
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Hongming Shan,
Fudan University, China

REVIEWED BY

Peng-Chan Lin,
National Cheng Kung University, Taiwan
Qi Gao,
Fudan University, China

*CORRESPONDENCE

Jia Liu

425039627@qq.com

Jun Song

songjun@xzhmu.edu.cn

RECEIVED 06 February 2024
ACCEPTED 01 April 2024

PUBLISHED 15 April 2024

CITATION

Xu Y, Guo J, Yang N, Zhu C, Zheng T,
Zhao W, Liu J and Song J (2024)
Predicting rectal cancer prognosis from
histopathological images and clinical
information using multi-modal deep learning.
Front. Oncol. 14:1353446.
doi: 10.3389/fonc.2024.1353446

COPYRIGHT

© 2024 Xu, Guo, Yang, Zhu, Zheng, Zhao, Liu
and Song. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 15 April 2024

DOI 10.3389/fonc.2024.1353446
Predicting rectal cancer
prognosis from histopathological
images and clinical information
using multi-modal deep learning
Yixin Xu1, Jiedong Guo1, Na Yang2, Can Zhu1, Tianlei Zheng2,
Weiguo Zhao2, Jia Liu1* and Jun Song1,3*

1Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou,
Jiangsu, China, 2Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated
Hospital of Xuzhou Medical University, Xuzhou, China, 3Institute of Digestive Diseases, Xuzhou
Medical University, Xuzhou, Jiangsu, China
Objective: The objective of this study was to provide a multi-modal deep

learning framework for forecasting the survival of rectal cancer patients by

utilizing both digital pathological images data and non-imaging clinical data.

Materials and methods: The research included patients diagnosed with rectal

cancer by pathological confirmation from January 2015 to December 2016.

Patients were allocated to training and testing sets in a randomized manner, with

a ratio of 4:1. The tissue microarrays (TMAs) and clinical indicators were obtained.

Subsequently, we selected distinct deep learning models to individually forecast

patient survival. We conducted a scanning procedure on the TMAs in order to

transform them into digital pathology pictures. Additionally, we performed pre-

processing on the clinical data of the patients. Subsequently, we selected distinct

deep learning algorithms to conduct survival prediction analysis using patients’

pathological images and clinical data, respectively.

Results: A total of 292 patients with rectal cancer were randomly allocated into

two groups: a training set consisting of 234 cases, and a testing set consisting of 58

instances. Initially, we make direct predictions about the survival status by using

pre-processed Hematoxylin and Eosin (H&E) pathological images of rectal cancer.

We utilized the ResNest model to extract data from histopathological images of

patients, resulting in a survival status predictionwith an AUC (Area Under the Curve)

of 0.797. Furthermore, we employ a multi-head attention fusion (MHAF) model to

combine image features and clinical features in order to accurately forecast the

survival rate of rectal cancer patients. The findings of our experiment show that the

multi-modal structure works better than directly predicting from histopathological

images. It achieves an AUC of 0.837 in predicting overall survival (OS).

Conclusions: Our study highlights the potential of multi-modal deep learning

models in predicting survival status from histopathological images and clinical

information, thus offering valuable insights for clinical applications.
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1 Introduction

Colorectal cancer (CRC) is a malignant tumor that presents a

substantial risk to human well-being. Global figures indicate that

the number of newly diagnosed cases of colorectal cancer in 2020

exceeded 1.9 million, resulting in 940,000 deaths. This places

colorectal cancer as the third most common disease in terms of

incidence and the second leading cause of death (1). Rectal cancer

patients account for approximately 57.9% of colorectal cancer

patients in China (2). Rectal cancer has a significantly greater

likelihood of local pelvic recurrence compared to colon cancer,

and individuals who experience pelvic recurrence have a worse

prognosis (3). Stratifying rectal cancer patients is crucial for

developing more precise and tailored treatment based on their

clinical features (4). The tumor-node-metastasis (TNM) staging

system, which relies on histological examination, has been widely

regarded as the fundamental tool for predicting prognosis and

determining treatment decisions in colorectal cancer (CRC) for

many years (5, 6). Nevertheless, it remains inadequate for accurately

forecasting the fate of certain rectal patients, specifically those in

clinical stages II and III (7, 8). The workload in a typical pathology

laboratory is substantial because of the high prevalence of rectal

cancer. Additionally, the inclusion of an expanding array of

morpho-molecular characteristics to be analyzed and documented

has made the prognosis a laborious and time-consuming task (9).

