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bladder cancer treatment
Marom Yosef and Svetlana Bunimovich-Mendrazitsky*

Department of Mathematics, Ariel University, Ariel, Israel
Mitomycin-C (MMC) chemotherapy is a well-established anti-cancer treatment

for non-muscle-invasive bladder cancer (NMIBC). However, despite

comprehensive biological research, the complete mechanism of action and an

ideal regimen of MMC have not been elucidated. In this study, we present a

theoretical investigation of NMIBC growth and its treatment by continuous

administration of MMC chemotherapy. Using temporal ordinary differential

equations (ODEs) to describe cell populations and drug molecules, we

formulated the first mathematical model of tumor-immune interactions in the

treatment of MMC for NMIBC, based on biological sources. Several hypothetical

scenarios for NMIBC under the assumption that tumor size correlates with cell

count are presented, depicting the evolution of tumors classified as small,

medium, and large. These scenarios align qualitatively with clinical

observations of lower recurrence rates for tumor size ≤ 30[mm] with MMC

treatment, demonstrating that cure appears up to a theoretical x[mm] tumor size

threshold, given specific parameters within a feasible biological range. The

unique use of mole units allows to introduce a new method for theoretical

pre-treatment assessments by determining MMC drug doses required for a cure.

In this way, our approach provides initial steps toward personalized MMC

chemotherapy for NMIBC patients, offering the possibility of new insights and

potentially holding the key to unlocking some of its mysteries.
KEYWORDS

mathematical oncology, tumor-immune interactions, individual-based model, drug
dose determination, non-linear dynamics
1 Introduction

Cancer diseases rank as a leading cause of death and a major health concern in modern

society (1). In particular, bladder cancer (BC) is among the most prevalent cancer types in

the world, with approximately 573,000 new cases and 213,000 deaths annually (1). The

highest incidence rates are observed in Europe, North Africa, West Asia, and North

America (2). BC’s high burden on both patients and health-care systems is mainly
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attributed to its intensive treatment and monitoring requirements,

making it one of the most economically costly cancers (3).

Research into the development of cancer cures continues to be a

highly challenging process despite tremendous scientific,

pharmaceutical, and technological progress in recent decades (4–6).

Various studies suggest confronting medical decision-making

challenges via collaboration between healthcare professionals

monitoring and interpreting data to help diagnose or treat patients,

and mathematicians developing new models and computational

simulations to characterize tumors and to pave the road to

personalized medical treatments (7–12). Taken jointly, these

contributions represent a step toward the development of

quantitative methods in the complex and nonlinear biology of

tumors, in particularly, using differential equations (13, 14).

MMC, epirubicin, and gemcitabine are anti-tumor

chemotherapeutic drugs used for non-invasive BC (15, 16). MMC

is an anti-tumor antibiotic discovered in the 1950s from

Streptomyces caespitosus cultures, which selectively inhibits DNA

synthesis by cross-linking complementary strands of the double

helix, leading to cell death (17). Its large molecular weight limits

physiologically systemic uptake in NMIBC, making this drug

generally well tolerated (18).

To mathematically analyze BC’s growth under the treatment of

MMC chemotherapy, we studied the biological phenomenon of

bladder tumor evolution and the current treatment protocols. Over

the past decades, the creation of mathematical models for BC

treatments has been driven by the need to address shortcomings in

existing treatment protocols, such as their limited efficacy and lack of

personalization (19–23). Among these, one study conducted by

Burgos Simón et al. (19) involved the use of two distinct systems of

difference equations. One system models the interactions between

tumor cells and inflammatory cells, while the other addresses the

subsequent phase involving tumor removal surgery, followed by

Bacillus Calmette-Guérin (BCG) immunotherapy treatment. Their

model analyzes hospital-sourced data to describe and predict

fluctuations in tumor size and immune responses. In Shaikhet and

Bunimovich-Mendrazitsky (21), the authors dealt with BC under

BCG immunotherapy treatments, and highlighted the importance of

the interplay of multiple parameters on the success of

immunotherapy. The model in Nave et al. (22) deals with

improvement of BCG immunotherapy for BC by adding

interleukin 2 (IL-2). By following the complex biological processes

of tumor, immune system, and BCG interactions, they provided a

reliable platform for in silico testing of alternative protocols for BCG

instillations and combinations with IL-2. While certain aspects of the

models mentioned earlier (19–23), such as the law of mass action,

form the foundation for our model concerning bladder tumors and

immune cells, it’s noteworthy that these models primarily focus on

immunotherapy. As a result, our approach to model chemotherapy

treatment draws inspiration from the works of de Pillis et al. (24) and

Rodrigues et al. (25) who have specifically constructed models

addressing chemotherapy treatments.

The work of de Pillis et al. (24) models cancer growth on a cell

population level to investigate tumor dynamics. By merging clinical

data from both laboratory mice and human trials together with

established mathematical terms of cell–cell interactions and
Frontiers in Oncology 02
Michaelis–Menten, they started from the observation of biologists

that cancer growth is controlled by a healthy immune system.

Accordingly, they developed an ODEs system (Equation (0)) that

follows the stimulation of the immune response by tumor cells

under a combination of immune, vaccine, and chemotherapy

treatments:

dT
dt = aT(1 − bT) − cNT − DT − KT (1 − e−M)T ,

dN
dt = eC − fN + g T2

h+T2 N − pNT − KN (1 − e−M)N ,

dL
dt = −mL + j D2T2

k+D2T2 L − qLT + (r1N + r2C)T

−uNL2 − KL(1 − e−M)L + pILI
gI+I

+ vL(t),

dC
dt = a − bC − KC(1 − e−M)C,

dM
dt = −gM + vM(t),

dI
dt = −mI I + vI(t),

D = d (L=T)l

s+(L=T)l
:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(0)

At time t, the populations are represented by T(t) for tumor cell

population, N(t) for total NK cell population, L(t) for total CD8+T

cell population, C(t) for number of circulating lymphocytes, M(t)

for chemotherapy drug concentration in the bloodstream, and I(t)

for immunotherapy drug concentration in the bloodstream. The

characterization of the biological phenomenon was captured

through stability analysis and simulations, revealing cases where

disease progression is very sensitive to the initial tumor size or levels

of specific immune cells. This model provides new insights into

tumor dynamics, especially regarding the desirable tumor-free state.

Rodrigues et al. (25) proposed an ODEs-based model to study

the chronic lymphocytic leukemia (CLL)-immune dynamics under

chemoimmunotherapy. Similar to the approach of de Pillis et al.

(24), they highlighted the role of the immune system in eliminating

cancer cells. This model provides functional structures for

chemotherapy terms with saturating behavior, allowing to model

constant and periodic drug instillation, that can be applied to every

drug that is given periodically. A critical factor in the success of

chemotherapy, as shown in their model and observed by clinicians

(26, 27), is the intensity with which the tumor cells stimulate

immune cell production. This study serves as the foundation for

the formulation of chemotherapy terms in our model.

