
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Mohd Saeed,
University of Hail, Saudi Arabia

REVIEWED BY

Yiping Wu,
Huazhong University of Science and
Technology, China
Qi Zhang,
Huazhong University of Science and
Technology, China

*CORRESPONDENCE

Yin Zhang

zhangyin@fjmu.edu.cn

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 13 December 2023
ACCEPTED 04 September 2024

PUBLISHED 30 September 2024

CITATION

Wu M, Huang X, Chen M and Zhang Y (2024)
Administration sequences in single-day
chemotherapy regimens for breast cancer: a
comprehensive review from a practical
perspective.
Front. Oncol. 14:1353067.
doi: 10.3389/fonc.2024.1353067

COPYRIGHT

© 2024 Wu, Huang, Chen and Zhang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Systematic Review

PUBLISHED 30 September 2024

DOI 10.3389/fonc.2024.1353067
Administration sequences in
single-day chemotherapy
regimens for breast cancer: a
comprehensive review from a
practical perspective
Miaohui Wu1†, Xiaoyan Huang2†, Meijun Chen3 and Yin Zhang1*

1Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University,
Quanzhou, China, 2Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical
University, Quanzhou, China, 3Department of Pharmacy, Clinical Oncology School of Fujian Medical
University & Fujian Cancer Hospital, Fuzhou, China
Introduction: Breast cancer is one of the most prevalent malignant tumors

globally, posing a severe threat to human life and health. Chemotherapy, a

cornerstone in the treatment of breast cancer, often overlooks the sequence of

drug administration within single-day regimens. This study aims to explore the

impact of drug administration order on the efficacy and toxicity of combination

chemotherapy protocols for breast cancer.

Methods: Through a comprehensive review and analysis based on current

evidence from evidence-based medicine, we delved into how the order of

drug administration affects both efficacy and toxicity. We systematically

classified and analyzed commonly used combination drug regimens, providing

graded recommendations and a reasoned analysis to offer valuable references

for clinical decision-making.

Results: Our findings indicate that the sequence of drug administration in complex

combination chemotherapy protocols is not arbitrary but necessitates multifaceted

considerations. Rational drug sequencing can maximize synergistic effects between

drugs, thereby augmenting therapeutic efficacy while effectively mitigating drug-

related adverse effects. Additionally, some drug labels and clinical trials have explicitly

highlighted the therapeutic benefits of specific drug sequences.

Conclusion: This study underscores the importance of considering the sequence

of drug administration in clinical practice. It is recommended to prioritize the

sequential drug administration according to official drug product labeling, while

also considering factors such as the administration sequence from large

randomized controlled trials, cell proliferation kinetics specific to cancer types,

drug interactions, chronopharmacology, drug irritability, clinical experiences, and

patient preferences. By taking these factors into account, the goal is to maximize

treatment efficacy and minimize the occurrence of adverse reactions.
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1 Introduction

Breast cancer, as one of the most prevalent malignancies

globally, poses a severe threat to human life and health, ranking

as the leading cause of female mortality (1). In the protracted battle

against cancer, chemotherapy stands as a cornerstone of treatment,

its significance undeniable.

Chemotherapeutic agents encompass a diverse range of drugs

that eliminate or inhibit cancer cell growth through multiple

mechanisms, extensively employed in breast cancer management.

Based on their mechanisms of action and chemical structures, these

agents are primarily categorized into five major classes:

anthracyclines, platinum compounds, alkylating agents, taxanes,

and antimetabolites. Anthracyclines, such as doxorubicin and

epirubicin, inhibit cancer cell proliferation by intercalating into the

DNA double helix, disrupting DNA replication and transcription.

They are routinely administered in the treatment of HER2-negative

breast cancer, particularly in high-risk patients (2, 3). Platinum

compounds, including cisplatin and carboplatin, exhibit potent

antitumor activity by forming adducts with DNA. They are not

only used in the treatment of triple-negative breast cancer (TNBC)

but also widely applied across various stages of breast cancer (4–6).

Alkylating agents bind covalently to cancer cell DNA, halting DNA

replication and transcription. Cyclophosphamide, for instance, is

commonly utilized in adjuvant and neoadjuvant therapy for

hormone receptor-positive breast cancer (7, 8). Taxanes stabilize

microtubules, impeding mitosis during cell division and thereby

inhibiting cancer cell proliferation. Drugs like paclitaxel and

docetaxel are frequently prescribed for metastatic breast cancer and

lymph node-positive disease (9). Additionally, antimetabolites

disrupt DNA and RNA synthesis in cancer cells. Drugs such as

fluorouracil and gemcitabine are commonly administered in

neoadjuvant therapy for locally advanced breast cancer and in the

management of metastatic breast cancer (10, 11).