Hence, it underscores the imperative to discover supplementary

prognostic and/or predictive biomarkers that go beyond the existing

staging system, in order to enhance prognosis and therapeutic

decision-making.

Deep learning is a machine learning methodology that use

numerous layers of processing and connections to acquire

knowledge about intricate relationships between input data and

intended output, drawing on a vast collection of labeled instances

(10). Deep learning is a method that works with raw data and

autonomously constructs its own representations for recognizing

patterns, hence removing the requirement to explicitly define rules

or features (11). In recent times, deep learning methods have

demonstrated impressive results in several medical image analysis

applications. Echle et al. conducted a study on 8836 cases of all

stages of colorectal cancer (CRC) in order to create a model that can

identify microsatellite instability (MSI) cancers using pathological

pictures (12). Kiehl et al. showed that Lymph Node Metastasis

(LNM) could be predicted by DL models with a good performance

(13). Nevertheless, the potential of combining H&E images with

other data sources, such as clinical information, to predict prognosis

for rectal cancer has not yet been investigated.

Multi-modal analyses involve the examination of information

from several sensory modalities that have distinct ways of creation

and internal structures. This strategy entails examining the

associations between disparate datasets for each modality. The

objective of this work is to utilize multi-modal deep learning as

the first step in developing a prognostic prediction model using

clinical data and digital images of hematoxylin and eosin (H&E)-

stained tissue microarrays (TMAs) collected from rectal cancer

patients. The primary objective is to provide efficient, non-intrusive,

and precise prognosis forecasting and personalized therapy for
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individuals with rectal cancer. This work aims to offer novel

insights into precision medical research on rectal cancer.
2 Materials and methods

2.1 Dataset preparation

2.1.1 Clinical data
The study included patients diagnosed with rectal cancer by

pathological examination and meeting the selection criteria from

January 2015 to December 2016. The clinical data of these patients

were gathered from the electronic medical system. The criteria

for inclusion were as follows: (1) The patient was diagnosed with

rectal cancer by pathological examination. We had access to

comprehensive clinical data, pathological data, and surgical

follow-up information. Patients were eliminated according to the

following criteria: (1) Preoperative neoadjuvant therapy, such as

chemotherapy, radiotherapy, chemoradiotherapy, immunotherapy,

molecular targeted therapy, etc.; (2) History of abdominal

malignancies or inflammatory diseases; (3) Currently having an

unresectable primary tumor lesion or distant metastases (such as in

the liver or peritoneum) discovered during surgical exploration.

The baseline information, including age at diagnosis, sex, tumor

size, Lauren type, depth of invasion (T stage), lymph node

metastasis (N stage), distant metastasis (M stage), TNM stage, Ki-

67 levels, P53 mutation status, Red blood cells (RBC)count, White

blood cells(WBC)count, lymphocyte count, albumin level, platelet

count, hemoglobin (HB) level, ALT level, AST level, albumin level,

creatinine (Cr) level, Urea level, carcinoembryonic antigen (CEA)

level, and carbohydrate antigen 199 (CA199) level, were obtained

from the electronic medical system. The TNM stage was reclassified

according to the eighth edition of the AJCC Cancer Staging Manual

of the American Joint Committee on Cancer.

The main results focused on the 5-year overall survival (OS).

The patients underwent regular follow-up assessments at intervals

of 3 months throughout the initial 2-year postoperative period,

every 6 months for the subsequent 3 years, and annually afterward.

The period of follow-up was measured from the moment of surgery

until the most recent follow-up, and the survival status at that time

was recorded. The term “overall survival” refers to the period of

time between a surgical procedure and the occurrence of death due

to any cause. When dealing with clinical data, our initial step is to

encode all discrete data and subsequently normalize them based on

the distribution of continuous data. The primary methods

employed for data augmentation are random missing and

random enhancement procedures.

