis.

Recently, it has been shown that artemisinin and its derivatives

(artesunate, dihydroartemisinin) can not only treat malaria, but also

induce iron apoptosis in cancer cells through a series of reactions

(75, 76). Baicalein, discovered in a natural product library screen, is

a natural ferroptosis inhibitor that inhibits ferroptosis by inhibiting

erastin induction and 12/15-LOX activity.
6 Ferroptosis in pulmonary disease

Ferroptosis, as a mode of cell death, plays an important role in

COPD, asthma, lung injury, lung cancer, pulmonary fibrosis and

lung infection. Therefore, it seems important to investigate the

relationship between lung disease and ferroptosis to provide new

ideas for clinical treatment (Figure 5).
6.1 COPD

COPD is an incompletely reversible systemic disease with airflow

limitation. The pathological changes are mainly airway remodeling

and/or abnormal alveolar wall elasticity. Pulmonary function test is

the main objective index, which is manifested as decreased forced

expiratory volume in 1 s (FEV1) (77, 78). COPD occurs mainly due to

hand environment and genetic influences, and continuous exposure to

cigarette smoke is one of the important environmental factors leading

to COPD and the most common (79).Tobacco smoke induces

inflammatory factor infiltration through ER stress, causing hypoxia

in small airways and alveoli, accelerating the progression of COPD

and inducing ferroptosis in lung epithelial cells (80). As macrophages

accumulate causing accumulation of the inflammatory factor LTB4,

ACSL4 expression is upregulated, thereby inducing ferroptosis in lung

epithelial cells (81). In addition, the stimulation of herb smoke caused

the accumulation of unstable iron and the enhancement of lipid

peroxidation, again indicating that ferroptosis is closely related to

COPD (82). The above mechanisms were mainly triggered by

NCOA4-mediated iron autophagy and were not significantly

associated with the GPX4 defense pathway (83). NCOA4 plays an

important role in the pathogenesis of emphysema in COPD by

polarizing M2 macrophages and inducing the secretion of

inflammatory cells in bronchial epithelial cells (84).

The mechanism of iron responsive element binding protein 2

(IREB2) susceptibility to COPD is different from that of smoking.
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Overexpression of IREB2 indirectly leads to a significant decrease in

lung compliance and total lung capacity, while it can cause

inflammatory infiltration to increase IL-6 expression, induce

hepcidin to regulate iron homeostasis, and induce FEV1 decline

in COPD mice (85, 86). In parallel, elevated levels of IREB2 lead to

accumulation of labile iron pools (LIPs) and lipid peroxidation,

triggering iron overload in lung epithelial cells. Ferroptosis of

airway epithelial cells and alveolar epithelial cells induces airway

remodeling and emphysema, respectively, thereby causing COPD

(87). Appropriate iron supplementation delays the onset and

progression of COPD.

DNA dioxygenase 10-11 translocation 2 (TET2) is an important

demethylase that regulates cigarette induced lipid peroxidation by

demethylating GPX4, thereby reducing ferroptosis in COPD airway

epithelial cells (80). The combination of the methylation inhibitor 5

′ -aza-2 ′ -deoxycytidine (5-aza) and the antioxidant n

-acetylcysteine (NAC) was strongly resistant to the production of

inflammatory mediators induced by cigarettes in COPD (23).

In conclusion, the role of pulmonary iron regulation as well as

iron metabolism in COPD remains to be investigated.Targeted iron

therapy and lipid-specific anti-oxidation may be a strategy for the

treatment of COPD and needs to be more reliably validated.
6.2 Asthma

Asthma is a chronic inflammatory respiratory disease

characterized by airway altitude sickness and reversible airflow

limitation (88). The main clinical symptoms are recurrent cough,
Frontiers in Oncology 07
sputum, wheezing, etc., which seriously threaten human health and

occur frequently in children and the elderly. Airway inflammation

and airway altitude sickness (AHR) are the core link in the

pathological changes and recurrent attacks of asthma (89).

Asthma is a chronic airway inflammatory disease that is closely

associated with inflammatory cell infiltration (lymphocytes, mast

cells, eosinophils, neutrophils), type II cytokine secretion (IL-4, IL-

13, IL-5), and airway epithelial cell damage (90, 91).Oxidative stress

response is closely associated with inflammation and AHR (92).