Chemotherapeutic agents play a pivotal role in breast cancer

treatment, inhibiting cancer cell growth and proliferation through

diverse mechanisms. However, with the advancement of scientific

research, monotherapy with a single agent often struggles to address

the complex and heterogeneous nature of cancer. Consequently,

optimizing chemotherapy regimens, particularly through the

combination of multiple drugs to enhance therapeutic efficacy,

improve patient tolerance, and mitigate drug resistance, has

emerged as a research frontier in contemporary cancer therapy

(12–15). Notably, the administration of multiple drugs on the same

day has become commonplace in clinical practice; however, the

sequence of drug delivery is often underappreciated or overlooked.

This neglect stems from two primary sources: first, a pervasive

misconception that the order of administration for different drugs

has negligible impact on treatment outcomes; second, a paucity of

research focusing on chemotherapy sequencing, particularly lacking

in systematic analyses or series of studies based on big data.

In reality, the sequencing of drugs in complex combination

chemotherapy protocols is not arbitrary but necessitates

multifaceted considerations. In recent years, a growing body of

research and treatment guidelines has emphasized the importance
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of specific drug administration sequences in combined

chemotherapy regimens. These studies suggest that rational drug

sequencing can maximize the synergistic effects between drugs,

thereby augmenting therapeutic efficacy while effectively mitigating

drug-related adverse effects (16, 17). Additionally, some drug labels

and clinical trials have explicitly highlighted the therapeutic benefits

of specific drug sequences, further substantiating the scientific

validity and practical applicability of this notion (18).

Based on our preliminary investigation, while several studies have

delved into the sequencing of chemotherapeutic drugs, they remain

scattered, with disparate conclusions and inherent uncertainties.

Notably, the research landscape concerning chemotherapy

sequencing in breast cancer remains largely unexplored, directly

impacting the standardization and personalized precision of

chemotherapy regimens. Given this backdrop, our study aims to

comprehensively collect and scrutinize relevant drug data,

endeavoring to conduct a rational analysis of drug sequencing in

combined chemotherapy protocols for breast cancer, thereby

providing insights for future clinical treatment practices.
2 Materials and methods

2.1 Preliminary work

Prior to the collection of evidence-based data, we initially

extracted commonly utilized chemotherapy regimens for breast

cancer. This was achieved by thoroughly reviewing breast cancer

diagnosis and treatment guidelines (19–21), The focus was on

identifying combination chemotherapy regimens listed within

these guidelines, specifically those involving the administration of

two or more drugs within the span of a single day (24 hours).
2.2 Search strategy

We conducted a literature search, performed data extraction, and

carried out a systematic review in accordance with the principles

outlined in the PRISMA guidelines, we employed a search strategy

with key terms. Queries included the MeSH terms “chemotherapy,”

“sequence,” “immediately following,” “sequential,” “order,” “in turn,”

“time,” “single day,” and “one day.” This strategy was used to retrieve

relevant information on chemotherapy drug sequencing from diverse

sources, including PubMed, Web of Science, The Cochrane Library,

Embase, CNKI, PubMed, Wan Fang database and pertinent

professional literature. In addition, we are also searching for drug

registration documents in the databases of the U.S. FDA (U.S. FOOD

& DRUG ADMINISTRATION) and CENTER FOR DRUG

EVALUATION (NMPA).
2.3 Article selection

We conducted a search in databases up to October 2023 for

original articles published since the inception of the database. These
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articles explored the advantages and disadvantages of relevant drug

administration sequences. Excluded from the review were abstracts,

patents, conference discussions, posters, and articles without full-

text access.
2.4 Article screening

The data extracted from the articles includes drug regimens,

administration sequences, and their merits and demerits, primarily

focusing on efficacy and toxicity. With two trained pharmacists

independently conducting the process. The subsequent compilation

involved a third independent reviewer who conducted an audit of

data uncertainties. Any contentious issues are thoughtfully resolved

through collaborative discussions within the research team,

ultimately determining the final dataset.
2.5 Article classification

This study utilized the Thomson® grading system from

Micromedex, integrating evidence quality and team discussions to

categorize medication sequences into three tiers. Grade A comprises

numerous, well-designed, and large-scale meta-analyses of

randomized controlled trials (RCTs) that provide high-quality

evidence, demonstrating robustness and safety. Therefore, we

recommend the adoption of such medication sequences. Grade B

includes meta-analyses of RCTs with conflicting conclusions, as

well as small-scale studies or those with some methodological flaws,

and RCTs carrying a certain risk of bias, along with non-

randomized studies. Despite lacking some validation and robust

evidence, medication sequences falling into this category can still

serve as references. Grade C encompasses trials with notable flaws

or a high risk of bias, in addition to case reports or case series.

Medication sequences classified as Grade C should be cautiously

considered and require a comprehensive analysis in conjunction

with the specific treatment context.