Realistic and physical modeling of the bladder has been studied

thoroughly in the context of hyperthermia of MMC treatment for

NMIBC, which is a targeted heating of the tumor area (28–31). For

example, the authors in Schooneveldt et al. (28) utilized a convective

thermophysical fluid model, based on the Boussinesq approximation

to the Navier–Stokes equations, to assess the benefits of physically

accurate fluid modeling in NMIBC patients undergoing

hyperthermia treatment. Their analysis, based on Computed

Tomography (CT) scans from 14 BC patients, demonstrated a

significant improvement in temperature prediction accuracy within

the urinary bladder compared to previous model (29). Additionally,

Sadée and Kashdan (31) developed a mathematical model using

conductive Maxwell’s equations to simulate therapy administration

and the Convection-Diffusion equation for incompressible fluid to

study heat propagation through bladder tissue. However, despite the
frontiersin.org

https://doi.org/10.3389/fonc.2024.1352065
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yosef and Bunimovich-Mendrazitsky 10.3389/fonc.2024.1352065
progress made by biological and mathematical studies of MMC

chemotherapy for BC treatment, the optimal dose and mechanism

of this drug are yet to be determined (18, 32). To the best of our

knowledge, the fundamental oncological aspects of tumor-immune

dynamics for this purpose are absent in the existing studies.

In the current work, we recapitulate the state of the art of

mathematical modeling by presenting in this research a novel

mathematical model describing the dynamics of BC considering

MMC chemotherapy. The proposed model is based on the solution

of a system of three nonlinear ODEs that describes the tumor-

immune dynamics under the assumption that MMC chemotherapy

is administered continuously at a low dose. Notably, in a biologically

feasible parameter regime, a stable tumor-free equilibrium with a

non-trivial structure exists. Moreover, we utilized this stability

condition of this equilibrium for the creation of a new method of

personalized drug dosage determination. There are obvious practical

implications for chemotherapy treatment associated with the ability

to calculate MMC dose. To evaluate our work, we compared the

model simulations with clinical data. In addition, a sensitivity analysis

was conducted to observe how variations in the estimated parameters

affect the count of tumor cells. Ultimately, we discuss some more

general aspects of the therapeutic process.

The rest of the paper is organized as follows: Section 2 introduces

the underlying biological processes of BC dynamics under MMC

chemotherapy treatment, that the model aims to describe. Section 3 is

devoted for the mathematical model formulation. Section 4 presents

the model analysis, including the model’s steady states and their

clinical impact. The results are discussed in Section 5- where

necessary conditions for homeostasis and tumor elimination are

presented, and a new method is proposed for determining a

theoretically patient-specific upper bound of MMC dose. Finally,

Section 6 concludes the biological and mathematical features of the

model, including its clinical potential.
2 Biological background

NMIBC is defined as a growth of malignant tumor cells in the

urinary bladder, superficially developing on the inner surface and

confined to the mucosa or submucosa layers of the bladder wall (33).

The major risk factors are tobacco smoking and specific chemical

exposures in the occupational and general environments (34).

The treatment of BC comprises two phases, transurethral

resection (TUR) and adjuvant therapy. TUR is the standard initial

treatment involving an endoscopic procedure to remove the visible

tumor (35). Although TUR alone is capable of eradicating tumors

completely in some cases, these tumors tend to recur and may

progress to muscle-invasive BC (MIBC) (16, 36). In an attempt to

extend the recurrence-free interval, TUR is followed by the

administration of adjuvant therapy, in the form of intravesical

treatment with immunotherapy or chemotherapy, which is given

via the catheter (16, 36). The focus of our model is on the

chemotherapeutic drug MMC. MMC is instilled in the bladder

via the catheter and is generally safe due to its limited effects on the

bladder (18, 37). After instillation, MMC acts by inhibiting DNA

synthesis and subsequent death of tumor cells (38).
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Despite improved management for decreasing the recurrence

rate and prolonging the progression-free interval, the clinical

effectiveness of MMC is often limited, as the estimated 5-year

recurrence rate varied between 49% to 75%, with a risk of

progression to the muscle-invasive stage (38–43). Moreover, for

this treatment modality, the length and frequency of repeat

chemotherapy instillations are still controversial (38–43).

Clinicians emphasize that the inability to define drug dosage,

treatment frequency, and duration plays a significant role in the

failure of MMC treatment, highlighting the absence of an ideal

MMC regimen as a key issue (18, 44). One way that has shown

enhanced efficacy of MMC is treatment via microwave-induced

hyperthermia of MMC, but the success of this treatment is also

limited (45, 46). Therefore, new strategies are needed to improve

treatment protocols. As the initial step in working towards a new

strategy, we establish the first mathematical model to encompass

both immunological aspects and MMC chemotherapy for BC

treatment, conducting analytical investigations incorporating

various model assumptions. In this preliminary phase, we will

describe BC elimination under MMC chemotherapy.

The cascade of events leading to BC eradication after MMC

treatment can be summarized as follows (see Figure 1): BC tumor

cells, termed here as (T) undergo proliferation (47–51), and effector

cells (E), are produced at a constant rate due to healthy body

homeostasis, i.e., bladder functions are kept within a normal range

(step 0, Figure 1) (52, 53).

MMC (M) instillation (step 1, Figure 1) results in a cascade

effects of tumor elimination:
1. The direct effect: The MMC-DNA interaction leads to the

inhibition of DNA synthesis and the subsequent influences

on the process of cell division. Consequently, a fraction of

urothelial tumor cells (T) undergo arrest of the cell cycle

and apoptosis (step 2, Figure 1) (54–57).

2. The indirect effect: effector cells (E) are activated by

apoptotic tumor cells (T) (step 3, Figure 1) and eliminate

the latter via DCs’ phagocytosis and Cytotoxic T cells’

(CTLs) cytotoxicity (step 4, Figure 1) (55, 58). This

suppression of tumor cells (T) leads to the destruction of

the entire tumor (54, 55).
3 Materials and methods

3.1 Formulation of model equations

Our mathematical model consists of a system of ODEs that

describes interactions between tumor cells and the immune system

under MMC chemotherapy. Specifically, we track the temporal

dynamics of the following three populations: MMC chemotherapy

drug dose, M(t); bladder tumor cells population, T(t); and effector

cells population, E(t). The formulation of the equations was done by

bringing together the specific forms of cell growth, cell-cell

interactions, and drug-cell interactions (see Figure 1):
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Equation for the chemotherapeutic agent MMC (M). MMC

(M) is delivered into the bladder cavity for 1-2 hours by once-a-

week instillations over a 6-week to 8-week period and then once

monthly for 1-year (32, 59–61). Processes of this type introduce

time-dependent discontinuities into the model. The resultant non-

autonomous system may present analytical complexity. Therefore,

at the present stage, we have chosen to simplify and model constant

administration of MMC to the bladder; m ≥ 0 is a constant

parameter of the MMC instillation rate. We obtain Equation (1a):

dM
dt

= −m1 M|ffl{zffl}
washout

+ m|{z}
source 

, (1a)

where µ1 is the washout rate of MMC (M).

