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An interpretable clinical
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cervical cancer
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Xiaoling Liu3 and Chaoxue Zhang1*

1Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei,
Anhui, China, 2Department of Ultrasound, Anhui Provincial Maternity and Child Health Hospital,
Hefei, Anhui, China, 3Department of Ultrasound, Nanchong Central Hospital (Beijing Anzhen
Hospital Nanchong Hospital), The Second Clinical Medical College, North Sichuan Medical
College (University), Nanchong, Sichuan, China
Objective: The purpose of this retrospective study was to establish a combined

model based on ultrasound (US)-radiomics and clinical factors to predict patients

with stage I cervical cancer (CC) before surgery.

Materials and methods: A total of 209 CC patients who had cervical lesions

found by transvaginal sonography (TVS) from the First Affiliated Hospital of Anhui

Medical University were retrospectively reviewed, patients were divided into the

training set (n = 146) and internal validation set (n = 63), and 52 CC patients from

Anhui Provincial Maternity and Child Health Hospital and Nanchong Central

Hospital were taken as the external validation set. The clinical independent

predictors were selected by univariate and multivariate logistic regression

analyses. US-radiomics features were extracted from US images. After

selecting the most significant features by univariate analysis, Spearman’s

correlation analysis, and the least absolute shrinkage and selection operator

(LASSO) algorithm, six machine learning (ML) algorithms were used to build the

radiomics model. Next, the ability of the clinical, US-radiomics, and clinical US-

radiomics combined model was compared to diagnose stage I CC. Finally, the

Shapley additive explanations (SHAP) method was used to explain the

contribution of each feature.

Results: Long diameter of the cervical lesion (L) and squamous cell carcinoma-

associated antigen (SCCa) were independent clinical predictors of stage I CC.

The eXtreme Gradient Boosting (Xgboost) model performed the best among the

six ML radiomics models, with area under the curve (AUC) values in the training,

internal validation, and external validation sets being 0.778, 0.751, and 0.751,

respectively. In the final three models, the combined model based on clinical

features and rad-score showed good discriminative power, with AUC values in

the training, internal validation, and external validation sets being 0.837, 0.828,

and 0.839, respectively. The decision curve analysis validated the clinical utility of

the combined nomogram. The SHAP algorithm illustrates the contribution of

each feature in the combined model.
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Conclusion: We established an interpretable combined model to predict stage I

CC. This non-invasive prediction method may be used for the preoperative

identification of patients with stage I CC.
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1 Introduction

Cervical cancer (CC) is the fourth most common cancer in

women worldwide, following breast, colorectal, and lung cancers

(1), and is one of the most common gynecological malignancies (2,

3). Approximately 570,000 new cases of CC and 311,000 deaths

occurred in 2018, and China is among the countries with the

greatest burden of CC (4). Currently, the most common CC stage

is based on the International Federation of Gynecology and

Obstetrics (FIGO) 2018 system. It is divided into four stages,

among which stage I refers to carcinoma strictly confined to the

cervix uteri (extension to the corpus should be disregarded) (5),

which belongs to early-stage CC, with a good prognosis and 5-year

survival rate of approximately 90%, and it is only approximately

30% of them with lymph node metastasis (LNM) (6). Therefore, the

early diagnosis of CC is particularly important. Ultrasound (US),

computed tomography (CT), magnetic resonance imaging (MRI),

and positron emission tomography/computed tomography (PET/

CT) are all routinely used for CC examinations, but because the

imaging pattern has inherent limitations, based on the traditional

visual assessment, imaging technology cannot identify the grayscale

images, which beyond the scope of human eye recognition, in

disease diagnosis and treatment value is limited, hence the need

more advanced tools to improve the existing imaging technology.

