
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Penelope Jayne Duerksen-Hughes,
Loma Linda University, United States

REVIEWED BY

Haitao Wang,
National Cancer Institute (NIH), United States
Giuseppe Scibilia,
Gynecology and Obstetrics Department, Italy
Basilio Pecorino,
Kore University of Enna, Italy

*CORRESPONDENCE

Zhong Liu

liuz@ibt.pumc.edu.cn

†These authors have contributed equally to
this work

RECEIVED 08 December 2023
ACCEPTED 10 June 2024

PUBLISHED 26 June 2024

CITATION

Wang M-, Ying Q-, Ding R, Xing Y-, Wang J,
Pan Y-, Pan B, Xiang G- and Liu Z (2024)
Elucidating prognosis in cervical squamous
cell carcinoma and endocervical
adenocarcinoma: a novel anoikis-
related gene signature model.
Front. Oncol. 14:1352638.
doi: 10.3389/fonc.2024.1352638

COPYRIGHT

© 2024 Wang, Ying, Ding, Xing, Wang, Pan,
Pan, Xiang and Liu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 26 June 2024

DOI 10.3389/fonc.2024.1352638
Elucidating prognosis in cervical
squamous cell carcinoma and
endocervical adenocarcinoma: a
novel anoikis-related gene
signature model
Mingwei- Wang1†, Qiaohui- Ying2†, Ru Ding3, Yuncan- Xing4,
Jue Wang1, Yiming- Pan1, Bo Pan1, Guifen- Xiang1,5

and Zhong Liu1*

1Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical
College, Chengdu, China, 2Institute of Oral Basic Research, School and Hospital of Stomatology,
Cheeloo College of Medicine, Shandong University, Jinan, China, 3Department of Obstetrics and
Gynecology, The First Hospital of Jilin University, Changchun, China, 4National Cancer Center/
National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing, China, 5School of Public Health, Anhui Medical University,
Hefei, China
Background: Cervical squamous cell carcinoma and endocervical

adenocarcinoma (CESC) are among the most prevalent gynecologic

malignancies globally. The prognosis is abysmal once cervical cancer

progresses to lymphatic metastasis. Anoikis, a specialized form of apoptosis

induced by loss of cell adhesion to the extracellular matrix, plays a critical role.

The prediction model based on anoikis-related genes (ARGs) expression and

clinical data could greatly aid clinical decision-making. However, the relationship

between ARGs and CESC remains unclear.

Methods: ARGs curated from the GeneCards and Harmonizome portals were

instrumental in delineating CESC subtypes and in developing a prognostic

framework for patients afflicted with this condition. We further delved into the

intricacies of the immunemicroenvironment and pathway enrichment across the

identified subtypes. Finally, our efforts culminated in the creation of an innovative

nomogram that integrates ARGs. The utility of this prognostic tool was

underscored by Decision Curve Analysis (DCA), which illuminate its prospective

benefits in guiding clinical interventions.

Results: In our study, We discerned a set of 17 survival-pertinent, anoikis-related

differentially expressed genes (DEGs) in CESC, from which nine were

meticulously selected for the construction of prognostic models. The derived

prognostic risk score was subsequently validated as an autonomous prognostic

determinant. Through comprehensive functional analyses, we observed

distinct immune profiles and drug response patterns among divergent

prognostic stratifications. Further, we integrated the risk scores with the

clinicopathological characteristics of CESC to develop a robust nomogram.

DCA corroborated the utility of our model, demonstrating its potential to

enhance patient outcomes through tailored clinical treatment strategies.
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Conclusion: The predictive signature, encompassing nine pivotal genes,

alongside the meticulously constructed nomogram developed in this research,

furnishes clinicians with a sophisticated tool for tailoring treatment strategies to

individual patients diagnosed with CESC.
KEYWORDS

cervical cancer, anoikis-related genes, immune microenvironment, decision curve
analysis, prognostic nomogram
1 Introduction

Cervical carcinoma ranks as the fourth most common

malignancy among women on a global scale (1). Data sourced

from the Global Cancer Observatory, encompassing 185 countries,

indicated that in 2018, there were approximately 570,000 active

cases and 311,000 fatalities attributable to cervical cancer (2).

Notably, breast and cervical carcinomas are among the trio of

cancers witnessing a significant surge in incidence among women,

particularly in developing nations. Furthermore, China and India

collectively bear over a third of the worldwide cervical cancer

burden (3). In developed countries, due to the popularization of

Pap smear screening, the incidence of cervical cancer has been

dramatically reduced (4).