Equation for the tumor cells (T). Bladder tumor cells (T),

known for their heterogeneity (62), are assumed here to be entirely

identical for simplification. These cells undergo apoptosis due to

direct cytotoxicity of MMC (M) by inhibiting DNA synthesis (38,

54, 56, 57). Hence, tumor cells,(T), must decrease at an intensity

that is proportional to their encounter with MMC (M). By assuming
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these dynamics have a Michaelis-Menten form with p1 as a rate

constant, and a half-saturation parameter a, we get the term p1TM
M+a .

Upon activation by tumor cells’ (T) apoptosis, effector cells (E)

begin with the subsequent engulfment and destruction of the tumor

cells (T) (54, 55, 58), at a constant rate p2. Based on these processes,

the tumor dynamics can be formulated as follows in Equation (1b):

dT
dt

= −
p1MT
M + a|fflffl{zfflffl}

killed by MMC 

− p2 ET|fflffl{zfflffl}
killed by immune cells 

+ r T 1 −
T
k

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

growth 

, (1b)

Here, the number of tumor cells (T) increases due to natural

growth, as indicated by the third term following the logistic growth

law; r is the tumor growth rate and k represents the tumor’s carrying

capacity. In this context, we suggest that the carrying capacity k

represents a state of no-cure or even death within the biological

context. Hence, our focus is only on the range 0 ≤ T ≤ k.

Equation for the effector cells (E). CTLs and dendritic cells

(DCs) are immune cells represented by the term effector cells (E).

DCs reside in the bladder (63), so we assume that effector cells (E)
FIGURE 1

The model interactions of BC cells and immune system as a result of MMC chemotherapy (presented with parameters and the cascade steps are
numbered inside ovals as outlined in the text). Note that parameters without a direct influence from one cell type to another (p3) or those defined
solely by detailed mathematical terms in system (1) (r,k,a) are exclusively present in system (1). This image was created with BioRender.com.
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proliferate at a constant rate d0, in alignment with previous

mathematical models that describe antigen-presenting cells

(APCs) (64, 65). Apoptotic urothelial tumor cells (T), given by

the term p1TM
M+a , induce the activation of effector cells (E) at a

constant rate g (54, 55, 58). The Michaelis-Menten form of this

term accounts for the limited nature of this recruitment (66). In

addition, the term p3TE describes the effector cells' (E) deactivation

via an encounter with tumor cells (T) (54, 55). The natural mortality

rate of effector cells is µ2. Hence, effector cells (E) satisfy the

following Equation (1c):

dE
dt

= d0|{z}
source 

− p3 ET|fflffl{zfflffl}
deactivation 

− m2 E|{z}
death 

+ g p1TM
M + a|fflfflfflffl{zfflfflfflffl}

activation 

: (1c)

Thus, the tumor-immune interactions of NMIBC under MMC

chemotherapy are modeled by the following system of ODEs:

dM
dt = −m1M +m,

dT
dt = −T p1M

M+a + p2E
� �

+ G Tð Þ,

dE
dt = d0 + g p1TM

M+a − E p3T + m2ð Þ :

8>>>>>>>><
>>>>>>>>:

(1)

Where:

G(T) = rT 1 −
T
k

� �

With initial conditions:

M(0)  ≥  0,                T(0)  ≥  0,                   E(0)  ≥  0:

Note that the requirement above that for all t ∈ [0,∞),0 ≤ T(t) ≤ k,

is just a biological constraint of the model. Without assigning a specific

value to bound the tumor cell count, k and, consequently, T(t) can

theoretically represent any number of tumor cells.
3.2 Estimation of parameters

For the model to be complete, we carefully estimated parameter

ranges so that they are realistic and correspond to values found in

biological studies, while some were determined by the model to

yield meaningful results in simulations, consistent with reported

phenomena in the literature (see Table 1). The parameters, drawn

from animal models, cell lines, and human tumor samples, are

utilized for exploratory model analysis. Therefore, it is important to

note that it is unsafe to use them in clinical settings with human

cancer patients, as refinement through separate work based on

clinical research findings is mandatory before further utilization.

The interpretation of all parameters below should be considered

within the context of their respective roles in the ODEs system

(Equation 1).

• The decay rate of MMC - µ1:
Removal by metabolism, tissue binding and minimal absorption

across the bladder epithelium are the primary factors for MMC (M)

decay in urine (16, 67, 71). MMC (M) elimination rate µ1 = 21.05
Frontiers in Oncology 05
[day-1] is derived from the mean constant rate of absorption and

degradation, reported by Dalton et al. (67). From the assumption of

exponential decay, the biological half-life of MMC (M) is t1=2 =
ln 2

21:05½day−1� = 47:4 minutes. There have been numerous studies that

support this result (37, 72, 73). One of them, the work of Gao et al.

(37), confirms that approximately 6% − 16% of the MMC dose was

present in the bladder tissue at the end of the 2 hours treatment

period [see Table 1 in (37)]. Even when using the same sources,

MMC half-life can vary, because there is a substantial intra and

inter-patient variability in degradation and absorption constant

rates based on various factors, such as incomplete bladder

emptying during treatment, urine acidity and hydration status

(72, 73).

• The MMC instillation rate - m:
A widely accepted protocol for a single MMC treatment session

is 40 mg in 50 ml sterile water administered intravesically for 2 hours

(74–77). Therefore, we considered the corresponding drug dose,

m0, that was calculated as follows (the molecular weight of MMC

is 334 g/mol (78)): m0 = (Protocol dose)×(Mw of MMC) = ( 40 mg
50 ml ) 

( g
103 mg ) ( 1mol

334 g ) ( 106mmol
1 mol ) = 2:395½mmol=ml� = 2, 395½mM�. Given

the hypothetical nature of continuous drug administration for

hundreds of days, we used a relatively small amount of drug to

preserve a total amount similar to that given in a single treatment.
TABLE 1 List of the model variables and parameters descriptions

Variable Description Unit

M(t) MMC chemotherapy drug
amount at time t

[mM]

T(t) Bladder tumor cells
population at time t

Cells

E(t) Effector cells population at
time t

Cells

Parameter Description Estimate Source

µ1 Decay rate of MMC 21.05[day−1] (67)

m Instillation rate of MMC 6.561 [µM/day] (32, 59),
Calculated

r proliferation rate of tumor
cells (T)

(0.01-0.045)
[day-1]

(20)

k Carrying capacity of tumor
cells (T)

(0.09-
1)×109[cells]

(20, 68)

p1 Inhibition rate of (T)
by MMC

(0.12-0.2)
[day-1]

(56)

a Half-saturation constant 1×102[mM] Estimated

p2 (T) cells inhibition rate by
(E) cells

(3.7-5.5)×10-6

[cells-1day-1]
(22, 69)

d0 Constant production rate of
effector cells

1.032×105

[cells×day-1]
(52)

g Effector cells' (E)
activation rate

9.12[day-1] (70)

m2 Effector cells' (E) death rate 9.12[day-1] (24)

p3 Effector cells' (E)
deactivation rate

(1.1-1.59)×10-6

[cells-1day-1]
(24)
fr
o
All parameters used are strictly positive.
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This strategy aims to simplify the real two-hour treatment, which is

generally considered safe for the local administration area (18, 37), and

may reduce the risk of theoretical over-toxicity. Over-toxicity is

indirectly addressed in this work through the consideration of drug

doses below the highest recommended values in the literature, as

discussed in the results section. Therefore, we chose to scale by t =

365 days which is close to the number of simulated days, to get the drug

instillation rate:m = m0

t = 2,395½mM�
365 days = 6:561½mM=day�. We chose to use

these units because they are compatible with in vitro experiments that

were done by Ojha et al. (56, 79). While practical pulsed therapy will be

discussed in future work, the rationale for assuming and supporting the

validity of our approach in scaling the drug instillation rate, including

simulations comparing the effects of this administration on large and

low MMC doses, is provided in Subsection 4.2 of the

Supplementary Information.