2.1.2 Histopathological image data
The tissue microarrays (TMAs) of all eligible patients were

constructed using tissue cores from formalin-fixed paraffin-

embedded tissue of rectal cancer surgical resection specimens.

Then, sections that were most representative of the depth of

invasion in each case were selected by the Director of the

Department of Pathology at The Affiliated Hospital of Xuzhou

Medical University. Subsequently, all selected slides were scanned
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https://doi.org/10.3389/fonc.2024.1353446
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2024.1353446
using the Aperio ScanScope Scanner system (Leica Biosystems) with

the ×20 objective, and images were digitized as svs. format files. In

light of the lower resolution of TMAs compared to other pathological

images, we did not employ patch-based segmentation, but instead

scaled the entire image to 2048×2048 pixels (one pixel is equal to

0.504 mm) and input it into the model. Considering that the

limitation of the number of training samples can easily lead to

model overfitting, we added data enhancement strategies including

random luminance increase/decrease, rotation, flipping, mirroring,

and random noise addition. The integrated probability of data

enhancement is 70%, and 1-3 enhancement methods are randomly

selected for each enhancement, in which the luminance increase or

decrease is between 50% and 150%, and the random noise addition

mainly includes Gaussian, Poisson, and pretzel noise.
2.2 Model algorithms and development

The present study proposes a method whose overall flow is

illustrated in Figure 1A. Firstly, ResNeSt is utilized to extract

features from cancerous and paracancerous tissue microarray

images, while clinical parameters are processed using a multi-

layer perceptron (MLP); subsequently, multi-head attention

fusion (MHAF) is applied to fuse the extracted image and clinical

parameter features, thereby generating multimodal features; finally,
Frontiers in Oncology 03
the multimodal features are input into a classifier to obtain accurate

classification results for rectal cancer prediction.

The ResNeSt model is a feature extraction model that has been

adopted and improved from the ResNet model. It introduces the

split-transform-merge and channel attention mechanisms to

enhance its feature representation capability and propensity. The

model’s structure is illustrated in Figure 1B (14, 15). The ResNeSt

block is the core component of ResNeSt, which slices the input

features, generates an attention vector based on the sliced features,

weights the sliced features using the attention vector, and merges

the weighted features by adding the residuals to output the attention

features. Given the low resolution of tissue chip images, we have

modified the number of ResNeSt downsampling while adjusting the

number of convolution and layers in each stage of ResNeSt. The

modified ResNeSt consists of six stages, where the first stage is

mainly made up of a con-volution block, while the remaining five

stages consist of the ResNeSt block. The first stage contains 2

convolution blocks, which have an output feature channel

number of 8. Stages 2, 3, 4, 5, and 6 contain 3, 4, 5, 6, and 4

ResNeSt blocks, which have an output feature channel number of

16, 32, 64, 128, and 256, respectively. The number of training

rounds for the network is 120, the learning rate has an initial value

of 0.01 and decays to a minimum of 0.00001, and the optimizer uses

AdamW. The convolution block includes the convolutional layer,

activation function, and normalization layer. At the end of each
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FIGURE 1

Multi-modal deep learning model. (A) overall flow of the designed method, (B) ResNeSt structure: extract the histopathological images features,
(C) MLP structure: process the clinical parameters, (D) MHAF structure: fuse the image and clinical parameters and generate multi-modal features
and (E) generate the rectal cancer survival prediction classification results.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1353446
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2024.1353446
stage, a downsampling is performed, primarily consisting of

pooling, convolution, activation, and normalization. We first fed

cancer tissue images and paracancer tissue images into the model

for prediction separately.Then, we combine the cancerous and

paracancerous 3-channel images to form a 6-channel matrix that

is fed as input to ResNeSt. The six-channel matrix is globally pooled

to generate the final image features after six downsampling stages.