In recent years, radiomics has gradually become a research

hotspot, which is a widely used and high-throughput method for

medical imaging now (7). Using radiomics methods can extract

quantitative imaging features based on intensity, shape, size volume

texture features, etc. The feature redundancy, dimensionality

reduction, pre-processing, and machine learning (ML)-based

classification combining the extracted features can establish

robust and clinically relevant models (8–10). In recent years,

radiomics has been reported to achieve higher precision in the

diagnosis, staging, and prognosis of many tumors (11–14). The

standard ML consisting of artificial intelligence is a black-box

prediction that is difficult to interpret by clinicians. Due to its

ability to interpret and visualize the predictions of a model and to

illustrate the contribution of each feature in the model, the Shapley

additive explanations (SHAP) algorithm is currently the most

recommended for model interpretation. The SHAP values can

reveal the individual contribution of each feature to the model

output of each observer (15, 16).
02
Studies have shown that radiomics features extracted from MRI

or PET/CT images can be used to predict lymph node status (LNS)

(17), tumor stage (18), histological subtype (19), and outcomes of

neoadjuvant chemoradiation in patients with CC (20, 21). It has also

been shown that the radiomics features extracted fromUS images can

be used to predict preoperative LNS in early-stage CC patients (22).

However, to the best of our knowledge, no studies have reported the

use of US-radiomics and SHAP for explaining and visualizing the

diagnosis of CC staging. Therefore, this study aims to build and

validate an interpretable clinical US-radiomics combined model for

personalized non-invasive assessment for the detection of stage I CC.
2 Materials and method

2.1 Patients

This study was approved by the Institutional Review Committee

of the First Affiliated Hospital of Anhui Medical University (approval

number PJ2023–07-11). The requirement for informed consent was

waived because of the retrospective study design and use of known

data. By searching the electronic medical records, CC patients who

had cervical lesions found by transvaginal sonography (TVS) in the

US Department of the First Affiliated Hospital of Anhui Medical

University (Hospital 1) from June 2018 to September 2023 and CC

patients of Anhui Provincial Maternity and Child Health Hospital

(Hospital 2) and Nanchong Central Hospital (Hospital 3) from

January 2018 to October 2023 were analyzed retrospectively.

The inclusion criteria for this study were as follows: 1)

pathologically confirmed CC patients who underwent radical

hysterectomy, 2) cervical biopsy-confirmed CC patients, and 3)

TVS was performed less than 2 weeks before the hysterectomy or

biopsy. The exclusion criteria were as follows: 1) chemotherapy or

radiotherapy before US examination, 2) patients with a history of

other malignancies, 3) the US images were lost or of poor quality,

and 4) incomplete clinical information. Ultimately, 209 CC patients

were enrolled from Hospital 1, and patients were randomly divided

into the training and internal validation sets at a ratio of 7:3. Fifty-

two CC patients were enrolled fromHospital 2 and Hospital 3 as the

external validation set. The following baseline data were collected:

age, SCCa, FIGO stage, histological type, and L by TVS. The study

flowchart is shown in Figure 1.
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2.2 Image acquisition

TVS was performed using a US probe with a frequency of 5–9MHz.

The patients’ bladder must be empty within 10 minutes before the

examination; the lithotomy positionwas taken; a little coupling agent was

placed on the top of the probe, a condomwas placed, and a little coupling

agent was placed on the top again; the probe was slowly inserted into the

vagina until the vaginal vault was reached. The gynecological conditions

in the machine were selected, and the appropriate depth was adjusted

according to the size of the cervical lesion. First, the longitudinal section

of the cervix was scanned, and then the transverse section was scanned.

Careful and comprehensive observation of the cervical lesion was

conducted, 6–10 clear and complete cervical lesion US images were

collected for each patient, images were stored in a picture archiving and

communication system (PACS), and one US image of the maximum

section of the lesion was selected finally.
2.3 Image segmentation

Cervical US image segmentation was completed by reader 1 (with

7 years of experience in gynecological US examination) and reader 2
Frontiers in Oncology 03
(with 15 years of experience in gynecological US examination) using

the 3D slicer 5.3.0 software. Regions of interest (ROIs) were manually

selected and segmented (Figure 2). First, reader 1 and reader 2

delineated ROIs on the cervical US images of 50 randomly selected

patients. Two weeks later, reader 1 again delineated the ROIs of these

50 patients. Intra- and inter-class correlation analyses were

performed separately to test the consistency of extracted features

between Reader 1 and Reader 2. The intra- and inter-class correlation

coefficient (ICC) values were greater than 0.75, indicating a good

consistency of the extracted features. The segmentation of the

remaining cervical US images and the extraction of radiomics

features were performed by reader 1 alone.
2.4 Radiomics feature extraction
and selection