This study employs the Micromedex Thomson® grading system

as a reference, incorporating the quality of evidence collected and

team discussions, to categorize medication sequences into

three grades:

2.5.1 Grade A
Grade A evidence primarily encompasses two aspects: Firstly,

randomized controlled trials (RCTs) and meta-analyses that integrate

findings from multiple independent high-quality studies, along with

well-designed randomized clinical trials. Secondly, explicit drug

administration sequences specified in official package inserts or

drug registration documents. These specifications are directly

classified as Grade A evidence because they represent authoritative

recognition by regulatory agencies, are based on extensive research

and clinical practice, and exhibit high reliability and safety. Grade A

evidence is characterized by the rationality of its study design, with a

low risk of bias upon evaluation. Additionally, it provides detailed

and transparent data to support statistical analysis and validation,
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enabling the integration of data from multiple studies through

quantitative analysis. Utilizing confidence intervals and p-values,

Grade A evidence demonstrates the reliability and reproducibility

of its conclusions. Additionally, it adheres to principles governing

medication sequencing, such as cell proliferation kinetics, drug

interactions, chronopharmacology, and drug irritability. Therefore,

we recommend adopting medication sequences based on Grade A

evidence in clinical practice.

2.5.2 Grade B
Grade B evidence primarily encompasses meta-analyses of

randomized controlled trials (RCTs) with conflicting conclusions,

RCTs of small scale or with partial methodological flaws, and non-

randomized studies. The characteristics of Grade B evidence are

that they generally align with medication administration

experiences and patterns, yet they are mostly based on small-scale

studies. These studies tend to have relatively small sample sizes, and

these studies may show conflicts with each other or with established

drug sequencing principles. Due to the limited number of studies

precludes effective pooling and quantitative analysis, thereby

constraining the generalizability and reliability of the results.

Additionally, some studies exhibit certain flaws, potentially due to

limitations in study design, such as inadequate randomization,

incomplete data, or inappropriate analytical methods, which may

adversely affect the reliability of the results. Despite the lack of

extensive validation and robust evidence, given the scarcity of

relevant research, we still recommend appropriately referencing

the medication administration sequences supported by Grade

B evidence.

2.5.3 Grade C
Grade C evidence mainly includes trials with significant flaws or

high risk of bias, case reports, or series of cases. The characteristic of

Grade C evidence is the presence of studies with obvious defects, which

may have major flaws or a high risk of bias in their design,

implementation, or analysis processes. Due to the scarcity of

literature, effective pooling and quantitative analysis are also not

possible, limiting the generalizability and reliability of the results.

These studies can only serve as references and cannot be used as the

main basis for decision-making. Additionally, they have an extremely

small sample size or lack a control group, and their findings may

contradict principles governing medication sequencing, the results

await further verification. Therefore, given the relatively low quality

and reliability of Grade C evidence, its utilization necessitates cautious

analysis within the specific therapeutic context.
3 Results

Based on the collected data, we systematically categorized and

organized the information. Subsequently, adhering to the

aforementioned evidence-based grading criteria and incorporating

the comprehensive analysis of our research team, we classified and

recommended the conventional drug administration sequences

within 24 hours (see Tables 1, 2). According to our statistical
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findings, we identified 24 common two-drug combinations used in

breast cancer chemotherapy regimens (Grade A: 20, Grade B: 2,

Grade C: 2), along with 10 combinations involving three or more

drugs (Grade A: 7, Grade B: 1, Grade C: 2), as detailed in Figure 1.

To further evaluate the efficacy of these chemotherapy

regimens, we excluded drug package inserts and specialized book
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literature from the Grade A sources and extracted adverse reaction

data from eight trials. Using Stata 16 software, we conducted

statistical analyses on two groups: the recommended drug

sequencing group and the control group. Quantitative analysis

revealed an I² heterogeneity of 0, indicating minimal variation

among the studies. The pooled odds ratio (OR) was 0.67, with a
TABLE 1 Recommended sequencing and evidence-based grades for dual-drug combinations.