• The inhibition rate of urothelial tumor cells by MMC- p1:
According to Ojha et al. (56), a 24 hours exposure to 5µM of

MMC (M) induced 12-20% apoptotic cell death in non-invasive

tumor tissue samples from patients. Hence, a reasonable first

estimate is the range:

p1 = (0:12 − 0:20) ½day−1�:
• The saturation of the killing effect on urothelial tumor cells

by MMC - a:
The half saturation constant was calculated from model

simulations, to be 100[µM]. This theoretical value facilitates

scenarios representing tumor persistence and elimination with

treatment, and the observed activation of effector cells' anti-tumor

activity through modulation of anti-tumor immunity compared to

the no-treatment case (55, 58).

• The constant production rate of Effector cells - d0:
We use the information that during homeostasis, DCs are the only

subset of effector cells (E) which is capable of continuous replacement

with new cells (53). DCs undergo a limited number of divisions in the

spleen or lymph nodes, and are replenished at a rate of nearly 4.3 × 103

cells per hour (52). Hence, d0 = 4:3� 103½cells� hour−1� = 1:032�
105½cells� day−1�. The explanation for assuming constant effector cell

production and the rationale behind choosing this value are provided

in Subsection 4.1 of the Supplementary Information.
4 Model analysis

We establish the biological validity of the model through positive

invariance property, i.e., every solution of the system (Equation (1))

with positive initial conditions remains in the positive orthant R3
+.
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The invariance of positive orthant is quite useful for us to formally

verify the safety properties of our dynamical system. Since the model

variables describe biological and chemical elements represented by

nonnegative values in real processes, it is important that we do not

obtain negative values. Thus, we first prove the positivity of the

solutions (see proof in the Supplementary Information). Next, the use

of positive invariance property allows us to explore the model’s

equilibrium points from a biological perspective, including their

stability analysis and an oncological interpretation to formulate the

desired mathematical conditions for cure.
4.1 Steady states and stability analysis

The model [system (1)] is characterized by four nonnegative

equilibria (see Supplementary Information for details on the steady-

state derivation). In the absence of a straightforward biological

interpretation for the parametric form of the cancer equilibria, we

decided to analyze their stability numerically in the Supplementary

Information, and to focus solely on disease-free equilibrium points

which are summarized in Table 2. The stability analysis is performed

for themodel with and without chemotherapy. For convenience, I1 and

I2 denote the terms p2d0
m2

,
p1

m
m1

( m
m1
+a), respectively, when appeared in the text.

With the formulation described in the Supplementary

Information, we can now investigate the local stability of the

linearized model by studying the Jacobian matrix J of the system,

given by Equation (2):

J =

∂ F1
∂M

∂ F1
∂T

∂ F1
∂ E

∂ F2
∂M

∂ F2
∂T

∂ F2
∂ E

∂ F3
∂M

∂ F3
∂T

∂ F3
∂ E

2
6664

3
7775

=

−m1 0 0

− p1T
M+a +

p1TM
(M+a)2

r − 2r
k T − p2E − p1M

M+a −p2T

g p1T
M+a −

g p1TM
(M+a)2

−p3E + g p1M
M+a −p3 T − m2

2
6664

3
7775 : (2)

The following subsections present a stability analysis of the

nonnegative equilibria: first, in the absence of chemotherapy (4.1.1),

and second, under continuous therapy (4.1.2).
4.1.1 Homeostasis equilibrium
(without treatment)

EB1 = (M*,T*, E*) = 0,   0,  
d0
m2

� �
,

TABLE 2 Summary of the stability characteristics for the nonnegative equilibria solutions of system (1), in the absence of chemotherapy (m = 0) and
with therapy (m > 0).

Treatment Equilibriua M∗ T∗ E∗ Stability

m = 0 EB1 0 0 d0
m2

r < I1 locally stable

m > 0 EB2 m
m1

0 d0
m2

r < I1 + I2 locally stable
No point is shared by both cases.
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At this equilibrium, there are no tumor cells, and the immune

cells exhibit a homeostatic net production value dictated by the ratio

between constant production and natural mortality of these cells,

E∗. This value, regardless of stability condition to be discussed

separately, reflects the equilibrium itself as a non-adverse event, as

the killing rate of tumor by immune cells, p2, is not a factor in EB1.

Therefore, we conclude that the bladder maintains homeostasis.

The eigenvalues of the Jacobian evaluated at equilibrium are:
�l = ½−m1;−

d0p2
m2

+ r;−m2�.
Thus, all eigenvalues are negative if:

−
d0p2
m2

+ r < 0,⇒ r <  
d0p2
m2

:   (3)

Hence, if the condition in Equation (3) is satisfied, then every

solution of the original system (1) that starts near EB1 converges to

EB1 as t→ ∞. That is, the homeostasis equilibrium EB1 equilibrium

is locally asymptotically stable when r < I1 and unstable when r > I1.

Simulations in Supplementary Figure S1 illustrate that the tumor

rapidly disappears for parameters that satisfy the stability criterion.

From an oncological perspective, the term I1 can be interpreted

as the intensity of tumor killing by the immune system [more

specifically, effector cells (E)]:
Fron
1. The numerator, d0p2, is the product of the daily production

rate of effector cells (E), and the daily killing rate of tumor

cells (T) by effector cells (E), respectively. Therefore, this

term reflects the potential daily killing rate of tumor

cells (T).

2. The net daily rate of this killing process is obtained as d0p2
is divided by the mortality rate of effector cells (E), µ2.
Accordingly, stability condition (3) characterizes the range of

the tumor growth rate r, for which immune activity I1 is capable of

killing tumor cells, to a stage where the immune system is in

homeostasis. For smaller values of I1, the tumor’s growth rate

dominates and the tumor-free equilibrium destabilizes.

4.1.2 Tumor-free equilibrium (under treatment)

EB2 = (M∗,T∗, E∗) =
m
m1

,   0,  
d0
m2

� �
:

At this point, no tumor cells are present, and the immune

system is in homeostasis, as outlined for EB1. One might wonder,

however, how an equilibrium in which chemotherapy is present in

the system can indicate a cure for a disease. We resolve this issue by

referring back to the model’s structure. The term m
m1

reflects a very

small amount of MMC. Recall that the instillation rate, m, is

obtained by division of the drug dose m0, by t, which is close to

the number of simulated days. Moreover, in EB2, m is divided by

MMC washout rate, µ1. Using the estimated parameters of the

model, this value is of 0.311[µM], implying that beyond 99.99% of

the drug dose m0 was cleared, i.e., without side effects or toxicity. In

other words, we suggest that this equilibrium point indicates cure

only under the assumption that there remains a small amount, M∗,
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of MMC in the bladder (under continuous therapy for a prolonged

period of time).