Chronic infection with high-risk human papillomavirus (HPV)

is recognized as a primary risk factor for cervical cancer

development, with ≥90% of such malignancies being associated

with high-risk HPV types (5, 6). Early-stage cervical cancer patients

typically achieve reasonable local control yet are prone to distant

recurrence, maintaining an overall survival rate of approximately

90%. Conversely, individuals with locally advanced cervical cancer

face a higher risk of both distant and local failure, evidenced by a

mortality rate of roughly 35% (7–9). Consequently, there is an

imperative need for the identification of novel biomarkers that can

accurately predict the prognosis of early-stage CESC, thereby

facilitating timely and effective clinical interventions (10).

Anoikis refers to a distinct form of programmed cell death

precipitated by cellular detachment from the extracellular matrix or

neighboring cells (11). This process is pivotal in maintaining tissue

homeostasis and preventing anomalous cell growth and attachment

in inappropriate locations. Studies have found that most tumor cells

have anti-apoptotic properties, whereby pro-apoptotic proteins are

inhibited, the internal and external pathways of apoptosis are

blocked, and cell survival factors are upregulated, which

collectively facilitate the survival, invasion, and metastasis of

tumor cells (12). However, research on the relationship between

anoikis and distant metastasis in CESC is insufficient.

In this investigation, we explored the prognostic significance of

ARGs in CESC and formulated an ARGs-based prognostic scoring

model. Additionally, we executed a comprehensive examination of
02
the variations within the tumor microenvironment (TME) and

specifically scrutinized the immune-related aspects of the TME

based on the risk score categorization.
2 Methods

2.1 Gene expression profile acquisition and
patient data analysis

Gene expression profiles were meticulously selected based on

predefined criteria from two distinct sources: 300 samples of CESC

tissues were obtained from the Gene Expression Omnibus (GEO:

GSE44001), and an additional 304 profiles, inclusive of three

samples from normal adjacent tissues, were sourced from The

Cancer Genome Atlas (TCGA-CESC). The inclusion criteria for

these datasets were as follows: The cohort size needs to be large

enough, including patients of different ages and stages, regardless of

race, to be included in this study. All data underwent standardized

normalization and batch effect removal processes to ensure

consistency and reliability in subsequent analyses.
2.2 Anoikis-related gene identification

A comprehensive dataset of 514 ARGs was acquired from the

GeneCards database (https://www.genecards.org/) and the

Harmonizome portal, referenced in publications (13, 14). Following

the initial data acquisition, a comprehensive analysis was performed

on the TCGA-CESC cohort using the ‘limma’ package (Version:

3.58.1), a component of the Bioconductor software suite (Version:

3.18). This analytical process resulted in the identification of 170

differentially expressed genes (DEGs), achieved through a

comparative evaluation of the expression profiles of the 514 ARGs

between CESC tumor tissues and adjacent normal tissues.
2.3 Harmonized gene cluster analysis

To elucidate distinct patterns in anoikis regulation, we

employed an advanced consensus clustering algorithm, utilizing
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the k-means method to categorize anoikis-related gene expression

profiles. Subsequently, sophisticated techniques for dimensionality

reduction were used, specifically t-distributed Stochastic Neighbor

Embedding (t-SNE) and Uniform Manifold Approximation and

Projection (UMAP). These methods facilitated the validation of the

clustering’s robustness and reliability, utilizing the comprehensive

capabilities of the R package ‘ggplot2’ for intricate data visualization

and analysis.
2.4 Gene functional enrichment analysis

Gene Set Variation Analysis (GSVA) was chosen for its ability to

provide a comprehensive assessment of gene set enrichment variations

within CESC tissues, offering insights into the underlying molecular

mechanisms. The gene set file ‘c2.cp.kegg.v7.4.symbols.gmt’ required

for this analysis was obtained from the Molecular Signatures Database

(MSigDB). The enrichment analysis was then meticulously executed

using the ‘GSVA’ R package (version 1.50.0). Subsequently, the

enrichment analysis was meticulously executed using the ‘GSVA’ R

package (version 1.50.0), ensuring a rigorous and precise evaluation of

the gene sets (15).
2.5 Elaboration and verification of anoikis-
related prognostic signatures

The patient cohort was systematically partitioned into two

distinct groups: a training set for the initial construction of the

risk model and a validation set dedicated to its subsequent

verification. Initial identification of genes associated with survival

outcomes commenced with univariate Cox regression analysis.

Subsequently, a refined analysis employing a minor absolute

shrinkage and selection operator (LASSO) regression technique

was performed, utilizing the ‘glmnet’ package (Version: 4.1–8) in R

for implementation (16). Determination of the optimal penalty

regularization parameter l was achieved through an exhaustive 10-

fold cross-validation methodology. In the ensuing stage, a

sophisticated multivariate Cox regression approach was employed

to delineate essential genes and ascertain their respective coefficients

meticulously. A selection of nine pivotal anoikis-associated gene

signatures was made to formulate the risk signatures, guided by the

most favorable lambda values and their corresponding coefficients.

The computation of each patient’s ARG signature risk score was

RiskScore =o9
1Coefi ∗ Expi.