Multiple markers of lipid peroxidation have been identified in

patients with asthma, further suggesting that the pathophysiology

of asthma is associated with ferroptosis (93). Correlative studies

have shown that alveolar epithelial cell iron content is positively

correlated with the progression of asthma. Substantial iron

deposition is found in acellular cells of asthmatic patients causing

airway inflammation and oxidative stress, thereby inducing

ferroptosis (94). Among them, allergen exposure increases ROS

production, breaks oxidative balance, accelerates oxidative stress

progression, and is also responsible for aggravating asthma

symptoms (95).

The ferroptosis defense pathway associated with asthma is

mainly the Nrf2 pathway, which plays a role in resisting the

progression of asthma course through anti-inflammatory

mechanisms (96). Combined with ARE, Nrf2 inhibits the

expression of type II cytokines in airway epithelial cells, inhibits

oxidative stress, and slows the symptoms and signs of asthma (97).

Nrf2-Keap1 signaling not only resists oxidative effects in asthma,

but also promotes the expression of systemic Xc- and GPX4 factors,

regulates SLC7A11 activity, reduces ROS production, and
FIGURE 5

Ferroptosis in pulmonary disease. Ferroptosis plays an important role in the pathogenesis of lung diseases such as COPD, asthma, lung injury, lung
cancer, pulmonary fibrosis, and lung infection. ACMs, airway smooth muscle cells; ECM, extracellular matrix; IL-1, interleukin-1; MDA,
Malondialdehyde; T cells, T lymphocyte; TNF, tumor necrosis factor.
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ultimately inhibits ferroptosis (98). Recent studies have found that

licorice can activate the activity of Nrf2 and play a protective role in

airway altitude sickness, providing new ideas for the clinical

treatment of asthma (99).

15LO1, an abundant lipid peroxidase in airway epithelial cells

(HAECs) of asthmatic patients, promotes the development of

asthma, and its expression level is positively correlated with the

severity of asthma (100). Type II cytokines interact with 15LO1 to

promote inflammatory cell infiltration to induce inflammatory

responses (101). 15LO1 binds to phosphatidylethanolamine-

binding protein 1 (PEBPl) under cytokine stimulation, activates

lipid peroxidation, and promotes ferroptosis in airway epithelial

cells of asthmatic patients (102). It can be seen that specific

inhibitors of 15LO1 are expected to provide new strategies for the

treatment of steroid-resistant asthma.
6.3 Lung injury

6.3.1 Acute lung injury
ALI is mainly characterized by alveolar epithelial cell damage,

pulmonary interstitial edema, and neutrophil infiltration (103).

Clinically, the main symptoms are decreased lung compliance and

bilateral pulmonary inflammatory infiltrates in hypoxemia (104).

Ferroptosis is the main driver of ischemia-reperfusion injury (I/R)

and is closely related to the pathogenesis of lipopolysaccharide

(LPS) -induced septic ALI, and can aggravate further tissue and

organ damage (73, 105). Activation of NRF2 enhances resistance to

lipid peroxidation induced lung injury by ferroptosis factors (GPX4,

SlC7A11) in murine models of ALI, thereby protecting alveolar

epithelial cells from ferroptosis (106, 107). In addition, the

metabolites obacunone and itaconate significantly reduced lung

injury by inducing activation of the NRF2 pathway (108, 109). By

observing the ALI model, we could find that MDA expression

increased, GSH and GPX4 expression decreased, and mitochondrial

morphology changed in order to assess the degree of lung damage

caused by ferroptosis at different I/R durations (110, 111).

In addition, the cells involved in ALI pathology and

inflammatory response were mainly mast cells (MCs) and

polymorphonuclear neutrophils (PMN) (112). MC is involved in

the progression of ALI after autologous liver transplantation by

regulating PMN apoptosis (113). At the same time, Nrf2 factor

plays a protective role against sepsis-induced lung injury by

activating antioxidant enzyme responses (108). However, the

clinical treatment of ALI is still an exploratory stage at home and

abroad. Currently, an increasing number of studies have shown that

lipid peroxidation, which is a key cause of ferroptosis, plays an

important role in ALI severity (114). Therefore, ferroptosis is closely

related to ALI and may become an important therapeutic target for

ALI (115).

6.3.2 Radiation-induced lung injury
Radiotherapy is one of the important methods to treat lung

tumors, and RILI (radiation pneumonitis and radiation pulmonary

fibrosis) caused by radiotherapy is a common complication (116).
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Radiation promotes the development of RILI, mainly promotes

the infiltration of inflammatory cells to secrete various chemokines.