Drug Regimen Step1 Step2 Analysis Findings Reference Evidence Grade

AC
EC

A 60mg/m2 iv
E 90~100mg/m2 iv
C 600~830mg/m2 iv

C A/E Effectiveness↑
Irritation↓

(22) C

AT
ET

A 50mg/m² iv
E 60~75mg/m2 iv
T 75mg/m2 iv

A/E T Effectiveness↑
Toxicity↓

(18, 23–26) A

GT G 1000~1250mg/m2 iv
T 75/175mg/m2 iv

T G Toxicity↓ (22, 27, 28) A

GCb
GP

G 1000~1250mg/m2 iv
Cb AUC=6 iv
P 75mg/m2 iv

G Cb/P Toxicity↓ (22, 29–31) A

HX* H 6/8mg/kg iv
X 1000mg/m2 po

H X No significant impact (32, 33) A

HT H 2/4/6mg/kg iv
T 75/100mg/m2 iv

H T Effectiveness↑
Toxicity↓

(22, 34–37) A

L*X* L 1250mg po
X 1000mg/m2 po

L/X X/L No significant impact (32, 38) A

L*H L 1000mg po
H 2/4/6/8mg/kg iv

H L No significant impact (33, 38) A

NH N 25 mg/m2 iv
H 2/4mg/kg iv

H N No significant impact (33, 36) A

NI N 25mg/m2 iv
I 2/4/6/8mg/kg iv

I N No significant impact (36, 39) A

NX* N 25mg/m2 iv
X 950~1000mg/m2 po

N/X X/N No significant impact (32, 36, 40, 41) A

NCb
NP

N 25mg/m2 iv
Cb AUC=6 iv
P 75 mg/m2 iv

Cb/P N Effectiveness↑ (42–44) B

Py*X* Py 400mg/qd po
X 950~1000mg/m2 po

Py+X X No significant impact (32, 45, 46) A

TP T 75/175mg/m2 iv
P 75 mg/m2 iv

T P Toxicity↓ (22, 47) A

TX* T 75mg/m2 iv
X 950~1000mg/m2 po

T/X X/T No significant impact (32) A

TCb T 75~100mg/m2 iv
Cb AUC=6 iv

T Cb Effectiveness↑
Toxicity↓

(48–50) A

TC T 75mg/m2 iv
C 600mg/m2 iv

C T Effectiveness↑
Toxicity↓

(22, 51) A

T+B T 75mg/m2 iv
B 10~15 mg/kg iv

T B B in step 2 for the
first time

(28) A

UX* U 30 mg/m² iv
X 1250mg/m² po

U/X X/U No significant impact (52, 53) A

X*B X 1250mg/m² po
B 10~15mg/kg iv

X B B in step 2 for the
first time

(28, 32) A
↑ indicates increased effectiveness.↓↓ indicates reduced toxicity or irritation.
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95% confidence interval of (0.52, 0.85), and a P-value of 0.002,

demonstrating a statistically significant difference. Furthermore,

Begg’s test was performed to assess the risk of bias in the studies,

yielding a P-value of 0.322 and an adjusted P-value of 0.386, both

greater than 0.05, indicating no significant risk of bias was detected.
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These results underscore the effectiveness of rational chemotherapy

sequencing in reducing the incidence of adverse reactions.

For Grade B and C chemotherapy sequences, due to the limited

number of relevant studies and the inability to effectively pool the

data, we conducted only qualitative analyses. Detailed analysis

results are presented in Tables 1, 2, and the Discussion section.
3.1 Analysis of ‘no significant impact’

Based on the data we have collected and analyzed, a total of nine

combination medication regimens have been identified that do not

show significant impact from the order of administration. Our

conclusion is primarily based on the following considerations:

Firstly, through extensive review of literature and pharmaceutical

data, we found no significant adverse reactions or specific usage

requirements associated with the order of these drug combinations;

secondly, these combinations are predominantly common practice

in both pharmaceutical registration trials and clinical settings,

possessing substantial practical experience, and currently, there is

no evidence suggesting differences in safety or efficacy arising from

variations in the administration sequence. Therefore, we have

classified these regimens as “having no major impact,” meaning

that the order of administration does not significantly matter, and
TABLE 2 Recommended sequencing and evidence-based grades for triple-drug or more combinations.

Drug Regimen
Step1 Step2 Step3 Analysis

Findings
Reference Evidence

Grade

C*MF C 100mg/m2 po
M 40mg/m2 iv
F 600mg/m2 iv

C M F Effectiveness↑ (22, 50, 54) A

FAC
FEC

F 500mg/m2 iv
A 50mg/m2 iv
C 500mg/m2 iv

C A/E F Effectiveness↑ (22) C

TAC T 75mg/m2 iv
A 50mg/m2 iv
C 500mg/m2 iv

C A T Effectiveness↑
Toxicity↓

(22, 25, 51,
55–58)