Stability: The eigenvalues of the Jacobian at this equilibrium are:
�l = ½ − m1, r −

p2d0
m2

−
p1

m
m1

( m
m1
+a) ,−m2�: Therefore, all eigenvalues are

negative, if:

r <
p2d0
m2

+
p1

m
m1

m
m1
+ a

� � : (4)

The tumor-free (cure) equilibrium EB2 is locally asymptotically

stable when r< I1 + I2 and unstable when r > I1 + I2.

A biological understanding of this criterion may be introduced

as follows. At equilibrium, the first term on the right hand, I1, is the

net daily killing rate of tumor by immune cells, as highlighted in

condition (3). In the same way, the second term, I2, is the net daily

killing rate of tumor by MMC chemotherapy:
1. I2 involves the MMC source, m molecules of drug that are

introduced daily, multiplied by the killing rate of tumor

cells via MMC effects, p1, to give the daily MMC efficacy.

2. This efficacy, p1m, is limited by MMC decay, at a daily rate

µ1, and the saturation effect given by the Michaelis-Menten

form, with a half-saturation parameter, a.
Therefore, the right hand of (4) reflects the sum of all the killing

effects of the tumor, by both the immune system and chemotherapy

treatment. When this total killing rate is greater than the tumor

growth rate r, the tumor-free equilibrium is stable (numerical

simulation appears in Supplementary Figure S4). Should the

tumor growth rate, r, be larger, the tumor’s strength governs the

process and the equilibrium loses stability. The criterion shows

the ranges for r, within which constant MMC treatment, together

with effector cells (E), can clear the tumor to a state where, similar to

EB1, the immune system is in homeostasis, free from side effects.
5 Results

We begin with formulating conditions for disease-free states

through stability analysis. Subsequently, we compare the behavior of

model simulations to clinical data, and conduct a numerical parameter

sensitivity analysis on estimated parameters. Furthermore, we present

an application in MMC dosage determination.
5.1 Mathematical conditions for
tumor extinction

It is a main interest to identify the criteria for which tumor is

cleared. Two equilibrium points in the current model exhibit the

desired result of a healthy bladder, i.e., T = 0:

1.Homeostasis:When tumor is untreated, the body relies solely

on its immune cells for defense. With respect to EB1, the

homeostasis equilibrium, the stability criterion (4), to maintain

the state of no tumor cells:
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r <  
p2d0
m2

: (3)

2. Tumor-free equilibrium: A similar stability-criterion was

found for EB2, the tumor-free equilibrium:

r <
p2d0
m2

+
p1

m
m1

m
m1
+ a

� � : (4)

The competition of immune cells alone or in combination with

chemotherapy against tumor cells is reflected in each criterion here

by tumor killing and tumor forming activities, respectively. That is,

as outlined in criterion (3), the destructive mechanisms of the

immune system alone against tumor cells are strong enough to

eliminate tumor cells only up to a certain threshold, I1, which is the

upper bound for the tumor growth rate, r. This theoretical threshold

increases in the criterion outlined by Equation (4), as MMC’s killing

ability, I2, is added to the immune killing ability I1. As a result, the

synchronization of all tumor killing effects enables to eliminate even

more rapidly growing tumors, i.e., r ∈ (I1, I1 + I2). For smaller

destruction rates in each criterion, the tumor’s proliferation

capacity dominates, resulting in the destabilization of EB1 and EB2.
5.2 Model examination

We are now interested in comparing the above model [system

(1)] with data obtained from biological studies as well as previous

mathematical models, as described below and in Table 1 and

Supplementary Table S2. Computer simulations were performed

using fifth-order adaptive step Runge-Kutta integration, as

implemented in the ode45 subroutine of MATLAB, to visualize

approximations to the solution for the model ODEs. We also tested

ode23s for systems with varying time scales involving cells and

molecules. However, results showed no observable difference

compared to the ode45 solver, indicating both are suitable for

simulations. We start by illustrating distinct case scenarios of the

disease as captured by our model. Then, we study the behavior of

our model when confronted with oncological research.

Since no geometrical considerations are being taken in this

paper, we used the term tumor size in the meaning of the number of

tumor cells. To incorporate oncological terminology into the model,

we followed the methodology outlined in (20) to translate the

prognostic factor ‘tumor size’ for recurrence in BC (80) into

tumor cell count. The tumor surface area was calculated assuming

a circular shape and a 3-cells depth to determine the volume using

the length of cell being approximately 10µm. Given that 1mm3 ∼
106 cells (81), the formula of the number of tumor cells is:

#Cells  = p(radius)2h�  106

≈ p �  (radius½mm�)2 �  3 �  (10−2½mm�) � 106  ½cells�
1  ½mm3� :

(5)

The presence of recurring or residual tumors after TUR has

been documented in the literature (39, 82). Therefore, we use the

reasonable assumption that the diameter of each residual tumor is

not more than the length of resection. Utilizing the formula given in
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Equation (5) we derive the corresponding initial tumor cells count,

T(0), with regard to the initial clinical tumor sizes.
5.2.1 Theoretical simulations
We simulated three types of scenarios according to the initial

tumor cell count. The choices for tumor sizes based on the

information that small BC tumors typically range from less than

20[mm] in diameter (83), with the lower limit of sensitivity for

detecting BC tumors ranging from 5 to 10[mm] (84). Medium

tumors are defined within the range of 20-50[mm], while large

tumors are classified as > 50[mm] in the study of Loloi et al. (83):
1. The initial tumor cell count for a tumor of “small” size T(0)

= 5.3 × 106, corresponding to a size of 15[mm].

2. The initial tumor cell count for a tumor of “medium” size T(0)

= 1 × 107, corresponding to a size of 20.6[mm].

3. The initial tumor cell count for a “large” tumor T(0) =

6.62×107, corresponding to a size of 26.5[mm]. This value is

below the highest reported value of 75[mm], where

successful tumor resections were performed, as noted

in (85).
In each numerical simulation, we showed the evolution of

tumor in time with and without treatment. The simulated “small”

tumors can be eliminated by the immune system (effector cells) only

for initial tumor size of T(0)< 7.36 × 106 (see Figure 2A), and if

untreated, tumors with greater T(0) grow until they reach the

carrying capacity. With the killing effects of MMC, as specified

above, all treatment simulations resulted in decreased tumor cell

counts (T), compared to the no-treatment scenario (see Figures 2A-

C). However, MMC could eliminate “small” tumors for initial

tumor size which is T(0) ≤ 2.93 × 107. This suggests that MMC

has a curative effect within a certain range of initial tumor cell

numbers, which, for the results in Figures 2A–C, falls within 7.36 ×

106≤ T(0) ≤ 2.93 × 107. If the number of cells exceeds a theoretical

threshold for “large” tumors, the treatment will not be sufficient to

cure BC (see Figure 2C). It is noteworthy that even when initial

tumor sizes fall below this theoretical threshold, variations in model

parameters, such as increased tumor growth rate r or decreased

immune production rate d0, can result in a rise in tumor cell count,

manifesting as tumor cell count beyond the theoretical threshold.