In this model, ‘Coefi’ denotes the risk coefficient for each gene,

while ‘Expi’ represents the gene’s expression level. To ascertain the

predictive efficacy of this model, we utilized Kaplan-Meier (KM)

survival analysis and time-dependent Receiver Operating

Characteristic (ROC) curves. The dual approach facilitated a

thorough evaluation of the model’s aptitude in forecasting patient

outcomes. Then, a set of nine anoikis-related DEGs exhibiting a

significant correlation with overall survival (OS) were discerned

through meticulous multivariate Cox regression and LASSO

analyses within both the GSE44001 and TCGA-CESC cohorts.
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2.6 Analysis of risk score and immune
cell correlation

In this research, the CIBERSORT algorithm and single-sample

Gene Set Enrichment Analysis (ssGSEA) R scripts were employed

for the quantitative assessment of the relative abundances of

immune cell subsets infiltrating the tumor microenvironment

(17). Specifically, CIBERSORT was utilized to ascertain the

composition of various immune cell types within the groups with

lower and higher prognostic risk. This method guaranteed that the

aggregate score attributed to all inferred immune cell types in each

specimen was normalized to one. Additionally, Spearman’s rank

correlation methodology was utilized to elucidate the relationships

between the computed risk scores and the degrees of immune

cell infiltration.
2.7 Formulation and appraisal of
predictive nomogram

An intricately crafted predictive nomogram integrating

clinicopathological features with risk scores has been developed.

A calibration plot is employed for internal validation purposes to

enhance the model’s accuracy. Additionally, the nomogram’s

prognostic capabilities were verified through the application of a

time-cumulative index, providing a robust measure of its predictive

performance. Furthermore, a decision curve analysis (DCA) was

conducted meticulously to evaluate the net clinical benefits of the

nomogram (18).
2.8 Tumor immune microenvironment
single-cell analysis

The Tumor Immune Single-Cell Hub (TISCH; http://

tisch.comp-genomics.org), a comprehensive online repository

specializing in scRNA-sequencing data pertinent to the TME, was

utilized as a pivotal resource in this study (19). Subsequently,

Hallmark analysis was employed to assess apoptosis level changes

within various cell clusters. This extensive database facilitated a

systematic exploration of the heterogeneity within the TME across

diverse datasets and cellular phenotypes.
2.9 Protein expression verification using
human protein atlas

To meticulously corroborate the differential expression of the

nine selected genes, including BCL2, BAX, IGF1, PLAU, EDA2R,

ABL1, MIR200A, FASN, and NTRK3, in control versus cervical

cancer tissues, immunohistochemical staining data from the

Human Protein Atlas (HPA, http://www.proteinatlas.org) were

systematically analyzed (20). This approach enabled a

comprehensive visualization of the distinct expression patterns of

these genes in tumorous tissue compared to normal tissue. The
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http://tisch.comp-genomics.org
http://tisch.comp-genomics.org
http://www.proteinatlas.org
https://doi.org/10.3389/fonc.2024.1352638
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1352638
immunohistochemical analysis provided clear evidence of aberrant

gene expression in the cancerous specimens, thereby substantiating

the potential role of these genes in cervical carcinogenesis.
2.10 Cell culture

The Ect1/e6e7 and HeLa cell lines used in this study were

purchased from the Shanghai Cell Bank (Shanghai, China). The

cells were cultured in a complete medium (DMEM + 10% fetal

bovine serum + 1% penicillin-streptomycin) and maintained in a

37°C incubator with 5% CO2 and saturated humidity. The medium

was refreshed every 2–3 days. Cells were passaged when they

reached over 90% confluence.
2.11 Reverse transcriptase-quantitative
polymerase chain reaction

Cells were first rinsed with PBS after discarding the culture

medium to prepare for total RNA extraction. RNA was isolated

using the Trizol reagent (AG21102, Precision Biotechnology). The

cDNA synthesis was performed with the Evo M-MLV RT Reverse

Transcription Kit II (AG11711, Accurate Biotechnology). RT-qPCR

was carried out using the SYBR Green Pro Taq HS premixed qPCR

kit (AG11701, Accurate Biotechnology) on a LightCycler® 96

system (Roche Ltd, Switzerland). Glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) served as the internal control. Gene

expression fold changes were calculated using the 2-DDCT method.