B

TX*H T75mg/m2 iv
X 950~1000mg/m2

po
H 2/4mg/kg iv

H T/X X/T Effectiveness↑
Toxicity↓

(32, 33, 37) A

THPa T 75mg/m2 iv
H 2/4mg/kg iv
Pa 420/840mg iv

H/Pa Pa/H T Effectiveness↑
Toxicity↓

(22, 33, 37, 59) A

TCbHPa T 75~100mg/m2 iv
Cb AUC=6 iv
H 2/4mg/kg iv
Pa 420/840mg iv

H/Pa T Cb Toxicity↓ (33, 37, 49, 60) A

KTCb K 200mg/m2 iv
T 75mg/m2 iv
Cb AUC=6 iv

K T Cb Effectiveness↑
Toxicity↓

(49, 59, 61) A

KAC
KEC

K 200mg/m2 iv
A 60mg/m2 iv
C 600mg/m2 iv

K C A/E Toxicity↓ (59, 61) A
The asterisk (*) in the upper right corner indicates oral administration route.
A, Doxorubicin; B, Bevacizumab; C, Cyclophosphamide; Cb, Carboplatin; E, Epirubicin; F, Fluorouracil; G, Gemcitabine; H, Trastuzumab; L, Lapatinib; K, Pembrolizumab; M, Methotrexate; N,
Vinorelbine; P, Cisplatin; Pa, Pertuzumab; Py, Pyrotinib; T, Paclitaxel/Docetaxel; U, utidelone; I, Inetetamab; X, Capecitabine.
↑ indicates increased effectiveness.↓↓ indicates reduced toxicity or irritation.
FIGURE 1

Quantity and grading of combined chemotherapy regimens for
breast cancer.
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after conducting a multifaceted rationality analysis, we have

categorized these regimens as Grade A, indicating high safety in

combined therapy.

However, given the limited direct research on administration

sequence and the demands of medical practice, we are still

attempting to conduct a comprehensive analysis of the rationality

behind drug administration sequences from multiple perspectives.

This analysis encompasses key factors such as cell proliferation

kinetics, drug interactions, chronopharmacology, drug irritancy,

and clinical medication experiences.

3.1.1 Combination therapy with
monoclonal antibodies

The combinations of HN, HX, and IN involve monoclonal

antibodies. After consulting relevant literature, it was found that

there is no pharmacokinetic impact on the drug administration

sequence for these regimens. These sequences are recommended in

the drug registration documents. Monoclonal antibody drugs

generally exhibit stable pharmacokinetics, demonstrating a high

level of safety and efficacy across diverse populations (62–66).

Typically, drug labels recommend initiating the infusion with

monoclonal antibody drugs as the first step, allowing for better

observation of patient tolerance and adverse reactions (67).

considering the therapeutic benefits observed in other

combination therapies involving monoclonal antibodies (61), in

the absence of high-grade evidence, we recommend prioritizing the

administration of monoclonal antibody drugs.

3.1.2 Combination therapy with capecitabine
The combinations of XT, XN, PyX, and XU involve

capecitabine. Capecitabine inhibits CYP2C9, potentially

increasing adverse reactions when co-administered with drugs

metabolized through the CYP2C9 pathway (32). However, in

commonly used combination therapies for breast cancer, no

evidence of toxic interactions has been identified. There is also no

evidence of pharmacokinetic interactions between capecitabine and

paclitaxel or docetaxel (68).

Additionally, studies indicate that the accumulation ratio of

area under the curve (AUC) for capecitabine when co-administered

with pyrotinib is approximately 1, suggesting no significant drug

accumulation (46). Considering pharmacokinetic absorption, we

recommend oral administration with water within 30 minutes after

meals, twice daily with a 12-hour interval. Capecitabine exhibits

significant circadian rhythm variations in pharmacokinetics.

Administering capecitabine in the morning and evening

respectively can achieve high AUC levels of 5-fluorouracil and

better treatment responses (69). To enhance patient compliance

and improve drug efficacy by reducing the dosing frequency, we

recommend co-administering pyrotinib and capecitabine in the

morning with breakfast for the first dose, and administering the

second dose of capecitabine in the evening with dinner.

3.1.3 Combination therapy with lapatinib
Combinations HL and XL involve lapatinib. According to the

U.S.FDA prescribing information and related data, pyrotinib
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inhibits CYP3A4, CYP2C8, and P-glycoprotein (P-gp, ABCB1) at

clinically relevant concentrations in vitro. It is also a weak inhibitor

of CYP3A4 in vivo, and this interference does not overlap with the

main metabolic pathways of capecitabine and trastuzumab (32, 33,

38, 70). Multiple studies have demonstrated the safety and efficacy

of combinations HL and XL (71–73). Therefore, administration

according to the conventional usage is appropriate. However,

considering the common adverse reactions (diarrhea, nausea,

vomiting, rash, etc.) associated with the three drugs (74–77), it

may be beneficial to extend the interval between the two drugs. For

example, we recommend administering trastuzumab in the

morning and lapatinib one hour after dinner (once daily at a

fixed time), thereby reducing the potential occurrence of

adverse reactions.
3.2 Evidence analysis for grades B and C

In our analysis of the collected Level B and C evidence, we have

noticed preliminary studies conducted on these drug

administration sequences. However, the evidence remains

relatively scarce, leading to uncertainty in the conclusions.

Adhering to the classification criteria outlined previously, we have

categorized this evidence as either Level B or C. Additionally, we

have conducted a further analysis to determine the rational drug

administration sequence.
3.2.1 Combination therapy
with cyclophosphamide

AC, EC, FAC, FEC, TAC. Cyclophosphamide can be

administered orally or intravenously. Both animal and human

experiments have shown no significant differences in the

pharmacokinetics, safety, and efficacy of oral and intravenous

administration of cyclophosphamide (78–81). Cyclophosphamide

is activated after metabolism by CYP2B6 and CYP2C9, and it does

not interact with other drugs in the mentioned regimens.