ROS produced by radiation may be the original trigger for inducing

ferroptosis in RILI, and the Keap1-NRF2 pathway has a protective

effect against radiation-induced ferroptosis in alveolar epithelial

cells (117). In a mouse model of RILI, inhibition of expression of the

key factor GPX4 induced ROS accumulation leading to lipid

peroxidation, further suggesting that ferroptosis RILI plays an

important role. In addition, it has been found that the cascade of

multiple cytokines is also involved in the process of ferroptosis in

radiation-induced ALI. Transcription growth factor b1 (TGF-b1)
and ROS synergize to promote ferroptosis in radiation-induced ALI

and jointly aggravate lung injury, while Nrf2 slows radiation-

induced ALI and the development of ferroptosis by reducing the

expression of TGF-b1 and inhibiting iron ion absorption (118).

ferroptosis has now been identified as playing an important role in

radiation-induced ALI. Ferroptosis inhibitors may be an effective

treatment for radiation-induced ALI, providing new insights into

reducing ROS damage, preventing and treating radiation-induced

lung injury. Ferroptosis inducers synergized with radiotherapy by

enhancing cytoplasmic lipid peroxidation without increasing DNA

damage or caspase activation, whereas ferroptosis inhibitors

inhibited radiation-induced RILI and ferroptosis by inhibiting

lipid peroxidation and enhancing GPX4 expression (119, 120).
6.4 Lung cancer

Lung cancer is one of the most common malignant tumors

worldwide, with a very high morbidity and mortality (121), and its

pathological types mainly include non-small cell lung cancer

(NSCLC) and small cell lung cancer (SCLC) (122, 123). NSCLC is

the most common type of lung cancer and is divided into lung

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC),

and large cell carcinoma. In recent years, the incidence of LUAD

has increased.

Cysteine desulfurase (NFS1) acts on lung tissue in a hyperoxic

environment and there are amplified regions of the LUAD genome that

are highly expressed. Simple inhibition of NFS1 activity does not slow

LUAD growth and requires co-activation of the iron starvation

response in cooperation with inhibition of glutathione organisms to

trigger ferroptosis in vitro. Iron metabolism imbalance is closely related

to the occurrence and development of lung cancer. USP35 combined

with transportin (FPN) synergistically stabilized serum ferritin levels

and inhibited ferroptosis to delay lung cancer cell growth (124).

SLC7A11 is centrally expressed in LUSC and is involved in body

regulation (125). SLC7A11 expression increased in response to

stimulation with the transcription factor SOX2, rendering lung

cancer cells more resistant to upper iron (126). The expression of

SLC7A11 and SOX2 was positively correlated in LSCC, and SOX2

plays an important role in the squamous cell fate of cells of different

origins. In addition, RBMS1 acts as an RNA-binding protein and

promotes ferroptosis by binding to the 3 ′ UTR region of SLC7A11

thereby promoting its translation and inhibiting SLC7A11-

mediated cystine uptake (127).
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SCLC is characterized by poor malignancy and prognosis and

early metastasis (128). SCLC accounts for 15% of lung cancers and is

associated with smoking, including neuroendocrine (NE) and non-

neurosecretory (Non-NE) types (129). NE-SCLC are more susceptible

to ferroptosis through isoform-specific lipidome remodeling, breaking

oxidative balance (125). Chemotherapy resistance in Non-NE types is

well-known because of peroxidation of specific membrane lipids of

ACSL4 and LPCAT3, which induce ferroptosis. Combined treatment

with ferroptosis mechanisms improves survival in lung cancer patients

by inhibiting single-pathway targeting observed isoform plasticity.
6.5 Fibrotic lung diseases

Pulmonary fibrosis is a lung disease in which fibroblasts

proliferate, a large amount of extracellular matrix accumulates

leading to scarring, accompanied by inflammatory cell infiltration

and destruction of alveolar wall structure (130, 131). At present, the

pathogenesis and mechanism of pulmonary fibrosis are not clear,

and there is a lack of effective treatment, and the prognosis of this

patient is often poor. While the finding of ferroptosis is closely

related to pulmonary fibrosis, it plays a key role in the pathogenesis

of pulmonary fibrosis with iron overload, ROS accumulation, lipid

peroxidation, and inhibition of GPX4 activity. When the level of

iron in the body increases, it promotes the transformation of

fibroblasts into myofibroblasts and accelerates the development of

pulmonary fibrosis (132).