The Multilayer Perceptron (MLP) is utilized to extract features

from clinical parameters, and its structure is depicted in Figure 1C. It is

comprised of two sets of fully connected blocks, each of which includes

a linear layer, activation function, and normalization layer. The MLP

employs weight manipulation and dimensionality expansion to

generate clinical features that are congruent with image features.

After extracting features from images and clinical parameters,

two sets of features are inputted into the Multi-Head Attention

Fusion (MHAF) model with the structure depicted in Figure 1D.

The two sets of features are merged into a combination of features

and then iteratively passed through three Multi-Head Attention

Blocks (MHABs). The MHAB process is represented by the

following equation

Attention(Q,K ,V)=sof tmax(
QK
ffiffiffiffiffi

dk
p )V

headi=Attention(QW
Q
i , KWK

i , VWV
i )

Output=MultiHead(Q, K , V)

=Concat(head1, …, headH)W
O

where Q, K, and V are the three initial vectors of MHAB, Q and K

together form the attention vector to weight V to generate attention

features, where they are all equivalent to the input features, dk
denotes the dimension of K,WQ

i ,W
K
i , andW

V
i are the weights ofQ,

K, and V in the i head, respectively, and they are mainly

implemented by the linear layer, H denotes the number of heads,

andWO denotes the output weights. MHAF is more targeted to fuse

image and clinical features to generate multi-modal features.

The architecture of the classifier for the terminal phase of the

model is depicted in Figure 1E. The Classifier principally encompasses

a series of fully-connected blocks, linear layers, and softmax functions.

The fully-connected blocks include linear layers and activation

functions. Upon inputting the fused features into the classifier, the

two sets of linear modules carry out the ultimate integration of the

features and provide scores for the respective categories, while the

softmax function restricts category scores to be between 0 and 1,

culminating in the output of patient survival categories.
2.3 Training strategies

To alleviate the challenges associated with model fitting,

we employed a stepwise pre-training approach for each of the

components. Specifically, we conducted separate pre-training

processes for ResNeSt and MLP in conjunction with their respective

classifiers, targeting image and clinical parameter classification. Once

the pre-trained model parameters were obtained, we then loaded them
Frontiers in Oncology 04
and proceeded with the training ofMHAF and its classifier, which were

frozen after a single epoch. Lastly, we unfroze ResNeSt and MLP and

proceeded with the training of the complete model.

For model training, we use cross-entropy loss as the loss

function, which is described as:

L=−
1
Co

C

c=1
½yclogŷ c+(1−yc)log(1−ŷ c)�

where C denotes the number of categories, yc denotes the true value

of category c, and ŷ c denotes the predicted value. We use the cross-

entropy loss function to calculate the loss values, chain derivatives

based on the loss values, and the AdamW optimizer to update the

model parameters.
2.4 Model evaluation

To evaluate the model performance, we plotted the confusion

matrix and receiver operating characteristic (ROC) curve, and

calculated the area under the curve (AUC) of ROC, while using

the indicators of accuracy (ACC), sensitivity (SE), specificity (SP),

positive predictive value (PPV), negative predictive value (NPV),

and F1 score. (SE), specificity (SP), positive predictive value (PPV),

negative predictive value (NPV), F1 score, etc., which can be

expressed by the following equations:

ACC= 
TP+TN

TP+FP+TN+FN

SE = 
TP

TP+FN

SP = 
TN

TN+FP

PPV= 
TP

TP+FP

NPV= 
TN

TN+FN

F1 score= 
2TP

2TP+FP+ FN

where TP is the number of true positive samples, TN is the

number of true negative samples, FP is the number of false positive

samples and FN is the number of false negative samples.
3 Results

3.1 Study cohorts and dataset

According to the inclusion and exclusion criteria, 292 patients

were included in the study and were randomly allocated with a split

ratio of 4:1 to the training and testing cohorts, respectively; 234

patients composed the training set, and 58 patients composed the
frontiersin.org
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testing cohort (Figure 2). Table 1 lists the clinicopathological

characteristics of patients in the training (n = 234) and testing

(n = 58) cohorts. No significant difference in clinicopathological

characteristics between the training and testing cohorts was found.