Considering circadian drug efficacy and principles of cell

proliferation kinetics, there is literature recommending the

administration of cyclophosphamide in the morning (22).

Combining these principles with clinical practice, we recommend

initiating the medication regimen with the use of cyclophosphamide

as the first step.

Referring to the U.S.FDA prescribing information for

cyclophosphamide, it indicates potential pharmacodynamic or

pharmacokinetic interactions when combined or sequentially

administered with other drugs. Ethanol may reduce the antitumor

activity of cyclophosphamide (51), and both paclitaxel and docetaxel

contain ethanol (except for paclitaxel liposome and albumin-bound

paclitaxel). Moreover, administering cyclophosphamide after

paclitaxel infusion can increase hematologic toxicity. Considering

these factors, it is advisable to extend the interval between the

administration of cyclophosphamide and paclitaxel. In the TAC

regimen, we recommend the infusion sequence as C, A, T.

Additionally, in a pharmacokinetic study on the FEC regimen for

breast cancer patients, no clinically significant correlations were
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found among the drugs in different compartment models (82).

Considering the principles of cell proliferation kinetics, we

recommend the administration sequence as C, A/E, F.

3.2.2 Combination therapy with vinorelbine
Including NCb and NP. Clinical trial data directly comparing

drug administration sequences in this regimen are lacking. Studies

have suggested that administering cisplatin first, followed by

sequential infusion of vinorelbine, is well-tolerated, yielding

encouraging results in terms of response rate (RR), median time

to progression (TTP), and overall survival (OS) (42–44).

Additionally, a phase II trial has assessed the comparability of

safety and tolerability between carboplatin and cisplatin (83).

Considering the principles of breast cancer cell proliferation

kinetics, we recommend utilizing the cell cycle non-specific agents

cisplatin/carboplatin before vinorelbine.
4 Discussion

When selecting the sequence of combined drug administration,

we often encounter situations where there is a lack of evidence from

evidence-based medicine or conflicting results from different

studies. In the context of choosing the drug administration

sequence, we primarily consider the following aspects.
4.1 Proliferation kinetics

Different types of tumor cells have varying growth cycles, and

for proliferative breast cancer, the average doubling time of tumor
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cells is 150 days (much shorter for Burkitt lymphoma and acute

lymphocytic leukemia, with a doubling time of less than 5 days),

indicating a relatively slow-growing tumor (22, 84–86). In the

treatment strategy for breast cancer, it is common to initially

administer cell cycle non-specific agents (CCNSA) to significantly

eliminate tumor cells, reducing their overall number. This process

prompts more G0 phase cells to enter the proliferative phase.

Subsequently, cell cycle-specific agents (CCSA) are administered

to target cells re-entering the proliferative cycle, achieving optimal

therapeutic effects(Yuanying 54, 87). The action cell cycles of

commonly used drugs for breast cancer are outlined in Table 3.
4.2 Drug interactions

Drug interactions involve both pharmacokinetic factors (mainly

affecting absorption, distribution, metabolism, and excretion) and

pharmacodynamic factors (including unrelated, synergistic,

additive, and antagonistic effects on efficacy) (88). Due to the

narrow therapeutic index and limited safety range of anticancer

drugs, even subtle changes in the pharmacokinetic and

pharmacodynamic characteristics caused by drug interactions can

significantly alter the toxicity or efficacy of drugs (89). Therefore,

the potential impact of drug interactions in cancer therapy should

be widely recognized.

The pharmacodynamics and pharmacokinetics of drug

interactions involve various influencing factors, including dosage,

administration route, half-life, steady-state blood concentration

time, hepatic extraction ratio, elimination pathway, etc.

Additionally, many anticancer drugs are inhibitors of cytochrome

P450 isoenzymes, and some drugs are metabolized by these

enzymes. Thus, extensive interactions exist among anticancer

drugs, easily affecting drug efficacy (90). For example, in

combination chemotherapy regimens containing taxanes, taxanes

are generally administered first, while platinum agents have some

nephrotoxicity and are usually administered later. Especially when

cisplatin is used in combination with taxanes, the correct

administration sequence is crucial, as cisplatin can decrease the

clearance rate of paclitaxel. If the proper administration sequence is

not followed, it can increase the toxicity of the chemotherapy

regimen (22). Similarly, monoclonal antibody drugs are typically

administered before chemotherapy drugs (36). On the one hand,

any infusion-related adverse reactions from monoclonal antibodies

are more easily detected. On the other hand, the anti-angiogenic

effects of monoclonal antibodies synergistically enhance the

subsequent chemotherapy drugs’ efficacy (91, 92). Therefore, it is

recommended to administer monoclonal antibody drugs first.
4.3 Chronopharmacology

Currently, studies have identified more than fifty anticancer

drugs with time-dependent efficacy and toxicity (93). Various

tumor types display time-dependent sensitivity to chemotherapy
TABLE 3 Common drugs targeting the proliferation cycle of tumor cells
in breast cancer.