US-radiomics features were extracted using the Pyradiomics 3.0.1

software, which can extract a large number of features from the US

images usingmany engineering algorithms (Figure 2). The images were

standardized before feature extraction. First, features with ICC ≥ 0.75
FIGURE 1

The flow diagram of the study.
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were included in subsequent analyses. Second, batch effects were

removed between Hospital 1 and the external validation set using

Combat (Figure 3) (owing to very few cases originating from Hospital

3, the cases from Hospital 2 and Hospital 3 were consolidated as the

external validation set). Then, univariate analysis was used for these

features, with p < 0.05 features classified as significant correlation

variables between stage I and non-stage I CC and included in the

subsequent analyses. Again, Spearman’s correlation analysis was used

to assess the correlation and redundancy of the features. If Spearman’s

correlation coefficient ≥0.9, the variable was considered redundant and

was excluded. Finally, the least absolute shrinkage and selection

operator (LASSO) algorithm was applied for further feature

selection (Figure 2).
2.5 Clinical model construction

First, univariate logistic regression analysis was used to analyze

the correlation between clinical parameters and the CC stage. The

variables with significant correlations (p < 0. 05) were included in

the multivariate logistic regression analysis, and then independent

predictors significantly associated with the CC stage were identified.
2.6 US-radiomics model construction

The selected features were trained using six ML algorithms,

including linear regression (LR), decision tree (DT), support vector

machine (SVM), random forest (RF), K-nearest neighbor (KNN),

and eXtreme Gradient Boosting (Xgboost). Fivefold cross-

validation (CV) was performed in the training data set to obtain
Frontiers in Oncology 04
the optimal parameter configuration. The hyperparameters of the

six ML algorithms were adjusted using the grid search method and

10-fold CV. The patients in the testing data set were used to evaluate

the performance of the model (Figure 2).
2.7 Statistical analysis

Statistical analyses were performed in the R 4.2.2 analysis

platform. Quantitative data with a normal distribution were

expressed as mean ± standard deviation, while quantitative data

with a non-normal distribution were expressed as the median

(interquartile range). Categorical data were expressed as numbers

and percentages. For univariate analysis, the chi-square test,

independent sample t-test, or the Mann–Whitney U test was

used. Correlations were calculated using Spearman’s test. The

DeLong test was used to compare the performance of the six ML

algorithms and three models. The SHAP algorithm was run using

the “Xgboost” and “SHAP” Python packages. For all tests, p < 0.05

was considered statically significant.
3 Results

3.1 Patients’ characteristics

According to the inclusion and exclusion criteria, in this study,

209 CC patients were enrolled from Hospital 1 and divided

randomly into the training set (n = 146) and the internal

validation set (n = 63). Fifty-two CC patients were enrolled from

Hospital 2 and Hospital 3 as the external validation set. The detailed
FIGURE 2

The radiomics flowchart of the study.
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characteristics of these patients in the training, internal validation,

and external validation sets are presented in Table 1. Patients with

stage I CC in the training, internal validation, and external

validation sets were 51.4%, 50.8%, and 46.2%, respectively.
3.2 US-radiomics feature extraction
and selection

A total of 944 radiomics features were extracted from US images.

There were 920 features with ICC ≥ 0.75, then 131 related features

were obtained through univariate analysis and removed by

Spearman’s correlation analysis, and 38 imaging radiomics features

were left. Finally, the following 12 features were identified as the

most significant by the LASSO algorithm: wavelet.HHH_

glszm_ZonePercentage, wavelet .HHH_firstorder_Mean,

square_glszm_SmallAreaLowGrayLevelEmphasis, wavelet.

H L L _ g l s z m _ L a r g e A r e a H i g h G r a y L e v e l Em p h a s i s ,

original_glszm_ZoneEntropy, square_glcm_Correlation, wavelet.

H L H _ g l r l m _ G r a y L e v e l V a r i a n c e , w a v e l e t . L L H _

glr lm_RunLengthNonUniformityNormal ized, wavele t .

HLH_glcm_SumSquares, wavelet.LLH_ngtdm_Strength, wavelet.

HHL_g l szm_GrayLeve lNonUni formi ty , and wave l e t .