In the training cohorts, 56.8% (133/234) were male, and the mean

(SD) age was 63.6 (11.3) years. The majority of the patients (78.3%,

227/290) were diagnosed with stage II or III disease. The median

follow-up duration (IQR) was 59 (57–61) and 59 (55–63) months in

the training and testing cohorts, respectively. The K-M survival

curves provide a more visual indication of the survival status of

patients in the training and testing cohorts (Figure 3). The 5-year

OS rate was 30.8% (72/234) in the training cohort. In the testing

cohort, the 5-year OS rate was 34.5% (20/58). Based on the

characteristics of the patients’ survival data collected in this study,

we further stratified the patients’ OS into<4 years, 4-5 years, and

more than 5 years.
3.2 A deep learning framework for OS
prediction from histopathological images

The objective of this investigation was to develop a deep

learning model to automatically predict 5-year overall survival

(OS) in patients with rectal cancer utilizing H&E-stained tissue

microarrays. We conducted a scan on H&E-stained tissue

microarrays obtained from rectal cancer patients to acquire digital

H&E-stained histopathological images. These images comprise

H&E-stained histopathological images of both cancerous and

paracancerous tissue for each patient. Paraneoplastic tissue refers

to normal tissue located more than 3 centimeters from the tumor

margin. We employed the ResNeSt model to analyze digital H&E-

stained histopathological images of patients. Our aim was to utilize

the predictive model, which we trained on cohorts, to forecast the

overall survival of patients based on their H&E-stained

histopathological images and to test the efficacy of the model in

testing cohorts. Initially, we used cancer tissue images for prediction

with an AUC of up to 0.714 (Table 2), alongside a specificity rate of

0.755. Subsequently, we used paracancerous tissue images for
FIGURE 2

The flowchart of patients enrollment.
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TABLE 1 Characteristics of patients in the training and testing cohorts.

Characteristic
Training
cohort
(n=234)

Testing
cohort
(n = 58)

p-
value

gender, No. (%) 0.99

female 101 (43.2) 25 (43.1)

male 133 (56.8) 33 (56.9)

age, mean ± Std 63.6 ± 11.3 63.9 ± 10.3 0.86

Tumor size, mean
± Std

4.2 ± 1.4 4.4 ± 1.6 0.43

Tumor type,
No. (%)

0.60

0 6 (2.6) 0 (0.0)

1 182 (77.8) 50 (86.2)

2 46 (19.7) 8 (13.8)

T, No. (%) 0.44

1 7 (3.0) 0 (0.0)

2 60 (25.6) 15 (25.9)

3 167 (71.4) 43 (74.1)

N, No. (%) 0.77

0 144 (61.5) 36 (62.1)

1 60 (25.6) 16 (27.6)

2 30 (12.8) 6 (10.3)

Grade, No. (%) 0.75

1 54 (23.1) 11 (19.0)

2 90 (38.5) 25 (43.1)

3 90 (38.5) 22 (37.9)

ki67 (%), mean
± Std

31.2 ± 16.9 34.1 ± 18.9 0.25

P53, No. (%) 0.96

0 37 (15.8) 9 (15.5)

1 197 (84.2) 49 (84.5)

WBC, mean ± Std 6.5 ± 2.2 6.5 ± 2.0 0.94

RBC, mean ± Std 4.4 ± 0.5 4.4 ± 0.5 0.65

PLT, mean ± Std 230.8 ± 70.4 249.4 ± 71.7 0.08

HB, mean ± Std 130.7 ± 18.8 130.8 ± 13.9 0.97

LY, mean ± Std 1.8 ± 0.6 1.9 ± 0.6 0.69

AST, mean ± Std 20.4 ± 7.1 23.0 ± 22.6 0.14

ALT, mean ± Std 17.3 ± 9.1 20.5 ± 29.1 0.17

ALB, mean ± Std 42.9 ± 4.7 41.8 ± 4.4 0.10

Cr, mean ± Std 65.6 ± 15.5 67.8 ± 25.1 0.40

UREA, mean ± Std 8.9 ± 30.4 12.7 ± 36.8 0.43

CEA, mean ± Std 26.1 ± 108.2 27.1 ± 130.1 0.95

(Continued)
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prediction purposes. The AUC of the model reached 0.724, with a

