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Introduction: Brain tumors are a major source of disease burden in pediatric

population, with the most common tumor types being pilocytic astrocytoma,

ependymoma and medulloblastoma. In every tumor entity, surgery is the

cornerstone of treatment, but the importance of gross-total resection and the

corresponding patient prognosis is highly variant. However, real-time

identification of pediatric CNS malignancies based on the histology of the

frozen sections alone is especially troublesome. We propose a novel method

based on differential mobility spectrometry (DMS) analysis for rapid identification

of pediatric brain tumors.

Methods:We prospectively obtained tumor samples from 15 pediatric patients (5

pilocytic astrocytomas, 5 ependymomas and 5 medulloblastomas). The samples

were cut into 36 smaller specimens that were analyzed with the DMS.

Results:With linear discriminant analysis algorithm, a classification accuracy (CA)

of 70% was reached. Additionally, a 75% CA was achieved in a pooled analysis of

medulloblastoma vs. gliomas.

Discussion: Our results show that the DMS is able to differentiate most common

pediatric brain tumor samples, thus making it a promising additional instrument

for real-time brain tumor diagnostics.
KEYWORDS

differential mobility spectrometry, neuro-oncology, pediatric neuro-oncology,
pediatric brain tumor, rapid diagnostics
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1 Introduction

Pediatric brain tumors are the most common solid malignancy of

childhood and the most common cause of cancer-related death in

children (1). In pediatric population, gliomas are the most frequent

brain tumors with WHO grade (gr.) 1 pilocytic astrocytomas (PA)

and WHO gr. 2-3 ependymomas being the most common histology.

Other notable tumor subgroups include embryonal tumors with

medulloblastoma being the most frequent one. Another notable

malignant tumor subgroup is diffuse midline glioma, which

histologically may appear as low-grade, but molecular testing

reveals the characteristic H3K27 mutation in the histone 3 protein

as a sign for higher malignancy (2). The complete list of all tumor

entities is numerous and the accurate division of them varies

significantly across age groups (3).

Generally, the cornerstone of treatment for pediatric brain

tumors includes surgical resection if possible and chemotherapy

with or without radiation as appropriate (1). The role of surgery is

highlighted in circumscribed tumors, such as PAs and

ependymomas, where the extent of surgical resection is a critical

determinant of the outcome. In PAs, a gross-total surgical resection

alone with a sparse follow-up imaging is considered a sufficient

treatment with an excellent prognosis (4). For ependymomas, a

gross-total resection is associated with the lowest rates of mortality,

the best overall survival, and the longest progression-free survival

regardless of tumor location (5).

Pathological grade does not have much prognostic relevance for

ependymomas in general and genetic subgrouping is better

correlated with survival (6). With DNA methylation analysis,

posterior fossa ependymomas can be divided into subgroups A

(PFA) and B (PFB) with group A occurring chiefly in early

childhood and being very aggressive (7). Supratentorial

ependymomas are genetically different disease with more than

70% of them carrying a fusion in the RELA -gene (8).

Medulloblastoma is the most common malignant brain tumor

in the pediatric population. Genetically, medulloblastomas are

divided into four subgroups of different levels of aggressiveness

and variant patient prognosis: wingless and INT-1 (WNT)-

activated, sonic hedgehog (SHH)-activated, group 3 and group 4

(9). The last two groups are often combined as non-WNT/non-

SHH medulloblastomas due to genetic overlapping and similar

clinical behavior. For medulloblastomas, the benefit of gross-total

resection is less clear than for pilocytic astrocytomas or

ependymomas. According to the most recent study on the issue, a

nearly-total resection (residual tumor less than 1,5 cubic

centimeters) of the tumor leads to the same prognosis as gross-

total resection regardless of the medulloblastoma subgroup (10).

Currently, frozen section analysis is the gold standard for

intraoperative tissue identification. However, identifying a pediatric

CNS tumor is considered to be especially troublesome. The

pathologists are generally advised to offer unspecific diagnostic

categories instead of accurate subtypes and to defer grading (11). In

some cases, as in medulloblastomas or posterior fossa ependymomas,

subtype identification using nothing but the histological appearance of

frozen section is considered impossible. This directly calls for

new solutions.
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Differential mobility spectrometry (DMS) is a modality that

characterizes substances by the mobility differences of ionized

particles in high-frequency electrical fields, which results in a

substance-specific dispersion spectrum, or “smell fingerprint” (12).