LLL_ngtdm_Busyness. These were all included in the

US-radiomics models.
3.3 Clinical model construction

In the univariate analysis, L (p < 0.001) and SCCa (p = 0.016)

showed statistically significant differences between the C0 and C1

groups. The multivariate regression analysis showed that both L and

SCCa were independent predictors of stage I CC.
3.4 Diagnostic performance of the
US-radiomics models

The diagnostic performance of the six radiomics models based

on different ML algorithms is shown in Table 2. The receiver
Frontiers in Oncology 05
operating characteristic (ROC) curves of these models in the

training, internal validation, and external validation sets are

shown in Figure 2. Among them, the Xgboost model performed

the best, with area under the curve (AUC) values in the training,

internal validation, and external validation sets of 0.778, 0.751, and

0.751, respectively.
3.5 Clinical US-radiomics combined model

The combined model nomogram was established by combining

the rad-score and clinical characteristics (Figure 4A). The

calibration curve of the combined model all showed good

agreement between the predicted and actual stage I CC in the

three sets (Figures 4B–D).
3.6 Comparison of the three
diagnostic models

The differential validity of the three diagnostic models (clinical,

US-radiomics, and combined) is shown in Table 3. The ROC curves

of the three models in the training, internal validation, and external

validation sets are shown in Figure 5. The combined model had the

best diagnostic performance, with AUC values in the training,

internal validation, and external validation sets of 0.837, 0.828,

and 0.839, respectively.
3.7 Interpretation analysis and application
of the Xgboost model

The Shapley summary diagram in Figure 6A showed the

contribution of three factors (L, rad-score, and SCCa) in

predicting the CC stage for each case. The greater the absolute

distribution range of Shapley values, the more important for the

diagnosis of the CC stage. The SHAP force plot can explain the

assessment of each case, and each feature is a force for the visualized

Shapley value, which either increases (positive value) or decreases

(negative value) the prediction from baseline. The baseline is the
FIGURE 3

Batch effects were removed between Hospital 1 and the external validation set using Combat.
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mean Shapley value for all the predicted features. The length of the

arrow in Figure 6B indicates the contribution of a feature to the

Shapley value, whereas the red and blue arrows indicate positive and

negative, respectively (23).
3.8 Case application analysis of the
Xgboost model

Two CC patients (Figure 6B), a 53-year-old woman with stage I

CC and a 47-year-old woman with stage II CC, were selected for

Xgboost model analysis. The cervical lesions of patient 1 had a short

length (18 mm), low rad-score (0.214), and low SCCa (0.3 ng/mL),

indicating a low SHAP value (−2.0), which strongly suggested that

this patient was stage I CC and was consistent with the final

pathological results. The cervical lesions of patient 2 had a long

length (46 mm), high rad-score (0.521), and high SCCa (2.2 ng/

mL), indicating a high SHAP value (1.44), which strongly suggested

that this patient was non-stage I CC and was also consistent with

the final pathological findings.
4 Discussion

It has been studied that MRI-based radiomics can diagnose

early-stage CC. The accuracy of predicting the early stage of CC

pre-operatively based on MRI-radiomics was 0.684 (18). The AUC

values of T2-weighted images (T2WI)-based and apparent diffusion
Frontiers in Oncology 06
coefficient (ADC)-based radiomics model for predicting the early

stage of CC were 0.855 and 0.823, respectively, in the training

cohort and 0.861 and 0.81, respectively, in the cohort (24). In our

study, the AUC values for predicting stage I CC in the training,

internal validation, and external validation sets were 0.837, 0.828,

and 0.839, respectively. These were generally consistent with the

previous studies, but they did not set up an external validation

group, and MRI is sometimes limited by cost or equipment

availability. Ultrasonography is currently recognized as a

convenient, quick, radiation-free, and affordable examination

method to help clinicians detect and diagnose CC.

In this study, finally, we identified 12 radiomics features from

cervical US images and used them to construct predictive models of

six ML classification algorithms to detect stage I CC, in which the

Xgboost model performed the best. Meanwhile, we included several

clinical data, and the univariate and multivariate logistic regression

analyses showed that L and SCCa were independent predictors in

the clinical model. SCCa is a glycoprotein secreted by squamous cell

carcinoma tissue. It plays an important role in the invasion,

infiltration, and metastasis of squamous carcinoma cells. It is

mainly used for the diagnosis of squamous cell carcinoma. There

were only 24 cases of adenocarcinoma in this study, only 11%, and

the histological type was not statistically significant between the C0

and CI groups. Therefore, the influence of histological type on the

results of this study can be ignored. Previous studies have also

shown that SCCa level was associated with CC progression and had

some significance for the prediction of CC lymphatic metastasis

(25), which is consistent with the results of this study.
TABLE 1 Detail characteristics in the training, internal validation, and external validation sets.