Ferroptosis is involved in the pathogenesis of pulmonary fibrosis,

and the main triggers are ROS accumulation and glutathione

depletion. The imbalance of antioxidant system is the key factor

causing ROS accumulation and the occurrence and development of

early pulmonary fibrosis. Nrf2-ARE, as an important pathway of

ferroptosis, reduces the expression of free iron and smooth muscle

actin by up-regulating the expression of HO-1, reduces collagen fiber

synthesis, and finally inhibits ferroptosis-related pulmonary fibrosis

(133). Type II alveolar epithelial cells (ATll) are critical cells for

maintaining alveolar structure and function. The cell membrane

contains a large number of polyunsaturated fatty acids and

abundant mitochondrial content, and has a high susceptibility to

ferroptosis (134). In bleomycin(BLM)-induced pulmonary fibrosis

mouse specimens, ATII was found to contain a large number of iron

ions, accompanied by pathological changes of fibrosis such as

collagen deposition (135–137). Also, Fcn B secreted by exosomes

from blm-induced alveolar macrophages promotes lung injury and

fibrosis via ferroptosis in a blm-induced mouse model (137).

Liproxstatin-1, an ferroptosis inhibitor, delayed fibroblast

differentiation into myofibroblasts and reduced pulmonary

fibrosis by limiting collagen deposition and decreasing GPX4

expression (138, 139). Paraquat (PQ) is a highly toxic pesticide

that causes diffuse fibrosis of the lungs.The toxic mechanism of PQ

is mainly ROS imbalance leading to lipid peroxidation,

mitochondrial damage, resulting in cellular ferroptosis (140).

Recent studies have found that fine particulate matter (PM2.5)

degrades heme-containing proteins through HO-1 and releases iron
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in fibrotic cells, resulting in mitochondrial ROS production,

induced ferroptosis and aggravated pulmonary fibrosis (141).

However, ferroptosis inhibitors such as desferrioxamine and Er-1

can play a key role in the treatment of pulmonary fibrosis induced

by PQ and PM2.5.
6.6 Pulmonary infection

6.6.1 Tuberculosis
Tuberculosis (TB) is caused by Mycobacterium tuberculosis

(Mtb) infection causing chronic infectious diseases that affect

human life and health. TB is the main cause of death caused by a

single source of infection (142). With the incidence of multi-drug

resistant tuberculosis increasing year by year, the prevention and

treatment situation is very severe, and anti-tuberculosis treatment is

of great significance in clinical practice. Mtb is highly contagious, and

when inhaled into the body, it activates macrophages in the alveoli to

produce an adaptive immune response, thereby eliminating

Mycobacterium tuberculosis. At the same time, Mtb can also evade

macrophage killing by inducing macrophage necrosis through

negative regulation. In recent years, increasing evidence suggests

that ferroptosis is significantly associated with pathogenicity and

dissemination of Mtb. In mice acutely infected with Mtb, alveolar

macrophage necrosis was significantly associated with a phenotype of

ferroptosis, mainly characterized by decreased Gpx4 expression,

increased lipid peroxidation, and mitochondrial hyperoxidation

(143). Protein tyrosine phosphatase A (PtpA) secreted by Mtb

interacts with host RanGDP to enter the nucleus and promotes

arginine methyltransferase 6 (PRMT6) -mediated methylation of

H3R2me2a on the GPX4 promoter, resulting in decreased GPX4

expression and ferroptosis induction in host cells and promotingMtb

pathogenicityand dissemination (144). These results suggest that

gpx4-dependent iron cell apoptosis may be targeted by blocking

the Mtb ptpa- host PRMT6 interface, providing a new therapeutic

strategy for the treatment of tuberculosis (145).

Subsequently, GPX4 knockout mice were found to aggravate TB

infection, while overexpression of GPX4 significantly reduced

bacterial load and risk of infection. Meanwhile, Fer-1 could

reduce lipid peroxidation and inhibit cellular ferroptosis in Mtb-

infected macrophages (146). In summary, ferroptosis is closely

related to the occurrence and development of Mtb infection, and

inhibition of ferroptosis can inhibit Mtb infection and pulmonary

inflammatory response.