Primer sequences are listed in Table 1.
2.12 Validating the accuracy of prognostic
indicators using the GEPIA data platform

Gene Expression Profiling Interactive Analysis (GEPIA) (http://

gepia.cancer-pku.cn/) has RNA sequencing data of tumor tissues

and normal tissues from TCGA and Genotype-Tissue Expression

Project (GTEx), through which the platform not only allows access

to gene expression in different tumors but also allows single-gene
Frontiers in Oncology 04
survival analysis (21). TCGA tumors vs TCGA normal + GTEx

normal were compared using one-way ANOVA with a p-value

cutoff of 0.05.
2.13 Comprehensive
statistical methodology

Comprehensive statistical analyses were conducted utilizing R

software (Version: 4.3.2). Specific statistical tests, including t-tests

and ANOVA, were applied to meticulously analyze the data. The

threshold for statistical significance was established at a P value of

less than 0.05, and the false discovery rate (FDR) was rigorously

controlled with a cut-off set at q<0.05. The experimental data are

presented as mean ± standard deviation.
3 Results

3.1 Identification of prognosis-related
ARGs in CESC

Initially, 563 ARGs were identified from the GeneCards and

Harmonizome portals and narrowed down to 514 ARGs through

Venn diagram analysis (Figure 1A). Comparison with normal

adjacent tissues revealed 170 DEGs in CESC samples. Data from the

TCGA-CESC cohort and GSE44001 were integrated, forming a

consolidated ‘CESC-GSE44001’ cohort with 17,073 genes. Univariate

Cox regression analysis identified 33 out of these 170 DEGs as

significantly associated with patient survival (P < 0.05) (Figure 1B).

Apart from BCL2, IGF1, GLI2, ITGA8, NTRK3, and ONECUT1,

which indicated varied prognoses, the remaining 27 genes were

predominantly correlated with poor prognosis. A network diagram

revealed tight interconnections among these 33 genes (Figure 1C).

Considering the frequent chromosomal aberrations in CESC, copy

number variation data was extracted from the TCGA database

(Figure 1D). Chromosomal changes in ARGs were thoroughly

analyzed to locate each gene accurately. Chromosome one exhibited

the highest occurrence of ARGs, including CLIC4, SLC2A1, KIF14,

NRAS, IRF6, and PARP1. A significant genomic ‘GAIN’ was observed
TABLE 1 Specific primers for reference and target genes.

Gene Sense (5’-3’) Anti-sense (5’-3’)

GAPDH TGACCACAGTCCATGCCATCAC CGCCTGCTTCACCACCTTCTT

ABL1 CGCTGAGTATCTGCTGAG CACCGTTGAATGATGATGAA

BAX CAGGATGCGTCCACCAAGA CAGTTGAAGTTGCCGTCAGAA

BCL2 ACTTCGCCGAGATGTCCAG TCCCAGCCTCCGTTATCCT

EDA2R TCAATCGTGTTCAGAAGGTCAA GCTCAACTGGAAGGCACATT

FASN GGCATCCTGGCTGACGAAGACT AGGTGCTGCTGAGGTTGGAGAG

IGF1 CCTCCTCGCATCTCTTCTACCT GCAATACATCTCCAGCCTCCTT

NTRK3 TGCCTGTGTCCTGTTGGTGGTT CGTGGTGATGCCGTGGTTGATG

PLAU GGTCGCTCAAGGCTTAACTCCA TCAGCAAGGCAATGTCGTTGTG
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in COL4A2 on chromosome 13, coupled with a notable ‘LOSS’ of the

BRCA2 gene on the same chromosome (Figure 1E).
3.2 Molecular subgroup distinctions in
CESC via clustering of 33 ARGs

To elucidate the functional implications of ARGs in CESC, we

utilized the Consensus Cluster Plus R package (Version: 1.66.0) to
Frontiers in Oncology 05
perform consensus clustering of 33 prognosis-related DEGs (P

<0.05). Optimal stratification into two distinct subtypes was

achieved at k = 2 (Figure 2A). Subsequent overall survival (OS)

analysis (P < 0.001) revealed a statistically notable prognostic

disparity between these subtypes (Figure 2B). The validity of this

bifurcation was corroborated through t-SNE and UMAP analyses,

confirming the distinct segregation at k = 2 (Figures 2C, D).

Heat maps delineating ARGs expression across these subtypes,

alongside their clinicopathological attributes, indicated ITGA8
B

C

D E

A

FIGURE 1

Differentially expressed ARGs in CESC and their correlation with prognosis were identified. (A) Identification of 514 genes associated with anoikis
from study GSE44001 and the TCGA-CESC dataset. (B) A forest plot illustrating the most significant 33 ARGs (P < 0.05) identified through univariate
Cox regression analysis. (C) A network diagram depicting the interrelationships among the top 33 ARGs. (D) Analysis of copy number variations
(CNVs) in the 33 ARGs within the TCGA-CESC cohort. (E) Examination of chromosomal locations and alterations in the ARGs.
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as a potential prognostic enhancer (Figure 2E). Furthermore,