Set (N) Training set (N = 146) Internal validation set (N = 63) External validation set (N = 52)

Characteristic C0 (N = 75) C1 (N = 71) p C0 (N = 32) C1 (N = 31) p C0 (N = 24) C1 (N = 28) p

Histological type
(n, %)

Adenocarcinoma 10 (13.3%) 4 (5.6%)

0.177

7 (21.9%) 3 (9.7%)

1

3 (12.5%) 2 (7.1%)

1

Adenosquamous
carcinoma 1 (1.3%) 3 (4.2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Squamous
cell carcinoma 64 (85.3%) 64 (90.1%) 25 (78.1%) 28 (90.3%) 21 (87.5%) 26 (92.9%)

FIGO stage
(n, %)

I 75 (100%) 0 (0%)

<0.001

32 (100%) 0 (0%)

1

24 (100%) 0 (0%)

1

II 0 (0%) 33 (46.5%) 0 (0%) 19 (61.3%) 0 (0%) 19 (67.9%)

III 0 (0%) 32 (45.1%) 0 (0%) 9 (29%) 0 (0%) 5 (17.9%)

IV 0 (0%) 6 (8.5%) 0 (0%) 3 (9.7%) 0 (0%) 4 (14.3%)

Age
[median (IQR)]

53.00
(49.00–
56.00)

55.00
(49.00–
59.00) 0.209

53.00
(48.00–
61.75)

54.00
(48.00–
58.00) 0.549

53.50
(46.00–57.75)

55.50
(46.75–
66.50) 0.330

L
[median (IQR)]

26.00
(20.50–
31.00)

37.00
(26.50–
45.00) <0.001

30.00
(23.00–
34.75)

39.00
(27.00–
49.00) <0.001

28.00
(25.00–37.75)

44.00
(34.25–
55.25) 0.003

SCCa
[median (IQR)]

1.45
(0.95–2.73)

2.70
(1.05–7.45) 0.007

1.15
(0.64–2.10)

4.50
(1.35–9.65) <0.001

2.75
(1.53– 4.30)

5.43
(2.40–9.59) 0.044

Rad-score
[median (IQR)]

0.26
(0.21–0.33)

0.39
(0.32–0.51) <0.001

0.29
(0.26–0.34)

0.41
(0.32–0.46) <0.001

0.28
(0.23–0.35)

0.35
(0.35–0.41) 0.002
frontie
FIGO, International Federation of Gynecology and Obstetrics; IQR, interquartile range.
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TABLE 2 Performance of the six models in the training, internal validation, and external validation sets.

Model AUC (95% CI) Accuracy Sensitivity Specificity

Training set

LR 0.745 (0.664–0.824) 0.712 0.732 0.693

DT 1.000 (1.000–1.000) 1 1 1

SVM 0.777 (0.702–0.847) 0.712 0.775 0.653

RF 0.756 (0.679–0.831) 0.712 0.521 0.893

KNN 0.694 (0.606–0.771) 0.685 0.549 0.813

Xgboost 0.778 (0.707–0.849) 0.74 0.746 0.733

Internal validation set

LR 0.756 (0.632–0.869) 0.651 0.774 0.531

DT 0.620 (0.509–0.748) 0.619 0.677 0.562

SVM 0.762 (0.636–0.873) 0.73 0.903 0.562

RF 0.716 (0.583–0.835) 0.683 0.484 0.875

KNN 0.775 (0.664–0.885) 0.746 0.645 0.844

Xgboost 0.751 (0.617–0.861) 0.619 0.71 0.531

External validation set

LR 0.702 (0.561–0.840) 0.635 0.571 0.708

DT 0.491 (0.363–0.625) 0.5 0.607 0.375

SVM 0.601 (0.446–0.755) 0.615 0.536 0.708

RF 0.743 (0.598–0.870) 0.615 0.393 0.875

KNN 0.544 (0.377–0.710) 0.538 0.25 0.875

Xgboost 0.751 (0.610–0.880) 0.731 0.821 0.625
F
rontiers in Oncology
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AUC, area under the curve; LR, linear regression; DT, decision tree; SVM, support vector machine; RF, random forest; KNN, K-nearest neighbor; Xgboost, eXtreme Gradient Boosting.
A B