Pharmacological
category

Cycle-targeted Medication
Name

CCNSA Entire cycle Doxorubicin
Cyclophosphamide
Carboplatin
Epirubicin
Cisplatin

CCSA G1 phase Trastuzumab Lapatinib
Pertuzumab
Pyrotinib

S phase Fluorouracil
Gemcitabine
Methotrexate
Capecitabine

Late G2 phase Paclitaxel
Docetaxel

M phase Vinorelbine
Paclitaxel
Docetaxel
Utidelone
Drugs Bevacizumab, Pembrolizumab, and Inetetamab have been excluded from the table due
to the lack of direct modulation on the cell proliferation cycle.
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drugs, implying that administering the same drug dose at different

times throughout the day may lead to variations in the extent of

tumor cell eradication. Furthermore, the body’s tolerance to

chemotherapy drug toxicity and the drug disposition process

(absorption, distribution, metabolism, excretion) also varies over

time (94–97).

Research indicates that selecting an appropriate circadian

rhythm for drug administration significantly improves treatment

outcomes, reducing drug toxicity by about five times and enhancing

antitumor efficacy by nearly two times (93, 95). Taking fluorouracil

as an example, its plasma concentration shows significant circadian

variation during constant-rate intravenous administration. This

variation may be related to the circadian rhythmicity of the key

enzyme DPD (dihydropyrimidine dehydrogenase), which exhibits

higher activity from midnight to around 4 am, reaching its peak. At

this time, the body can tolerate higher doses with lower drug

toxicity (98). Similar metabolic rhythms have been observed in

studies involving gemcitabine as well (99). Practice has shown that

aligning drug administration with the pharmacological

characteristics of the drugs based on circadian rhythms can

achieve better efficacy and lower toxicity (100, 101). For instance,

platinum-based drugs, such as cisplatin, may benefit from nighttime

administration, as their protein binding rate is highest around 4 pm,

maintaining high concentrations of the drug for an extended

period, resulting in better efficacy (36, 50). Literature also

indicates that maximizing methotrexate toxicity occurs when

administered at 6 am, whereas minimizing toxicity is achieved

when administered at midnight (102). Another study indicates that

nighttime administration can improve the therapeutic index of

docetaxel, reducing side effects (103). Some drugs are better

suited for daytime administration, such as Doxorubicin, which

exhibits one-third lower toxicity when administered at 8 am

compared to 8 pm (102), and cyclophosphamide exhibits the

most sustained and optimal tolerance when administered between

10 am and 2 pm. Additionally, administering cyclophosphamide

first aligns with the principles of cell proliferation kinetics. These are

the reasons why we consider administering cyclophosphamide as

the initial infusion in the treatment plan (104, 105).

It is important to note that, whether for outpatient

visits or hospitalized patients, chemotherapy drugs are usually

administered in the morning, primarily due to considerations

of hospital workflow continuity and patient convenience

during visits. However, even with the knowledge of the

ideal drug administration timing, conflicts may arise with

pharmacy drug distribution, clinic opening hours, and

patient’s nighttime rest period. Therefore, in clinical practice,

more flexible administration methods, such as novel oral pulse

administration or intravenous drug pumps, can be employed.

Chronopharmacology requires simultaneous consideration of

various factors. The administration sequence and timing should

align with the biological rhythms of chronopharmacology, taking

into account both the pharmacokinetic characteristics of

anticancer drugs and the specific conditions of individual

patients to select the optimal timing for drug administration.
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4.4 Drug irritancy

Chemotherapeutic drugs can be categorized based on their

irritancy into vesicant and irritant drugs (Table 4). Vesicant drugs

are those that, when extravasated from the vascular route into

surrounding tissues, can cause blistering, tissue necrosis, or decay.

Vesicant agents typically elicit sensations of burning or stinging

upon contact with the body. On the other hand, irritant drugs cause

local tissue burns, irritation, or mild inflammation after

extravasation but do not directly lead to tissue necrosis (106).

When using two or more anticancer drugs and lacking specific

instructions in the drug manual regarding the administration

sequence, consideration is given to the irritative nature of the

drugs. Some literature suggests that in combined chemotherapy, it

is advisable to administer less vascularly irritating drugs first,

followed by more irritating vesicant drugs. The rationale behind

this approach is to facilitate patient adaptation to the infusion

process, thereby improving treatment compliance (107).