KEGG pathway enrichment analysis conducted for both

subgroups identified significant enrichment of the histidine

metabolism pathway in subgroup B, which exhibited a favorable

prognosis (Figure 2F). Additionally, Gene Set Enrichment Analysis
Frontiers in Oncology 06
(GSEA) underscored reduced cytokine-cytokine receptor

interactions, enrichment of focal adhesion, and JAK-STAT

signaling pathways in subgroup B, pivotal pathways implicated in

tumor cell migration and colonization of new anchorage

sites (Figure 2F).
B

C D

E F

A

FIGURE 2

ARGs-based subgroup categorization in CESC. (A) A consensus matrix was established for k=2, utilizing consensus clustering. (B) The analysis of
overall survival revealed significant differences between the two identified subgroups (P < 0.001). (C, D) Employing tSNE and UMAP techniques, the
two subtypes were discerned based on ARG expression patterns. (E) A comprehensive heat map displayed the expression profiles of ARGs alongside
the clinicopathological attributes of the two subtypes. (F) GSVA was conducted to pinpoint the distinct KEGG pathway enrichments contrasting
between cluster B and cluster A.
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3.3 Differential gene expression and
immune cell infiltration patterns
in subgroups

Box plots show the expression patterns of ARGs in the two

subgroups (Figure 3A). IGF1, GLI2, MIR200A, ITGA8, and NTRK3

levels were lower in subgroup A than in subgroup B. Conversely, the

other genes were highly expressed in subgroup A. Given their

correlation with overall survival, these DEGs may encode pivotal

molecules that significantly influence the prognosis of patients with

CESC. Furthermore, they present as potential targets for developing

targeted therapeutic strategies. There were also significant differences in

the extent of immune cell infiltration, and the proportions of activated

CD4+ T cells, dendritic cells, and other immune cells in subgroup A

were significantly higher than those in subgroup B (Figure 3B).
Frontiers in Oncology 07
3.4 Construction and validation of
prognostic signals related to anoikis

In our investigation into the clinical relevance of ARGs, 33 ARGs

(p < 0.05) were subjected to Lasso-penalized Cox regression analysis

(Figures 4A, B). The optimal lambda (l) value for Lasso regression,

corresponding to the minimum cross-validation error, was determined

to be 17. To refine our predictive model, multivariate Cox regression

was employed, leading to the selection of 9 pivotal ARGs from the

initial 17. These were instrumental in constructing the prognostic

model. The resultant risk score, based on this nine-ARG signature, was

designated as the “ARG score” with corresponding correlation

coefficients detailed in Supplementary Table S1. The Prognostic

Index (PI) was calculated as follows: PI = (0.929 × BAX expression)

+ (0.177 × PLAU expression) + (0.729 × EDA2R expression) + (0.782 ×
B

A

FIGURE 3

Expression patterns of ARGs and immune infiltration in distinct subtype clusters. (A) Analysis of ARGs expression across the two different subtype
clusters. (B) Examination of immune infiltration characteristics within these two subtype clusters. Significance: *P < 0.05, **P < 0.01, ***P < 0.001.
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ABL1 expression) + (0.197 × MIR200A expression) + (0.317 × FASN

expression) − (0.616 × BCL2 expression) − (0.362 × IGF1 expression) −

(0.978 × NTRK3 expression).

Kaplan-Meier analysis indicated a poorer prognosis for patients

in the high-risk group, a trend corroborated in the TCGA-CESC

validation cohort (Figures 4C, D). Time-dependent ROC curves for
Frontiers in Oncology 08
the model, assessing 1-, 3-, and 5-year overall survival,

demonstrated its robust predictive accuracy (Figures 4E, F). A

significant disparity in risk scores was observed between the

previously identified subtypes (Figures 4G, H). An alluvial

diagram was constructed to illustrate transitions among ARG

clusters, changes in ARG scores, and survival status.
B

C D

E F

A

G H

FIGURE 4

Development of an ARGs-based prognostic signature. (A) Identification of prognostic ARGs using LASSO regression with 10-fold cross-validation.
(B) Visualization of coefficients for seventeen key prognostic ARGs. (C, D) Kaplan-Meier curves showing survival variations in different risk subtypes.
(E, F) Time-dependent ROC analysis for OS at 1, 3, and 5 years. (G) Risk score evaluation in two established clusters. (H) Alluvial diagram depicting
transitions between subtypes and survival status.
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3.5 Gene set enrichment analysis and
immune activity with the different risk score

We investigated the differences in the TME of CESC patients

classified into high- and low-risk categories. We conducted a
Frontiers in Oncology 09
quantitative analysis of immune cell proportions using CIBERSORT