To demonstrate this influence on tumor cell count, we conducted

simulations with parameter variations (see Subsection 4.3 of the

Supplementary Information).

The next step is to investigate the behavior of effector cells (E).

In all simulations (Figures 2A-C), MMC treatment resulted in a

higher effector cell counts compared to the untreated scenario.

This is particularly evident in simulations with larger initial tumor

sizes (Figures 2B, C), and subtly visible in Figure 2A due to the

logarithmic scale of the y-axis; a zoom plot revealed a gap between

treated and untreated scenarios, declining from about 1,700 cells

after 1 day of simulation to approximately 50 cells only after 250

days. Studies of Hori et al. (54, 55) indeed suggest that

immunosuppressive cells called regulatory T-cells (Tregs) which

regulate effector cells counts, are reduced by MMC.
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A

B

C

FIGURE 2

The behavior of urothelial tumor cells (black lines) and effector cells (blue lines), with (solid lines) and without (dashed lines) continued application of
MMC. Initial conditions are found in the Supplementary Information. (A) Tumor elimination with and without chemotherapy. The elimination is
slightly faster under continued application of MMC chemotherapy. (B) Cure only under chemotherapy. Without treatment there is a logistic growth
of tumor cells (T), so there is no cure. (C) Tumor persistence with and without chemotherapy. Effector cells decrease, but more significantly
without treatment.
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Regarding treatment outcomes, in cases where a cure is

achieved, effector cell counts consistently increased throughout

the entire simulated time (Figures 2A, B), approximately starting

from the end of day 1 after the initial reduction. The initial

reduction during the first day in all simulations (Figures 2B, C)

reflects tumor burden (p3ET) in Equation (1c), which, for given

parameters and initial conditions, determines the sign of the term
dE
dt . Subsequently, a possible interpretation is that the dynamics are

determined by the treatment outcome: an increase in effector cells

over time if treatment is successful (T declines), or a decrease if

tumor persistence occurs (T increases). Distinct behavior is shown

in treatment failure (Figure 2C), showcasing an interesting case

with a slight decrease in effector cell count from 1 day after

treatment to the end point of the 400-day simulation. This can be

explained by the larger initial tumor size, as all other initial

conditions were identical to those in the other simulations. In

other words, beyond Tregs regulation, tumor cells may indirectly

induce a slight decrease in effector cells by triggering Tregs elevation

beyond a specific threshold. Hori et al. (54, 55) do emphasize that

cancer cells induce activation of Tregs, which play a role in

controlling immune escape in cancer. The combined effects of

MMC and the immune system’s killing effects appear insufficient

for the complete eradication of tumor cells in this case.

5.2.2 Qualitative comparison to
oncological studies

The model is designed to find generic qualitative insights

intrinsic to its structure. Accordingly, simulations should not be

interpreted as predictions. In the absence of specific observed

clinical data, we refer to our approach as ‘qualitative agreement’,

based on the available observations and a comparison with

literature consistency. We first confronted the model output to

studies of NMIBC without MMC chemotherapy. In two studies (80,

83) that focused solely on TUR, larger-sized tumors were associated

with a higher likelihood of developing postoperative complications

and death. The model simulations without treatment show that

indeed increasing the initial tumor size changed tumor dynamics

from tumor elimination to tumor persistence (see Figures 2A-C).

Under the model assumption of tumor size, our simulations

demonstrate similar behavior: tumors that exhibit a cell count

below 7.36 × 106[cells] (< 17.68[mm]) are eliminated by the

immune system, and for values above this threshold, no cure

is evident.

In the assessment of treatment success, a step toward validation

involves addressing the following inverse problem: given the

prescribed dose of MMC in the reported protocol, what is the

maximum threshold of initial tumor size, under the model for

achieving a tumor-free state? To solve this problem, we varied the

initial condition of tumor cell count, T(0), while keeping all other

parameters and initial conditions unchanged (see calculations and

simulations in the Supplementary Information). We used clinical

research studies that analyzed the impact of a single MMC

instillation post TUR surgery in patients with low-risk BC (tumor

size of 30[mm] or less):
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1. In the study by Solsona et al. (86), a 24-month follow-up

revealed a significant increase in the recurrence-free

interval, along with reduced recurrence and tumor rates

per year in the MMC group compared to the control group.

Our simulations, utilizing the study dosage, establish a

threshold of 1.21×107[cells], corresponding to a tumor

diameter of 22.67[mm] (see Supplementary Figure S7).

2. The prospective study of Ersoy et al. (87), showed no

recurrence of patients during the follow-up period of five

years. Utilizing their dosage plan, the model attained a

threshold of 2.14 × 107[cells], corresponding to a diameter

of 30.14[mm] (see Supplementary Figure S8).
Given that no tumor-immune specific parameters can be

extracted from these studies, the model simulations can only

hypothesize that a curative effect may extend to tumors up to a

certain x[mm] size. That is, the resulting values only allow us to

demonstrate the technical ability to calculate thresholds. However,

simulations with treatment do demonstrate curative effects up to a

diameter that exceeds those without treatment, thereby

underscoring the positive impact of MMC compared to the

control group.

In (86), recurrence was observed in some patients of study. This

can be modeled by the inter-patient variability on the biological

level- such as different tumor growth rate, different immune cells

production rate, as shown in Subsection 4.3 of the Supplementary

Information. We conclude that the obtained threshold values for

cure state are dependent on the specific choice of the parameters

which reflects a specific tumor-immune condition of the patient.

This way we can resolve the slight changes in values from the range

in these clinical studies.
5.3 Sensitivity analysis

We conducted sensitivity analysis on all model parameters (see

Figure 3). The analysis was performed with respect to the tumor cells

count (T) at day 365 in the treatment case, which implies that at this

specific time point, the total drug dosage administered to the

hypothetical patient equals the dose of a single chemotherapy

treatment (recall scaling of MMC dosage in Section 3). Following the

methodology outlined by (88), we employed Latin hypercube sampling

to generate 1000 samples, and chose the range of each parameter from

1/2 to twice its values in Table 1, adopting the strategy described in

(89). These samples were then used to calculate the partial rank

correlation coefficients (PRCC) and the p-values with respect to the

tumor cells count (T) at day 365. We observe that parameters

promoting anti-tumor dynamics, including the sources (input)

parameters of chemotherapy and the immune system (m, d0), along

with the killing and activation rates of the tumor by these elements (p1,

p2, g), demonstrate negative correlations with tumor size. Conversely,

parameters that promote tumor growth and anti-tumor dynamics—

the growth rate of the tumor (r), deactivation of immune cells (p3),

mortality rate of immune cells (µ2), and chemotherapy washout rate
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(µ1)—exhibit positive correlations with tumor size. Overall, Figure 3

reveals that the parameters p2, r, and d0 have the greatest influence on

tumor growth. In the quest for a deeper understanding of the influence

of two parameters, µ1 and a, which can be estimated in various ways in

the absence of empirical or consensus data, we conducted uncertainty

analysis (see Section 6 in the Supplementary Information).
5.4 Application for MMC
dose determination

Clinicians often consider ‘dosage determination’ as a critical

aspect in improving MMC delivery and optimizing patient

outcomes (39, 44). While variety of MMC chemotherapy

treatment programs are available (90), new auxiliary tools are yet

necessary to precisely determine the amount of MMC required to

cure a specific BC patient.