specificity rate of 0.754. Lastly, we integrated the cancer tissue

images together with the paracancerous tissue images of patients

into the model for prediction. This achieved an AUC of 0.797,

accompanying a specificity rate of 0.788. Combining two types of

histopathological images into the model for training yields better

prediction results than those predicted with only one type of

histopathological images. Figure 4A depicts the ROC of the

ResNeSt model with two different pathology images, whereas

Figure 4B demonstrates its corresponding confusion matrix. From
Frontiers in Oncology 06
the confusion matrix, it can be seen that the model predicted

correctly 5 of the 14 patients in the testing set whose actual

survival was less than 4 years; the model predicted correctly 16 of

the 24 patients whose actual survival was between 4 and 5 years; and

the model predicted correctly 13 of the 20 patients whose actual

survival was greater than 5 years, which can be seen that the model

has a high prediction accuracy for patients whose actual survival is

greater than 4 years, and that the prediction performance of the

model is still to be improved for the patients with an actual survival

period of less than 4 years.
3.3 Fusion of clinical features can improve
the accuracy of the OS prediction model

We employed a multi-modal approach to integrate H&E image

features with 21 clinical features in order to predict the survival

status of rectal cancer patients. To ensure fairness in the

comparison, we only fused clinical features and made no

alterations to any other parameters of the model. The pre-

processed histopathological images were fed into a ResNeSt deep

learning model, while the clinical information was processed by an

MLP deep learning model during training and testing. Once the

features of the histopathological images and clinical parameters

were extracted, they were fed into the MHAF model as two sets of

features. These sets of features were then merged into hybrid

features and input into three sets of MHAB models in sequence.

Finally, classification was performed by a soft-max function to

predict the survival status of rectal cancer patients. Figure 5A

displays the ROC of the MHAF model with the fused image and

clinical features, while Figure 5B demonstrates its corresponding

confusion matrix.

We first entered the clinical parameters into the prediction

model, which achieved an accuracy of 0.797 in the test set in the

testing cohort. Secondly, we can see that the AUC of the model with

combined clinical and image features was 0.837 (Table 3), which is

0.04 higher than the model with image features only. The accuracy

was 0.828, which was an improvement of 0.104. The precision was

0.732, which was an improvement of 0.171. The recall was 0.735,

which was an improvement of 0.177, and the F1 score was improved

by 0.171. As shown by the confusion matrix, the model correctly

predicted 10 of the 14 patients in the test set whose actual survival

was less than 4 years, 19 of the 24 patients whose actual survival was

between 4 and 5 years, and 14 of the 20 patients whose actual

survival was greater than 5 years. The performance of the

multimodal prediction model was significantly improved

compared with the prediction results of the pathology image-

based prediction model described above. The above results
TABLE 1 Continued

Characteristic
Training
cohort
(n=234)

Testing
cohort
(n = 58)

p-
value

CA199, mean ± Std 36.9 ± 148.8 22.4 ± 42.2 0.46

OS(month), mean
± Std

51.7 ± 15.6 53.3 ± 15.6 0.49

Survival interval
(year), No. (%)

0.41

<4 70 (29.9) 14 (24.1)

≥4, ≤5 92 (39.3) 24 (41.4)

>5 72 (30.8) 20 (34.5)
FIGURE 3

Kaplan-Meier survival analysis of the training and testing cohorts.
TABLE 2 Comparison of model performance with different histopathological images.

AUC ACC SE SP PPV NPV F1 score

Cancer 0.714 0.678 0.497 0.755 0.501 0.754 0.498

Paracancer 0.728 0.678 0.507 0.754 0.506 0.754 0.506

Fusion 0.797 0.724 0.558 0.788 0.561 0.79 0.558
fr
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suggest that the fusion of image and clinical features is beneficial

to improve the accuracy of predicting rectal cancer patient

survival status.
4 Discussion

The task of accurately determining the survival of rectal cancer

patients by the conventional TNM staging method has become

increasingly difficult in recent times, as it no longer satisfies the

accuracy standards set by contemporary medical practice. There is

an urgent need for the development of novel techniques to

accurately forecast the survival outcomes of individuals diagnosed

with rectal cancer. In order to achieve this objective, we provide a
Frontiers in Oncology 07
multi-modal deep learning system for predicting survival, which

combines H&E-stained histopathological pictures with clinical data.