R Scripts, ordering CESC samples from lowest to highest risk scores to

reflect the variability in immune cell types (Figure 5A). Notably, a rising

trend in activated mast cells correlated with increasing risk scores

(R = 0.25) (Figure 5B). Additionally, eight other immune cell types
B

C D

E

F

G

A

FIGURE 5

Exploring the immune landscape in CESC’s TME across varying risk scores. (A) Analysis of the composition of immune cell infiltration at different risk
levels. (B) Investigating the relationship between risk scores and the abundance of activated Mast cells in CESC. (C) Comparison of immune cell
profiles in high-risk and low-risk groups. (D) Examination of interrelations among different immune cells. (E) A heatmap presenting the expression
patterns of nine central ARGs. (F) Study of the associations between immune cells and these nine pivotal ARGs. (G) Comparative analysis of estimate
scores based on expression profiles in high-risk versus low-risk groups. Significance: *P < 0.05, **P < 0.01, ***P < 0.001.
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showed correlations with risk scores (Supplementary Figure S1). In

high-risk patients, activated mast cells constituted a more significant

portion of the TME (Figure 5C), suggesting their influence on adverse

prognoses. This association of various immune cells with CESC risk

categories enhances our understanding of TME composition in these

tumors (Figure 5D). The nine-gene ARG score model demonstrated

distinct expression patterns between risk groups, corresponding to

variations in immune cell infiltration (Figures 5E, F). Differential

stromal and immune scores, derived from expression profile

evaluations, were observed between the high- and low-risk groups

(Figure 5G). Moreover, using the ‘oncoPredict’ R package (Version:

0.2), we identified differential drug susceptibility profiles across these

groups, highlighting potential therapeutic avenues (Supplementary

Table S2; Supplementary Figures S2, S3).
3.6 Establishment of a prognostic
nomogram with high efficacy

We integrated the ARG score with the clinical and pathological

characteristics of CESC patients to develop a comprehensive

nomogram (Figure 6A). The accuracy and prognostic efficacy of

this nomogram were confirmed by the calibration plot (Figure 6B).

The cumulative risk curve (Figure 6C) showed a progressive

increase in overall survival risk for CESC patients with higher

nomogram scores, underscoring its prognostic value. Decision

Curve Analysis demonstrated the ability of the nomogram to

predict short- and long-term survival outcomes in CESC patients

(Figure 6D). The forest plot identified the T-stage, N-stage, and risk

score as crucial risk factors within the nomogram (Figure 6E).

Survival analyses comparing T1N0 vs. T1N1 and T2N0 vs. T2N1

indicated significantly lower survival rates for patients with N1

during T1 compared to N0 (P<0.001) (Figure 6F). These findings

collectively validate our ARG-based nomogram as a robust tool for

clinical prognosis in CESC patients, significantly contributing to

personalized patient care strategies.
3.7 BAX and PLAU are closely associated
with lower apoptosis levels in tumor cells

Mapping the expression of anoikis-associated genes to different

cell types in the tumor microenvironment elucidated the

interactions between these genes in tumor, stromal, and immune

cells, crucial for understanding anoikis resistance and cancer

progression. We analyzed the expression profiles of eight ARGs

in the TME using the CESC_GSE168652 single-cell dataset from

TISCH. This dataset identified 21 cell clusters across seven distinct

cell types (Figure 7A). ABL1, BCL2, and IGF1 exhibited high

expression in fibroblasts and smooth muscle cells (SMCs). BAX

and PLAU were highly expressed in malignant cells, while FASN

showed broad expression across multiple cell types. EDA2R had low

expression in various cell types, whereas NTRK3 was highly

expressed in endometrial stromal cells (Figures 7B, C). Hallmark

analysis revealed lower apoptosis levels in tumor cells, marked by

BAX and PLAU, indicating their unique roles (Figure 7A). Since
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MIR200A was not expressed in the cell clusters, it was excluded

from the analysis.
3.8 Verification results of ARGs align with
expression trends in the risk
prediction model

Immunohistochemical analysis utilizing the HPA database

revealed a notable disparity in gene expression within cervical

cancer tissues. Specifically, the genes ABL1, BAX, FASN, and

PLAU exhibited abnormally high expression levels in cervical

cancer specimens, in stark contrast to BCL2, IGF1, and NTRK3,

which were markedly under-expressed (Figure 8A). This differential

expression pattern was further corroborated by survival analysis.

The survival curves, based on the expression of each gene, provided

additional evidence supporting the observed expression trends in

relation to patient survival outcomes (Figure 8B). Further in vitro

experiments indicated that, compared to Ect1/e6e7 cells, Hela cells

exhibited upregulated mRNA levels of BAX, FASN, and PLAU,

while BCL2, IGF1, and NTRK3 mRNA levels were downregulated.

ABL1 and EDA2R did not show significant differences (Figure 9A).

To validate these findings further, we analyzed GEPIA data, which

showed similar results. Compared with normal tissue, BAX, FASN,

and PLAU were significantly upregulated in CESC, but ABL1 and

EDA2R did not achieve the expected results (Figure 9B).