The function of the DMS is somewhat analogous with mass

spectrometry. However, the DMS is a much smaller and cheaper

device that is easier to operate and maintain and has a very low

detection limit and the capability for analysis in almost real-time. Also,

the analysis can be made of very small tissue samples with only 1 mm3

required volume minimum to produce adequate DMS signal (13, 14).

We have previously shown that the DMS is able to identify

different brain tumors and injured brain tissue ex vivo and classify

glioma samples based on their IDH -mutation status (13, 15). In this

study we investigated its ability to perform rapid and preparation-

free identification of different pediatric brain tumors: pilocytic

astrocytomas, ependymomas and medulloblastomas.
2 Materials and methods

We prospectively obtained samples from 15 pediatric brain tumor

patients that were operated in Tampere University Hospital, Finland,

between the years 2013-2022. 13 tumors were previously untreated

(primary) and 2 were recurrent. The tumors included 5 ependymomas,

5 pilocytic astrocytomas and 5 medulloblastomas. In addition to

histology and immunostaining, the utilized diagnostic tests included

fluorescence in situ hybridization (FISH), next generation sequencing

(NGS) and DNA methylation analysis. Out of the five

medulloblastomas, two were SHH -activated, TP53 wild type, one

was SHH -activated, TP53 undefined and the remaining two were

classified as non-SHH/non-WNT medulloblastomas genetically. Both

infratentorial ependymomas were genetically PFAs (posterior fossa

group A). One supratentorial ependymoma had a RELA-fusion.

However, in the two other supratentorial ependymomas, there was a

substantial incongruity between the histology and the genetic profile

with one being classified as CNS neuroblastoma and the other as PA by

genetics. All cases were carefully reviewed in tumor board with

experienced neuropathologists and in both cases of incongruency

between histology and genetic results the decision was made to

adhere to histology. In the PA group, only one infratentorial and one

supratentorial tumor underwent genetic testing and both were well-

matched to their histology and location. Patient characteristics and the

utilized diagnostic methods are presented in Table 1. A detailed

description of the diagnostic tests and their results tumor wise is

presented in a Supplementary Table.

All the samples were stored in a freezer at -70°C. The samples

were meticulously cut into 36 smaller specimens of roughly equal

sizes. Due to the different sizes of the original samples, the final set

of specimens included 17 medulloblastomas, 13 ependymomas and

6 pilocytic astrocytomas. Blood and visual necrosis due to surgical

electrocoagulation were removed from samples prior to the

analysis. 36 samples were randomly placed in four plastic well

plates with each well containing 0.18 mL of agar in the bottom. The

samples were seated 30 minutes prior to the start of the

measurement for thawing. The well plates were photographed

after seating. Each sample was incised with a custom-built,
frontiersin.org
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computer-controlled, 40 W, 10.6 mm CO2 laser evaporator ATLAS

(Olfactomics Ltd., Finland) four times in a quadratic manner, with 1

mm gaps between the incisions. The duration of the measurements

(from laser burn to achieving DMS signal) was 12-13 seconds with

60 seconds waiting time between subsequent measurements. The

total number of incisions was 144. Before and after the incisions,

reference measurements were taken of empty wells for system

calibration and quality control purposes. After the measurements,
Frontiers in Oncology 03
another photograph was taken of the well plate to control the

accuracy and quality of the laser marks in the samples. All four well

plates were analyzed successively in a single session. A schematic

illustration of the experiment workflow is presented in Figure 1 and

detailed in Supplementary 1.

The resulting smoke was transported to the DMS inlet with

purified and humidified pressurized air used as a carrier gas. The

DMS used in the study was a commercial IonVision instrument
TABLE 1 Patient characteristics.