6.6.2 Coronavirus disease 2019
It is a pulmonary infectious disease caused by SARS-CoV-2 virus

infection causing severe acute respiratory distress (147). SARS-CoV-2

targets various systemic functions of the body, with the lungs and

throat of the respiratory system as the main targets (148). Abnormal

lipid expression in pneumocytes was found to result in increased

pneumocyte apoptosis and ferroptosis in mice infected with SARS-

CoV-2 virus (149). Reactive breakdown products of lipid peroxides

were observed in a case of severe COVID-19 infection withmyocarditis
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(150). In addition, SARS-CoV-2 inhibited GPX4 mRNA expression to

induce apoptosis by attacking lung macrophages and monocytes (151).

Related studies showed that expression levels of major signaling factors

for ferroptosis, including GPX4 and SLC7A11, were significantly

upregulated in sera from patients with novel coronavirus infection

(152, 153).

Recent studies have found that SARS-CoV-2 ORF3a can

increase the sensitivity of cells to iron ions through the Keap1-

NRF2 axis on the one hand, accelerate the degradation of NRF2 by

Keap1 on the other hand, weaken the resistance of cells to oxidative

stress, and induce ferroptosis in cells on the other hand (154). In

addition, vitamin K reduces the level of reactive oxygen species by

regulating the expression of antioxidant enzymes and can also

prevent ferroptosis by reducing the inflammatory response (155).

In summary, ferroptosis plays a diversified role in COVID-19,

and understanding the signaling mechanism of ferroptosis during

SARS-CoV-2 virus infection will help to advance the clinical

treatment and drug research and development of the disease, and

targeting iron-tropic organics seems to be a potential novel

therapeutic strategy for COVID-19.

6.6.3 Pseudomonas aeruginosa
Respiratory diseases are inextricably linked to respiratory

microbiota infections, and Pseudomonas aeruginosa (PA) is one

of the most common pathogenic groups (156). PA is the main

species of nosocomial infection, which can be found in most

patients with long-term mechanical ventilation in intensive care

units and is also an important opportunistic pathogen causing acute

lung injury and acute respiratory distress syndrome (157). PA

contains secretory vesicles that catalyze the host PUFA reaction

by 15LOX, thereby making virulence factors to induce ferroptosis

(158). Although PA uses LOX to participate in the ferroptosis

process, 15LOX has a significant lack of lipid substrates (159). Also,

it has been shown that PA decreases the effects of host GPx4 to

induce lipid peroxidation by activating lysosomal chaperone-

mediated autophagy (160). Using a macrophage infection model,

P. aeruginosa RNase E variants cause host infection damage by

increasing host cell siderophore production and iron cell apoptosis

(161). In summary, PA is closely related to ferroptosis, while

15LOX-induced ferroptosis progression serves as a therapeutic

target, providing new therapeutic ideas for non-antibiotic

treatment of PA-induced airway infections.
7 Targeting ferroptosis in lung disease

COPD is associated with iron imbalance, and treatment to

correct disorders of body iron metabolism may be helpful in the

treatment of the disease. In a mouse model exposed to cigarettes,

regarding the progression of resistance to COPD, with the exception

of GPx4 knockdown, desferrioxamine and ferristatin-1 are a

possible target for the treatment of ferroptosis-induced COPD

(82). At the same time, chelators, iron supplementation, or low-

iron diets are current methods to correct iron levels and avoid

COPD damage to the body.
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Asthma is characterized by recurrent and difficult to cure as the

main clinical features. Relevant clinical and serial experiments have

shown that acupuncture has a regulatory effect on mucosal and

cellular immunity in patients with allergic asthma and may be an

adjuvant method for the treatment of asthma (162, 163). In the

mouse asthma model treated with acupuncture, the expression of

ferroptosis regulator MDA was down-regulated and GSH was up-

regulated, further elaborating that the effect of acupuncture on

asthma is associated with the regulation of ferroptosis.However, the

regulatory mechanisms involved need to be investigated.

Studies have shown that iron sag is an effective mechanism to

induce ALI, and inhibition of iron sag provides a more reliable

means to prevent and treat ALI induced by i/R or lps. Liprostatin-1

and Ferrostatin-1 were able to ameliorate lung histopathological

damage, pulmonary edema alterations, and lipid peroxidation

progression in I/R mice (107, 110).