Meanwhile, BCL2, IGF1, and NTRK3 expression were

significantly reduced in the tumors.
4 Discussion

In this study, we identified 33 differentially expressed ARGs

associated with the prognosis of CESC and explored their clinical

significance via consensus clustering. Analyzing these genes, we

investigated the dynamic tumor microenvironment of CESC,

particularly the immune milieu. Using Lasso-penalized Cox

regression, we developed a prognostic model based on nine ARGs

(BCL2, BAX, IGF1, PLAU, EDA2R, ABL1, FASN, NTRK3, and

MIR200A), revealing significant clinical potential. This model

demonstrated the association of these genes with the tumor

immune microenvironment, notably T-cells and mast cells, and

validated expression differences both in vivo and in vitro. Therefore,

this model provides valuable insights for early screening, prognostic

prediction, and clinical treatment of CESC.

Identifying specific biomarkers is crucial for early detection,

prognosis, and personalized treatment (22). Understanding

mechanisms like anti-apoptosis, cell invasion, and immune

evasion is vital for developing targeted therapies. Although

models based on ferroptosis, pyroptosis, and N6-methyladenosine

have been proposed, their predictive efficacy is insufficient,

necessitating new models (23–25). Anoikis serves as a natural

barrier against metastasis by preventing the colonization of tumor

cells at non-native sites. However, malignant tumor cells, mainly

those capable of distant metastasis, often develop resistance to

anoikis. They employ various strategies to circumvent this
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process, including the autocrine release of growth factors like IL-6,

paracrine signaling with molecules such as VEGFa/VEGFR2,

activation of pro-survival pathways like ERK and PI3K, and

alterations in integrin expression patterns (26–28).

These adaptive mechanisms enable tumor cells to survive and

thrive in new microenvironments, facilitating metastasis (29).

Anoikis-based predictive models have broad applications. For

instance, Tianlei X et al. (30) developed the four-gene feature
Frontiers in Oncology 11
“Ascore,” which demonstrated superior predictive capability for

bladder cancer immunotherapy response, surpassing PD-L1.

Additionally, Junyi L et al. (31) found that ARGs are closely

associated with the drug resistance of clear cell renal cell

carcinoma. The aberrant expression of ARGs is notably linked to

the distant metastasis of cervical cancer, underscoring the need for

more in-depth research in this area (32). In this study, ARGs-

related nomograms demonstrated excellent prognostic predictive
B

C

D

E

F

A

FIGURE 6

Creation of a nomogram for predicting outcomes in CESC. (A) Construction of a nomogram integrating ARG-score with various clinicopathological
parameters. (B) A calibration curve is employed to verify the accuracy of the nomogram. (C) A cumulative hazard curve depicting survival probabilities over
time for patients. (D) DCA is used to evaluate the nomogram’s effectiveness at 1, 3, and 5 years for OS in CESC. (E) A forest plot summarizing the outcomes
of multivariable Cox regression analyses, including clinical features and risk scores in CESC. (F) Survival analyses of T1N0 vs. T1N1, T2N0 vs T2N1.
Significance: *P < 0.05, **P < 0.01, ***P < 0.001.
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capability and were closely associated with the biological

mechanisms of CESC development, consistent with previous

research findings.

In the present study, we identified nine ARGs, including BCL2,

BAX, IGF1, PLAU, EDA2R, ABL1, FASN, NTRK3, and MIR200A,

which are closely associated with tumor development. The BCL2
Frontiers in Oncology 12
protein family predominantly orchestrates the intrinsic apoptotic

cascade, and perturbations within the TP53 pathway are frequently

implicated in the oncogenesis of various tumors. Our findings

substantiate this, revealing a conspicuous reduction in BCL2

expression within the high-risk cohort (33). Insulin-like growth

factor-1 (IGF-1), essential for cellular proliferation, when inhibited,
B

C

A

FIGURE 7

Analysis of ARGs in CESC’s TME cells using scRNA-seq database. (A) Cell type identification, quantification, and Hallmark analysis in dataset
GSE168652. (B, C) Analysis of the percentages and expression levels of crucial ARGs, including ABL1, BAX, BCL2, EDA2R, FASN, IGF1, NTRK3,
and PLAU.
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leads to significant shifts, including increased cellular accumulation

at the G2M/S phase, augmented apoptosis, and reduced invasive

capabilities of tumor cells (34). EDA2R mediates the activation of

NF-kB and JNK pathways and is closely associated with cancer

cachexia (35). Additionally, the ABL1 gene regulates cytoskeletal

dynamics and is linked to tumor drug resistance and cell migration

(36, 37). FASN encodes a fatty acid synthase that catalyzes the

conversion of acetyl coenzyme A and malonyl coenzyme A to
Frontiers in Oncology 13
palmitate (38). Overexpression and hyperactivity of FASN are

typically associated with malignant cells. Mutations in the

NTRK gene, which encodes a member of the neurotrophic

tyrosine receptor kinase (NTRK) family, promote myeloid

medulloblastoma and secretory breast cancer (39). Although

machine learning proved that these genes are closely related to

CESC, further analytical biology experiments are needed to confirm

their correlation with CESC.
BA

FIGURE 8

Expression of ARGs in risk-stratified groups and their prognostic significance. (A) Comparison of ARGs expression through immunohistochemical
staining in both control and pathological tissues. (B) Prognostic implications of ARGs for patients categorized into high and low-risk groups.
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In the present study, single-cell sequencing analysis revealed that