To facilitate the process of personalized dose determination, we

propose a new bio-mathematical algorithm of MMC for the

treatment of BC patients. We use the following assumptions

regarding the initial conditions of system (1), to describe patient

state after MMC treatment:
Fron
• The completeness of tumor resection- during the TUR

procedure almost all of tumor cells are removed, i.e., T(0)

≈ 0. Support for this assumption is found in the biological

literature (16, 36, 91).

• The vast majority of MMC is cleared (92, 93), so that M(0)

≈ 0. Therefore, we can choose e = m
m1

which is negligible,

such that M(0) = e.
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• There is a homeostatic production of immune cells, i.e., E(0) ≈
d0
m2
. This assumption is reasonable since MMC is generally safe

due to its limited effects to the local area of administration

(18, 37).
This way, system (1) introduces small perturbations from the

entries of the tumor-free equilibrium, EB2. As a next step, we will

manipulate the expressions for stability criterion (4) of EB2:

m <  
m1a  

p2d0
m2

− r
� �

r −   p2d0m2
− p1

m1

: (6)

To ensure that the condition in Equation (6) is biologically valid for

MMC instillation rate, m, it is essential to verify that the right hand of

(6) is positive. We obtain the condition given by Equation (7):

p2d0
m2

< r <  
p2d0
m2

+  
p1
m1

: (7)

Note that the range for r is valid only if both the numerator and

denominator of the right-hand side of criterion (6) are negative.

Utilizing local stability condition for EB2, the dynamical system

suggests cure. The obtained criterion (6) enables the calculation of

an upper bound for the MMC dose at which treatment is successful,

based on theoretically patient-specific parameters. A step-by-step

description of the algorithm can be found in Figure 4. The

algorithm categorizes patients into two groups; One group for

theoretical patients eligible for dose calculation—where the model

facilitates determining a dose below the clinically recommended

maximum. This indicates that the model identifies a dosage interval

within which a cure, according to the model’s criteria, is achieved.
FIGURE 3

Statistically significant PRCC values (p-value< 0.01) for T(t) at day 365.
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FIGURE 4

Algorithm for MMC drug dose determination in treating BC patients. This image was created with BioRender.com.
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Should the upper bound surpass the recommended maximum, we

interpret this as over-toxicity, emphasizing the significance of

considering the recommended range. It is important to note that,

in this particular case, the recommended range is within the

curative range. Yet, for enhancing the specificity of the curative

range, future efforts will require a focus on determining a lower

bound for the curative range, in addition to restricting it by the

upper bound. The second group, labeled as ‘theoretical non-

responders’, consists of patients excluded due to theoretically

specific parameters not meeting the cure conditions (6) − (7) or

receiving an insignificantly small calculated dose.

To demonstrate the robustness of the method for a large number

of patients in a 3-D plot, we adopted a systematic approach through

virtual experiments with variations of all parameters except r which is

determined by the algorithm. The algorithm was used for 2,000

different hypothetical patients to understand how parameters affect

the performance of the method (see Figure 5). Variations of

parameters from Table 1 were performed, but such that I1 < r

holds. This choice enabled us to exclude instances where parameter

sets do not provide positivity of MMC dosage. Thus, the focus was on

cases for which a feasible MMC dosage could be calculated; excluded

cases are viewed as theoretical non-responders, i.e., further

investigation is required beyond the scope of this paper. For each

patient, criteria (6)−(7) provided a range of growth rates r for which

MMC dosage is positive. For each one of the calculated intervals of r

values, one value was chosen randomly by the Matlab rand function,

and for this value an upper bound for therapeutic MMC dosage was

calculated in units ofmg. It is noteworthy to observe that intervals of r

with higher values are observed alongside higher values of d0 and p2.
6 Discussion

Arguments regarding MMC’s role in curing NMIBC have been

made in many articles (56, 58, 75). This study adds a quantitative

basis to these considerations, by showing that under the model
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assumptions, the complex biological processes of NMIBC, the

immune system, and MMC interactions can be captured by a

relatively simple 3-dimensional system. The model exhibits four

non-negative equilibrium points, which depend on chemical and

biological related parameters. The nontrivial dependence of the

dynamics on tumor growth (r) is emphasized as oncologically

relevant. Particularly, the model analysis in biological context

suggested the following distinct dynamical patterns, which are

explicitly dependent upon the appropriate range of r (see

Supplementary Figures S1-S4). Under no treatment, m = 0,

homeostatic phase of a healthy bladder is conserved for low

tumor formation rates r < I1, meaning that the immune system

alone is capable of clearing bladder tumor cells. The tumor is

eradicated exponentially fast as immune activity I1 increases.

Violation of this condition results in a logistic expansion of the

tumor. When MMC is administered, m > 0, it is important to note

that stability of tumor-free equilibrium, means that as soon as

MMC chemotherapy is added, the killing effects of chemotherapy

are added to the process, enabling the elimination of tumors with a

faster growth rate than the homeostatic phase, r < I1 + I2. For high

tumor formation rates r > I1 + I2, in view of the limited killing effects

of the immune system and MMC, it is impossible to cure tumors

that proliferate very rapidly.

In light of the increasing prominence of mathematical models in

cancer research (7), our model did add new elements into the current

discussion on treating BC patients, as well as detecting

hypothetical properties that are not evident in experimental studies.

Chemotherapy protocol investigation is one of these features. Based

on a distinctive viewpoint of local stability, we designed a new

method to calculate an upper bound to the drug dose, m0, for

which chemotherapy is successful. At its current stage, this method

remains theoretical, offering valuable insights into the structural

dynamics of the model and its capacity to accommodate unit

conversion factors relevant to drug measurements via stability

analysis. The analytical procedure allows to classify patients into

two groups given a theoretically specific set of patient’s parameters:
A B

FIGURE 5

The model algorithm applied for 2,000 hypothetical patients. (A) Ranges for parameters r, such that m is positive. The blue and red dots correspond
to the left and right interval endpoints in (7), respectively. The observed intervals are depicted in the figure using a zoom-in view to enhance
visualization. (B) Upper bounds for MMC dosage. The upper bound for each hypothetical patient was computed using criterion (6).
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those who will benefit from the treatment and those who will not.

When the upper bound of MMC amount cannot be calculated or is

negligible, the model output does not suggest cure. Otherwise, it is

possible to determine the individual drug dosage as shown in

Figure 4. We concluded that this kind of range is clinically relevant

because it may potentially reveal the effectiveness of the treatment

protocol in a nontrivial way compared to classic pharmacological

studies which are PK/PD-model-based (9). Furthermore, only a

limited number of clinical MMC dose comparison studies have

been conducted. For example, in (94), the researchers performed a

prospective, randomized study to compare 30 mg and 40 mg of

MMC dose for BC patients. This approach is realistic since it provides

the actual biological results. However, due to the impracticality of

testing all possible dosing options in clinical trials, the efficacy of these

studies is inherently constrained.