We have two pipelines in our job. The initial pipeline is the

direct prediction of survival status using pre-processed rectal

cancer tissue microarrays (TMAs). Our model employs ResNeSt

algorithms to optimize the utilization of information contained in

the histopathological images. The constructed prediction model

incorporating pathological images of cancerous and paracancerous

tissues had an AUC value of 0.797, an accuracy rate of 0.724 and a

specificity rate of 0.788. The second pipeline utilizes an MHAF

model to combine imaging data and clinical information in order to

accurately forecast the survival status of rectal cancer patients. The

results of the multi-modal prediction model were also as we had

hoped. The AUC of our model achieved a commendable value of
BA

FIGURE 4

Performance of models. (A) Area under the ROC of H&E features (Cancer/Paracancer/Fusion), (B) Confusion matrix of H&E features (Cancer/
Paracancer/Fusion).
BA

FIGURE 5

Performance of models. (A) Area under the ROC of H&E features combined with clinical features, (B) Confusion matrix of H&E features combined
with clinical features.
TABLE 3 Comparison of the performance of three different models.

AUC ACC SE SP PPV NPV F1 score

Images 0.797 0.724 0.558 0.788 0.561 0.79 0.558

Clinic 0.766 0.713 0.565 0.79 0.573 0.785 0.56

Multi-modal 0.837 0.828 0.735 0.875 0.732 0.87 0.729
fr
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0.837, accompanied with an accuracy rate of 0.828. The specificity

rate was also improved to 0.875. The findings of our study suggest

that the integration of histopathological pictures and clinical

characteristics yields the most optimal outcomes in predicting

survival rates for rectal cancer.

Our suggested strategy enhances the accuracy of predicting the

survival status of rectal cancer patients by just utilizing clinical

factors and histological pictures of patients. The clinical data

collected for this study included general patient information,

tumor tissue-related information, pathological staging, and

laboratory test data. All of these data are related to the patient’s

treatment process, and we analyzed these data may be related to the

patient’s prognosis. Meanwhile, the advantage of our selected MLP

algorithm is that it is able to acquire the information contained in a

large amount of clinical data and construct complex models.

Therefore, we incorporated these data into the multi-modal

prediction model we constructed in the hope of improving the

performance of the model as much as possible. The results are as

expected, as shown by the confusion matrix, some patients’ survival

is wrong in our prediction based on pathological image prediction

model, and then correctly predicted in the multimodal prediction

model with the addition of clinical data, which can reflect, on the

other hand, the importance of the addition of clinical data to

improve the performance of prediction models. This study also

employed carcinogenic and paracancerous tissues from patients to

estimate their life. It was shown that the paracancerous tissues had a

strong ability to anticipate patient survival. These findings indicate

that the tissues around the malignant area may possess significant

tumor-related data that necessitates more investigation.

There are two computational methods for pathological images:

traditional machine learning and deep learning (16, 17). Machine

learning techniques are extensively employed in prognostic

prediction to significantly decrease the time required for the

diagnostic procedure (18–20). Convolutional neural network

(CNN) is the most popular deep learning model for image

processing at present (21–23). It may be utilized for both tumor

identification and the quantitative analysis of cell properties in

pathological images (24, 25), but also for the classification of small

tissue images in pathological diagnosis (26, 27). The CNN

algorithm is now considered the most advanced method for

image identification and classification because to its consistent

and reliable learning capabilities (28). The optimization of CNN

may be achieved by employing the error backpropagation technique

along with the gradient descent method. Nevertheless, once a

specific depth is achieved, augmenting the number of layers in

the Convolutional Neural Network (CNN) no longer yields any

enhancements in the classification accuracy. The problem is

addressed with ResNet. ResNeSt is an enhanced version of ResNet

that incorporates a Split-Attention module into the architecture

design, resulting in increased performance of the network (14, 15).