BAX and PLAU are closely associated with lower apoptosis levels

within CESC. BAX, a member of the pro-apoptotic protein family, is a

crucial effector of mitochondrial apoptosis induced by most BH3

mimetics and chemotherapeutic agents (40). Recent studies have

shown that co-targeting BAX and BCL-XL proteins can overcome

cancer resistance to apoptosis (41). The present study indicated that

high BAX expression is associated with poor prognosis, suggesting that

using BAX activators might yield better clinical outcomes. Additionally,
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concurrent research has highlighted the pronounced upregulation of

PLAU in cervical carcinoma cells. PLAU is known to be closely related

to tumor diagnosis, therapeutic targeting, and patient prognosis (42). A

recent study demonstrated that overexpressed PLAU in tumor tissues

synergizes with FOXM1 to promote gastric cancer progression (43).

Rigorous in vitro analyses have shown that targeted attenuation of

PLAU expression significantly reduces the migratory and invasive

capabilities of HeLa and HT3 cell lines. Furthermore, the core

promoter of PLAU was delineated to reveal transcriptional
B

A

FIGURE 9

Verification results of ARGs. (A) Comparison of ARGs mRNA expression in normal and tumor cell lines using RT-qPCR (with GAPDH as the internal control).
* p<0.05, **p<0.01, ***p<0.001. Data are presented as mean ± SD. (B) Prognostic indicators expressed in TCGA tumors vs TCGA normal + GTEx normal.
The “ns” means “no significance”.
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regulation by YinYang 1 (YY1), a crucial modulator of PLAU mRNA

expression (44). This study emphasizes the promising clinical

applications of targeting BAX and PLAU in tumor cells. However,

considering that the mechanisms of anoikis resistance primarily occur

in distant metastatic tumors, our subsequent research will focus on

single-cell sequencing results from both primary and distant metastatic

tumors, which may provide more valuable insights.

Various methodologies for sample classification based on

predefined gene expression profiles have been documented in the

literature, employing diverse analytical techniques (45–47). In our

investigation, we developed a nomogram predicated upon a selected

array of ARGs, facilitating the stratification of patients into distinct

prognostic categories. We observed marked variances in the

expression of these ARGs among the identified subgroups,

correlating significantly with patient prognoses. It underscores the

efficacy of our nine-gene nomogram in prognostication, thereby

aiding clinicians in devising tailored treatment strategies. Moreover,

the DCA indicated that the nomogram, based on these nine genes,

potentially offers clinical benefits to patients with CESC at one-,

three-, and five-years post-diagnosis. Future research will aim to

apply this model in clinical practice.

The study extended the examination to the TME, significantly

influencing tumor metastasis and the efficacy of targeted therapies,

building on the previously discussed nomogram-based classification

(48). Our analysis included the infiltration levels of 21 immune cell

types across different patient subtypes. High-risk subgroups with

lower survival rates showed a significant increase in activated

mast cell infiltration. Mast cells promote angiogenesis and

neovascularization by releasing pro-angiogenic factors, including

VEGF, FGF-2, PDGF, and IL-6, and non-classical factors like

trypsin-like and chymotrypsin (49). This underscores their critical

role in CESC progression. Among the nine identified risk genes,

PLAU had the strongest correlation with activated mast cell levels,

highlighting the PLAU/activatedmast cell axis for further exploration.

Additionally, severe dysregulation of the T-cell population, including

decreased CD8+ T cells, was identified. Recent studies have shown

that many patients do not benefit from immune checkpoint blockade

therapy due to low CD8+ T cell infiltration in the TME (50).

Furthermore, the specific biological mechanisms of ARGs and the

TME, as well as whether targeted therapies can reduce tumor

development, resistance, and distant metastasis, require more

extensive in vivo studies, such as xenografts or allografts.

In conclusion, our study has successfully established a nine-gene

model that exhibits remarkable accuracy in prognosticating outcomes

for patients with CESC. The nomogram, derived from this model,

serves as a valuable tool in clinical practice, enabling physicians to tailor

personalized treatment strategies for CESC patients. However, it is

crucial to delve deeper into the molecular mechanisms that underpin

these gene signatures, particularly at the single-cell level, to gain a more

comprehensive understanding of their role in tumor progression and

patient prognosis. Furthermore, the expansion of our research to

include larger patient cohorts and the conduction of prospective

randomized clinical trials are imperative for validating and refining

our model. Such endeavors will undoubtedly contribute significantly to

the field of precision medicine, potentially leading to more effective and

individualized therapeutic approaches for CESC patients.
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