Ferroptosis has become an effective therapeutic target for lung

cancer, especially for lung cancer types with drug resistance (164,

165). Platinum inhibits iron cell apoptosis by high depletion of GSH

through activation of the Wnt/NR2F2/GPX4 pathway.GPX4

inhibitors have been found to enhance the anticancer effects of

Platinum providing new therapeutic ideas for lung cancer patients

(166). In addition, nanotechnology of tumor in situ iron

mineralization provides a new scheme for the early diagnosis of

lung cancer, using Prussian blue/calcium peroxide nanocomposite

technology to induce iron mineralization in lung cancer cells, while

causing oxidative stress to induce apoptosis and ferroptosis, and

inhibiting the malignant growth of tumor cells (167). Recent studies

have found that self-assembled ph sensitive superparamagnetic iron

oxide nanoclusters (SPIONCs) technology kills lung tumor cells by

participating in the Fenton response and inducing ferroptosis in an

acidic environment through radiation therapy and iron ion release

(168). Immunotherapy is currently one of the effective methods for

anti-lung cancer tumor therapy, in which immune checkpoint

inhibitors (ICIs) mainly exert anti-tumor effects by activating T

cells, and currently approved ICIs have drugs targeting CTLA4, PD-

1 and PD-L1 (169). Activated CD8+ T cells release interferon-

gamma, down-regulate the expression of SLC7A11 and SLC3A2,

and inhibit the uptake of cystine by lung cancer cells to achieve anti-

tumor effects (170). In addition, some nanoparticles induce

ferroptosis to achieve inhibition of lung cancer tumors, of which

SRFFe IITA (SFT) and zero-valent iron nanoparticles (ZVI-NP) are

effectively combined with ferroptosis by photodynamic therapy and

immunostimulation to treat lung tumors (171, 172).

In the physiological and pathological changes of pulmonary

fibrosis, liproxstatin-1 can activate the Nrf2 pathway to downregulate

transforming growth factor b1 (TGF-b1) and delay the progression of

pulmonary fibrosis (118). Substantial iron deposition was found in

alveolar epithelial cells of lung fibrosis samples, whereas deferoxamine

(DFO) prevented lung fibrosis progression and ferroptosis by

stabilizing iron metabolism in the lung (136). In addition,

SODARA290-HBc, a newly constructed bioengineering nanoreactor,

protects alveolar epithelial cells from radiation and iron poisoning by

inhibiting oxidative stress, inflammation, and regulating the phenotype

of infiltrating macrophages in the RILI mouse model (173).
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Iron metabolism disorders are inextricably linked to the

development of pulmonary tuberculosis, and biomarker levels of

iron ions provide new ideas for the diagnosis of pulmonary

tuberculosis (174). Isoniazid (INH), as an anti-tuberculosis drug,

damages the liver and induces lipid peroxidation leading to

apoptosis of liver cells through glutathione depletion (175). Thus,

anti-ferroptosis appears to be an effective target for treating TB or

delaying TB progression.

SARS-CoV-2 virus is a pathogenic agent of novel coronavirus

infection and is closely associated with the development of

ferroptosis. Studies have shown that iron-sulfur cofactor is a

cofactor of SARS-CoV-2 virus and a therapeutic target of COVID-

19 (176). Two candidates, DFO and imatinib, were identified to be

effective in blocking SARS-CoV-2 infection and infection-related

ferroptosis in a mouse model of sinoatrial node-like pacemaker cell

dysfunction infected with novel coronavirus (177).
8 Conclusion

For ferroptosis, as research progresses, the documented related

signaling pathways between induction and inhibition mechanisms,

as well as the regulatory pathways of ferroptosis, are explored. This

paper also reviews the relationship between ferroptosis and

respiratory diseases. However, despite increasing evidence from

animal experimentation demonstrating the effectiveness of targeted

ferroptosis therapy in lung disease, questions remain regarding its

clinical role.

SLC7A11 and GPX4 are important regulators of ferroptosis, and

multiple ferroptosis inducers exert anti-ferroptosis effects in

alveolar cells through them. Specifically, high expression of

SLC7A11 and GPX4 is a potential target for the treatment of lung

diseases. However, expression levels of SLC7A11 and GPX4 differ in

a variety of respiratory diseases. Therefore, it becomes particularly

important to screen key genes that provide relevant evidence for
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targeted therapy for clinical ferroptosis. In addition, an increasing

number of studies have shown that ferroptosis, as an adjuvant

clinical treatment option, will become a new target for the treatment

of various lung diseases that are currently incurable.
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