C D

FIGURE 4

(A) The combined model nomogram. The values of clinical characteristics and rad-score can be converted into quantitative values according to the
point axis. After summing the individual points to achieve the final sum shown on the total point axis, the evaluation of stage I CC is shown. (B) The
calibration curve of the combined model in the training set. (C) The calibration curve of the combined model in the internal validation set. (D) The
calibration curve of the combined model in the external validation set.
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We constructed an explainable Xgboost combined model

incorporating important clinicoradiological factors and rad-score to

predict stage I CC. The combined model improved the overall

prediction effect of the model compared to the clinical and US-

radiomics model, with AUC values as high as 0.837, 0.828, and 0.839

in the training, internal validation, and external validation sets,

respectively. The personalized contribution of each feature was

visualized using the Shapley algorithm for each case, which helps to

explain the predictive power of the features in this model. Furthermore,

the complex Xgboost combination model was visualized as a reliable

clinical diagnostic support tool that we can easily apply.

Furthermore, we can boldly predict the specific stage of stage I

CC based on the combined model established in this study and the

size of the lesion so as to plan the need for lymph node dissection.

Unnecessary lymph node dissection is associated with both short-

and long-term complications, such as nerve injury, lower extremity

lymphedema, and lymph sac formation (26, 27). Studies had shown

that none of the 161 patients with preoperative MRI showing

negative pelvic lymph node status, tumor size <20 mm, and

squamous/adenosquamous histotype showed LNM (28).
Frontiers in Oncology 08
Of course, there are also several limitations in our study. First,

the retrospective analysis was prone to selection bias. Second, the

number of samples was relatively small, and the different

histological types were not studied separately. Third, radiomics

has reproducibility problems. This study considered the

reproducibility of extracted features, the US-radiomics features

were extracted from ROIs, which were delineated by two senior

ultrasonologists, the extracted features were evaluated by ICC, and

ICC > 0.75 was considered reproducible. Meanwhile, the internal

and external validation sets were set up, that is, considering the

repeatability of the model. However, due to the retrospective

analysis, the US images were not derived from the same machine,

and the parameter settings were different, which also affected the

reproducibility. This is our future research direction.
5 Conclusions

We used the Xgboost algorithm to construct an interpretable

clinical US-radiomics combined model for predicting stage I CC
TABLE 3 Performance of the clinical model, US-radiomics model, and combined model in the training, internal validation, and external
validation sets.

Model AUC (95% CI) Accuracy Sensitivity Specificity p

Training set

Clinical model 0.765 (0.683–0.838) 0.726 0.746 0.707 0.001

US-
radiomics model

0.778 (0.706–0.852) 0.740 0.746 0.733 0.027

Combined model 0.837 (0.773–0.898) 0.781 0.775 0.787 /

Internal validation set

Clinical model 0.802 (0.678–0.913) 0.683 0.806 0.562 0.417

US-
radiomics model

0.751 (0.617–0.863) 0.619 0.710 0.531 0.099

Combined model 0.828 (0.713–0.927) 0.730 0.806 0.656 /

External validation set

Clinical model 0.783 (0.644–0.906) 0.750 0.929 0.542 0.130

US-
radiomics model

0.751 (0.607–0.886) 0.731 0.821 0.625 0.195

Combined model 0.839 (0.719–0.949) 0.692 0.893 0.458 /
AUC, area under the curve.
A B C

FIGURE 5

The ROC curves of the three models. (A) Three models’ ROC curves in the training set. (B) Three models’ ROC curves in the internal validation set.
(C) Three models’ ROC curves in the external validation.
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and used the SHAP approach to quantify the contribution of each

feature to the model. The satisfactory diagnostic performance of the

model was also successfully validated on the independent external

validation set. Therefore, our combined model is expected to assist

clinicians in evaluating stage I CC non-invasively.
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FIGURE 6

Xgboost model visualization and case application analysis. (A) Shapley summary diagram of the Xgboost combined model. A lower Shapley value
(blue) suggests a greater tendency to stage I CC; conversely, a higher Shapley value (red) suggests a greater tendency to non-stage I CC.
(B) Application analysis for two patients with CC of the Xgboost model.
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