The Multi-Layer Perceptron (MLP) is a type of feedforward ANNs

(Artificial Neural Network) that, which has a long history of

implementation in medical research for image classification (29,

30), detection (31, 32) and prediction (33, 34). The multi-head

attention mechanism aims to prioritize the most relevant
Frontiers in Oncology 08
information for the current task from a large amount of input

data. By reducing attention to other information, it addresses the

issue of information overload and enhances the efficiency and

accuracy of task processing. Overall, we have selected several

algorithmic models to handle the data depending on distinct data

categories. This selection is aimed at achieving accurate predictions.

Oncology is now experiencing a growing utilization of multi-

modal deep learning. Huang et al. introduced a multi-modal deep

learning model that utilizes a ResNet and multimodal compact

bilinear pooling technique to directly predict the tumor mutational

burden (TMB) status from histopathological images and clinical

data. The AUC of the model with combined clinical and image

features was 0.817, which is 0.013 higher than the model with image

features only. The accuracy was 0.872, which was an improvement

of 0.022. The precision was 0.748, which was an improvement of

0.027 (35). Qiu et al. initially investigated the correlation between

MSI status and several molecules, such as mRNA, miRNA, lncRNA,

and DNA methylation (30). Subsequently, a new and innovative

deep learning framework was created to accurately forecast MSI

status using just hematoxylin and eosin (H&E) staining pictures.

This was achieved by integrating the H&E image with the

aforementioned molecules by multimodal compact bilinear

pooling. The findings shown that the fusion models that combine

H&E images with a single kind of molecule have superior prediction

accuracies compared to those that just utilize H&E images. Hao

et al. developed and assessed a complex neural network architecture

called SurvivalCNN for the purpose of predicting the survival of

patients with stomach cancer. The model incorporates several

threads and modalities to enhance its predictive capabilities (36).

Using five-fold cross validation, the experimental findings

demonstrate that SurvivalCNN obtains an average concordance

index of 0.849 for predicting OS and 0.783 for predicting PFS.

Wang et al. introduced a multi-modal deep learning radiomics

method to forecast the immunotherapy response of gastric cancer

patients. Firstly, they trained a random forest classifier based upon

the radiomics features only, which achieved an AUC of 0.677 and

0.728 in the internal and external validation cohorts, accordingly.

Then, they utilized both clinical data and computed tomography

images, resulting in an AUC of 0.812 (37). Nevertheless, there is a

lack of studies that employ multi-modal deep learning techniques to

forecast overall survival in individuals diagnosed with rectal cancer.

The multi-modal deep learning model we developed shown strong

predictive capability for overall survival (OS) in patients with rectal

cancer. Once the suggested model is validated in the future, it might

be used as a clinical tool to enhance the calculation of survival and

study of prognosis for patients with rectal cancer.

Presently, our approach is subject to some constraints. Initially,

it is worth noting that our model exhibited high values for both

the AUC (0.837) and specificity (0.875). However, the evaluation

metrics, namely precision, recall, and F1 score, were comparatively

low. This suggests that there is room for improvement in terms of

the accuracy and sensitivity of our model. Enhancing the prediction

performance might potentially be achieved by implementing more

sophisticated classification techniques (10, 38). Furthermore, this

study exclusively used clinical data. Integrating picture
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characteristics with multi-omics data and other factors has the

potential to enhance the accuracy of predicting survival outcomes

(20, 39). Ultimately, we failed to verify our model using other data,

potentially affecting the correctness of our model. The methodology

we have suggested needs ongoing optimization and testing in future

clinical practice.
5 Conclusion

In summary, we designed and evaluated a deep learning based

multi-modal structure for rectal cancer patient survival prediction.

Our experiments on a large clinical dataset demonstrated the

superior effects of the proposed methods. With future validation,

the proposed model may serve as a software tool to improve clinical

patient survival estimation and prognosis analysis.
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