The clinical observation that low-risk bladder cancer (BC)

patients form an inhomogeneous group, that can be stratified by

tumor size (95), is highlighted in the model through simulations

(Figures 2A-C). The simulations suggest that chemotherapy success

depends on the initial tumor size, but also on model parameters (see

Figure 3). As described in the literature (59), our simulations

demonstrate the effectiveness of MMC that in some cases offers a

better cure, and even provide a theoretical threshold of tumor cells

number that can be eliminated, given a hypothetical specific set

of parameters.

To enable the results above to help doctors evaluate the risks of

MMC treatment protocols for BC patients individually, it is

essential to measure specific clinical parameters for each one of

them. In other words, the presented parameter values and ranges

are not asserted as the single possible choice; rather, they serve to

demonstrate the adaptability of incorporating biological data into

modeling. The eventual refinement of all model parameters will be

dictated solely by future findings in biological research. To begin

with, the assessment of the tumor growth characteristics in patients

in vivo to calibrate the growth rate, r. Currently, we are not aware of

any in-vivo method to continuously track the value for this

parameter. With regard to the measurement of the MMC’s

properties in the human bladder, it is necessary to investigate the

specific washout rate µ1 and killing capacities of MMC for

calibration of the killing parameter p1 and the Michaelis-Menten

half-saturation constant a. One step in this endeavor involves the

establishment of a bio-bank comprising patient-derived BC

organoids for the assessment of drug responses (96). Similarly,

progress has been made with the examination and count of tumor

infiltrating lymphocytes (TIL) in biopsy samples (97). However,

immune cells (CTLs and DCs) production and death rates- d0, µ2,

respectively, are yet to be found in thorough measurements

supported by extensive datasets.

Current model was created to formulate explicit mathematical

relations, such that a balance between analytical tractability and

biological credibility was maintained. However, this study has

limitation by its exclusion of the spatial structure of tumors.

Existing models recognize the significance of incorporating the

spatial structure of tumors for obtaining realistic results (98–100).

Another limitation is exclusion of the heterogeneity within tumor

and immune cell populations; specific subpopulations like BC stem
Frontiers in Oncology 14
cells and Tregs are acknowledged in biological literature for their

association with resistance to MMC treatments (54, 56). For

instance, the autophagy process, known to be involved in BC

resistance to MMC, is associated with BC stem cells (56).

Furthermore, the lack of characterization of specific behaviors in

immune cell subpopulations, such as the regulatory role of Tregs in

tumor dynamics (63, 101), may lead to potential misconceptions

about immune system mechanisms. This is evident in the

assumption of constant effector cell production (d0). It does not

include important aspects of effector cell proliferation, where DCs

play a vital role in adaptive immunity by presenting antigens and

activating T cells. Activated DCs can migrate to lymph nodes to

prime naïve T cells (63), while Tregs regulate these immune

responses. These processes significantly influence effector cell

dynamics. Toward an in-depth understanding of the underlying

biology, future work should address these limitations.

Finally, MMC is currently considered one of the most effective

chemotherapy treatments after TUR to prevent NMIBC. In this

paper, we propose theoretical explanation for the fact that still, a

substantial percentage of patients fail the treatment (38–43). It is

possible that treatment failure results from tumor size, as described in

the literature (86, 87) and shown in Figure 5, or from an improper

selection of the drug dose, m0, that is implicitly reflected in the drug

instillation rate, m, of the model. In this context, improper is defined

as a set of parameters that are theoretically patient-specific and do not

meet the conditions required by this mathematical method for cure.

In particular, as outlined in the sensitivity analysis section, and as

evident from the illustrated behavior in Figure 3, for higher values of

parameters p2 and d0, in some cases yield higher values of growth rate

r such that MMC dosage could be calculated. However, this does not

guarantee a valid upper bound for dosage. Upon proper extensions

and a thorough validation, the model can potentially pave the way for

developing predictive tools for BC growth and determining curative

drug dosages.
Data availability statement

Data and code to run model simulations and generate all figures

are available at https://github.com/MYAUni/MMC-Model. Further

inquiries can be directed to the corresponding author.
Author contributions

MY: Visualization, Writing – original draft, Writing – review &

editing, Formal analysis, Software, Data curation. SB-M:

Conceptualization, Project administration, Supervision, Funding

acquisition, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research was funded by Ariel University.
frontiersin.org

https://github.com/MYAUni/MMC-Model
https://doi.org/10.3389/fonc.2024.1352065
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yosef and Bunimovich-Mendrazitsky 10.3389/fonc.2024.1352065
Acknowledgments

The authors would like to thank Dr. Sarel Halachmi of the Bnai

Zion Medical Center in Haifa, for the helpful information and

fruitful discussions. We are grateful to Dr. Teddy Lazebnik and Dr.

Gili Hochman for helpful comments and suggestions. Graphical

figures (Figures 1 and 4) were created using BioRender.com.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Oncology 15
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2024.1352065/

full#supplementary-material
References
1. Sung H, Ferlay J, Siegel R, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA: Cancer J Clin. (2021) 71:209–12. doi: 10.3322/
caac.21660

2. Jubber I, Ong S, Bukavina L, Black PC, Comperat´ E, Kamat AM, et al.
Epidemiology of bladder cancer in 2023: A systematic review of risk factors. Eur
Urol. (2023) 84:176–90. doi: 10.1016/j.eururo.2023.03.029

3. van Hoogstraten LMC, Vrieling A, van der Heijden AG, Kogevinas M, Richters A,
Kiemeney LA. Global trends in the epidemiology of bladder cancer: challenges for
public health and clinical practice. Nat Rev Clin Oncol. (2023) 20:287–8. doi: 10.1038/
s41571-023-00744-3

4. Lowengrub J, Frieboes H, Jin F, Chuang YL, Li X, Macklin P, et al. INVITED
ARTICLE: Nonlinear modelling of cancer: bridging the gap between cells and tumours.
Nonlinearity. (2010) 23. doi: 10.1088/0951-7715/23/1/R01

5. Rosenblum D, Joshi N, Tao W, Karp J, Peer D. Progress and challenges towards
targeted delivery of cancer therapeutics. Nat Commun. (2018) 9. doi: 10.1038/s41467-
018-03705-y

6. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy:
understanding the characteristics of tumor-infiltrating immune cells and their
therapeutic implications. Cell Mol Immunol. (2020) 17:1–15. doi: 10.1038/s41423-
020-0488-6

7. Rockne RC, Hawkins-Daarud A, Swanson KR, Sluka JP, Glazier JA, Macklin P,
et al. The 2019 mathematical oncology roadmap. Phys Biol. (2019) 16:041005.
doi: 10.1088/1478-3975/ab1a09

8. Altrock P, Liu L, Michor F. The mathematics of cancer: Integrating quantitative
models. Nat Rev Cancer. (2015) 15:730–45. doi: 10.1038/nrc4029

9. Barbolosi D, Ciccolini J, Lacarelle B, Barlési F, André N. Computational oncology
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