Medulloblastoma Ependymoma PA

Age (mean ± S.D., years) 7,1 ± 5,6 4,6 ± 3,0 7,7 ± 6,9

Females 2 2 2

Males 3 3 3

Location

Infratentorial 5 2 4

Supratentorial – 3 1

Primary 4 5 4

Recurrent 1 – 1

Genetics

Infratentorial
2 SHH (TP53 wild type), 1 SHH (TP53 undefined), 2 non-SHH/

non-WNT
2 PFA 2 PA-INF, 2 untested

Supratentorial –
1 ST-RELA,

2 misidentified
1 PA-CORT

Methods for genetic/
epigenetic testing

DNA methylation analysis, FISH, NGS
DNA

methylation analysis
DNA

methylation analysis
PA, pilocytic astrocytoma; SHH, sonic hedgehog; WNT, wingless and INT; PFA, posterior fossa group A; ST-RELA, supratentorial with RELA-fusion; PA-INF, infratentorial pilocytic
astrocytoma; PA-CORT, cortical pilocytic astrocytoma; FISH, fluorescence in situ hybridization; NGS, next generation sequencing.
FIGURE 1

The experiment workflow.
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(Olfactomics Ltd., Finland). In DMS, the sample molecules were

ionized and transported into a sensor unit which separated the ions

with low and high electric fields. In the altering electric fields, the

clustering-declustering behavior of the sample ions resulted in a

characteristic two-dimensional dispersion spectrum (“smell

fingerprint”) that was used for identification and classification

purposes. An illustration of ATLAS and IonVision is presented

in Figure 2.

Since the visual differences in the dispersion spectra were subtle,

the classifications were made by using a machine learning

algorithm. Several different algorithms were tested, and the best

performing algorithm was found to be linear discriminant analysis

(LDA). The algorithm was first taught about the data features with a

training data set, which was a set of know objects. The function of

the algorithm was then tested with a test set where the algorithm

had to assign the class. Leave-one-group-out cross validation was

used to avoid overfitting, which means the algorithm making its

classification decisions not based on the actual features of the class,

but rather on variance or background noise of the particular

training set in use. The study was approved by the ethics review

board of Pirkanmaa Hospital District, Finland. The written consent
Frontiers in Oncology 04
for the study was obtained either from the patient or parent

as appropriate.
3 Results

With the LDA algorithm and leave-one-group-out cross

validation, the overall classification accuracy (CA, percentage of

samples correctly classified) for 3-class classification was 70%

(Table 2) . The a lgor i thm was bes t ab l e to c lass i fy

medulloblastoma samples with 78% of the specimens correctly

classified. Ependymomas and PAs proved to be more difficult to

classify as only 58% of ependymomas and 54% of PAs were

accurately classified. The mean spectra of the three tumor classes

and their differences are shown in Figure 3. The spectra are

presented as colored heat maps, where every pixel represents a

measured detector response with certain values of radio-frequency

voltage waveform (Y-axis) and direct current compensation voltage

(X-axis). The top row shows the mean spectra of each tumor class,

and the middle row presents the standard deviation within each

class pixel wise. The bottom row shows the differences between
B

C

D

A

FIGURE 2

The setup for DMS analysis: (A) Laser sampling unit (ATLAS). A custom-built metallic box in which the computer-controlled laser nozzle for
electrocoagulation and a suction tube for evacuating the resulting smoke moves above the well plate (B) Enlargement of the laser nozzle and
suction tube inside the sampling unit (C) Signs of laser coagulation in tumor specimens after sampling (D) DMS analyzer (IonVision) where the smoke
from ATLAS is ionized and driven into the sensor.
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classes with red color indicating greater values for the former and

blue color for the latter tumor group in the given binary

comparison. In the spectra, ion peaks on the left with low

compensation voltage were the most prone to exhibit the

differences between the tumor tissues.

Additionally, we pooled the gliomas (pilocytic astrocytomas

and ependymomas) together to make a binary classification with

more material to adequately train the algorithm and to achieve

better-balanced classes. With the LDA algorithm and leave-one-

group-out cross validation, the overall CA for the classification was

75%, with 73% of medulloblastoma samples and 77% of glioma

samples correctly classified (Table 3). ROC -curve of the binary

classification is presented in Figure 4 with area under curve (AUC)

=0.83. The classification results of individual samples are presented

in Supplementary 2. A thorough presentation of the data analysis

and the results is provided in Supplementary 3.
4 Discussion

Our results show that the DMS is able to identify three of the

most common pediatric brain tumors (pilocytic astrocytomas,

ependymomas and medulloblastomas) with good accuracy. Also,

gliomas as a whole can be discriminated from medulloblastomas.

The importance of gross-total resection differs in gliomas compared

with medulloblastomas. Therefore, the accurate and real-time

intraoperative categorization of the tumors would help the surgeon
Frontiers in Oncology 05
to tailor the resection strategy. The experiment setup is compact and

can be easily fitted into standard neurosurgical operating theater for

intraoperative use without further modification.