However, other studies propose an alternative perspective,

advocating the initiation of chemotherapy with vesicant drugs. The

reasoning is that at the beginning of chemotherapy, the venous

structure is most stable, reducing the chances of drug extravasation.

Additionally, less irritative drugs used subsequently can help flush the

venous walls effectively (17, 36, 106). It is also noted that, based on the

extent of tissue damage caused by extravasation of chemotherapy drugs,

administering vesicant drugs first, followed by non-vesicant drugs, is

recommended. If both drugs are vesicant, it is suggested to administer

the one with a higher concentration first (108). While we lean towards

the latter viewpoint, considering the lack of in-depth research and high-

quality evidence on the sequence related to irritative drug, we

recommend a comprehensive consideration of other medication

principles, relevant evidence, and individual patient compliance factors.
TABLE 4 Classification of chemotherapy drugs for breast cancer based
on irritant magnitude.

Irritancy
category

Drug category Medication
Name

irritative drugs Alkylating agent Cyclophosphamide

Antibiotics Doxorubicin-liposome

Antimetabolites Fluorouracil
Methotrexate
Gemcitabine

Platinum-based Cisplatin
Carboplatin

vesicant drugs Antibiotics Doxorubicin
Epirubicin

Alkaloids Vinorelbine

Taxanes Paclitaxel
Paclitaxel (albumin-
bound)
Docetaxel

Platinum-based Cisplatin
(high concentrations)
frontiersin.org

https://doi.org/10.3389/fonc.2024.1353067
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2024.1353067
4.5 Hierarchy of clinical evidence

International consensus, drug package insert, clinical practice

guidelines, and consensus statements are internationally recognized

as Grade A evidence (109). We rely on these sources as much as

possible in collecting relevant information. However, considering

the limited quantity of relevant trials and evidence on drug

administration sequences, if there is a lack of evidence-based data

on the administration sequence, the results of drug administration

sequences in large-scale clinical randomized studies, validated for

safety and efficacy, are also considered as crucial factors in

our considerations.
5 Practice and obstacles

In clinical practice, we recommend updating the existing

prescription management systems to enable automatic analysis of

prescribed chemotherapy regimens, automatically generating

rational drug administration schedules, and clearly indicating the

sequence on electronic prescriptions and drug labels. Additionally,

the system should provide detailed instructions on drug

administration sequences, allowing physicians to make more

scientific and rational medication arrangements after

comprehensively considering the patient’s specific conditions.

However, the obstacles to be overcome in practical applications

cannot be ignored, and they primarily encompass three aspects:

Firstly, the practice of individualized drug administration

necessitates adhering to optimized sequences while fully

considering individual patient differences, disease progression,

and treatment preferences. This requires establishing a more

refined and easily operable individualized assessment pathway,

such as scoring and grading patients before treatment (110, 111).

Secondly, the challenge of multi-team collaboration ensures that

every step, from prescription writing to drug preparation to

administration, strictly follows the optimized sequence. Medical

institutions must establish effective communication mechanisms

and execution supervision systems to avoid sequence errors caused

by premature preparation or arbitrary drug administration. Thirdly,

continuous evidence-based practice is essential due to the

limitations of current research data. Ongoing clinical research

should be promoted, and methods such as metabolomics,

network pharmacology, and disease treatment network analysis

should be fully utilized to continuously enrich and update the

existing evidence base, providing a more solid foundation for

optimizing chemotherapy sequences (112–115).
6 Limitations

In the first place, this study exclusively analyzes the drug

administration sequence of commonly used combination

chemotherapy regimens for breast cancer and cannot directly

apply the conclusions to other types of tumors. Secondly, in the
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collection and evaluation of evidence-based data, it was observed

that a small portion of regimens lacked direct comparative data on

the superiority or inferiority of drug administration sequences. In

such cases, inference and analysis relied on principles such as

pharmacokinetics, pharmacodynamics, and cell proliferation

kinetics, introducing potential biases and uncertainties.

Lastly, when providing recommendations for drug

administration sequences, this study did not take into account

individual factors among different patients, such as liver

and kidney function, drug allergy history and concurrent

medication. These factors may influence drug metabolism,

distribution, excretion, and effects, leading to variations in drug

administration sequences.
7 Conclusion

Considering the complexity of oncology drug treatments and

clinical practices, the mechanism of action for the same

combination chemotherapy regimen may not be entirely

consistent across different cancer treatments. This variation can

lead to different conclusions regarding drug administration

sequences in various literature. Therefore, in clinical practice, we

recommend prioritizing sequential drug administration according

to the official drug product labeling. Simultaneously, it is essential to

consider factors such as the administration sequence from large

randomized controlled trials, the cell proliferation kinetics of the

specific cancer type, drug interactions, chronopharmacology, drug

irritability, clinical experiences, and patient preferences. By taking

these factors into account, we aim to maximize treatment efficacy

while minimizing the occurrence of adverse reactions.
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