Generally, the advantages of the DMS compared with other

emerging tissue identification solutions (mass spectrometry, Raman

spectroscopy, scanning electron microscopy etc.) include small size,

an affordable price, relatively low maintenance and ease of

operation (13, 14).

We believe that decisive factors in the differentiation of tumor

entities are the differences in the metabolic and proteomic profiles

of gliomas and embryonal tumors. Since the DMS analysis is based

on pattern recognition of smell fingerprints instead of explicit

information of the substance molecules, the exact differentiating

factor cannot be reliably recognized.

In medulloblastomas and ependymomas, several clinically

re levant subtypes have been ident ified in molecular

characterization that considerably affect the patient’s prognosis.

Subgroup identification was a matter of great interest but

unfortunately, we didn’t have enough sample material to train the

classifier for reliable subtype identification.

Several issues related to the experiment setup can explain the

shortcomings in the obtained classification accuracy. In

medulloblastomas and ependymomas, the metabolic profiles of the

tumor cells vary between subtypes, thus introducing heterogeneity to

the classes. However, these assumed differences of the DMS spectra of

tumor subtypes cannot be directly shown in our material due to

inadequate number of samples. Albeit the number of the original
TABLE 2 Classification results of the 3-class classification.

Assigned class Sens. Spec. CA

True class Medulloblastoma 78% 21% 8% 78% 81% 70%

Ependymoma 17% 58% 38% 69% 70%

PA 5% 21% 54% 30% 95%

Medulloblastoma Ependymoma PA
frontiers
sens., sensitivity; spec., specificity; CA, classification accuracy.
Values in bold indicate the percentages of the measurements of each tumor class assigned correctly and the general classification accuracy.
FIGURE 3

The dispersion spectra. Top row: the average dispersion spectra of each class calculated pixel wise. Middle row: the variation in the dispersion spectra
within each class. Bottom row: the differences in the spectra between classes. The red color indicates greater values for the former and blue color for
the latter tumor group in the given binary classification (for example in the bottom left comparison: former – medulloblastoma, latter – ependymoma).
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tumor samples was even, medulloblastoma samples were bigger and

provided more smaller specimens, so eventually the material became

skewed. This disturbed the classification by making the classifier to

favor the bigger class, and the resulting bias could only partially be

controlled with computational methods. In binary classification, the

classes were better balanced that could also partially explain the better

classification accuracy.

Additionally, even as we collected the samples over a 10-year

period of time, the overall number of samples was not sufficient to

optimally train the algorithm even for 3-class-classification due to

the rarity of the tumor entities. Algorithm training means that the

classifier is first taught about the data features with training data set

and the function of the algorithm is then tested with a test set, in

which the algorithm has to assign the class (16). A small training

data set increases the risk of overfitting, which means that the

algorithm makes its classification decisions not based on the actual

features of the class, but rather on variance or background noise of

the particular training set in use. To test the reliability of the data,

we performed a leave-one-group-out cross validation. In that

method, the data set is first divided into as many subsets as it can

be. Then the algorithm is tested by using every single item as test set,

while every other sample act as training set (17).

Moreover, even with our best preparation of the samples, the

individual sizes of the samples were somewhat variant. This inevitably

affected the DMS signal strength and despite data normalization, has

additionally confounded the classifier. On the other hand, keeping the

sample preparation at the absolute minimum is essential for the fluency

of the workflow of the intended intraoperative use. Also, years of
Frontiers in Oncology frontiersin.o06
freezingmay have blurred some of the DMS-detectable elements due to

sample denaturation.

Most of the challenges of this study could be overcome by

simply increasing the sample size. It would allow a more reliable

training of the classifier and provide access to explore subtype-level

identification of the tumors. This will require collaboration to

achieve sufficient amounts of sample material of these relatively

rare tumor entities. Also, the acquisition of the samples should be

done in a prospective manner for up-to-date genetic information.
5 Conclusions

Our results show that the DMS is able to identify three of the

most common pediatric brain tumors with good accuracy.

Potentially, the DMS could become an additional tool for

intraoperative pediatric brain tumor diagnostics and tailoring the

surgical resection strategy. Larger cohorts are needed to explore the

identification capability of the DMS in tumor subtypes and for

building more robust and high-performing classifiers.
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