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Background: Cervical cancer (CC) is a highly malignant gynecological cancer

with a direct causal link to inflammation, primarily resulting from persistent high-

risk human papillomavirus (HPV) infection. Given the challenges in early

detection and mid to late-stage treatment, our research aims to identify

inflammation-associated immune biomarkers in CC.

Methods: Using a bioinformatics approach combined with experimental

validation, we integrated two CC datasets (GSE39001 and GSE63514) in the

Gene Expression Omnibus (GEO) to eliminate batch effects. Immune-related

inflammation differentially expressed genes (DGEs) were obtained by R

language identification.

Results: This analysis identified 37 inflammation-related DEGs. Subsequently, we

discussed the different levels of immune infiltration between CC cases and

controls. Weighted gene co-expression network analysis (WGCNA) identified

seven immune infiltration-related modules in CC. We identified 15 immune DEGs

associated with inflammation at the intersection of these findings. In addition, we

constructed a protein interaction network using the String database and

screened five hub genes using "CytoHubba": CXC chemokine ligand 8 (CXCL8),

CXC chemokine ligand 10 (CXCL10), CX3C chemokine receptor 1 (CX3CR1), Fc

gamma receptors 3B (FCGR3B), and SELL. The expression of these five genes in

CC was determined by PCR experiments. In addition, we assessed their

diagnostic value and further analyzed the association of immune cells with them.

Conclusions: Five inflammation- and immune-related genes were identified,

aiming to provide new directions for early diagnosis and mid to late-stage

treatment of CC from multiple perspectives.
KEYWORDS
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1 Introduction

Cervical cancer (CC) is one of the most frequent malignant

tumors in women, imposing a substantial burden on patients, their

families, and society at large. In 2020, the number of new cases and

deaths from cervical cancer will remain persistently high globally,

with China reporting the highest incidence and mortality rates for

CC (1). Despite noteworthy advancements in the diagnosis and

management of CC in the last few years, the results remain

unsatisfactory. Presently, colposcopy and cervical biopsy are the

main diagnostic methods for CC (2). These techniques, however,

rely heavily on subjective judgement, resulting in a low penetration

rate, poor diagnostic sensitivity and specificity, and reduced

predictive efficiency. This, in turn, contributes to an annual

growth in the number of CC cases, particularly among younger

age groups. Early stage CC can be managed surgically and has a

good prognosis, while advanced CC has a significantly worse

prognosis (3). Therefore, it is important to prioritize early

diagnosis and adjuvant treatment.

CC is primarily caused by chronic inflammation, and its main

causative factor is persistent infection with high-risk types of human

papillomavirus (HPV). HPV, a spherical DNA virus, targets epithelial

cells, disrupting the normal cell cycle and promoting cytogenetic

damage, resulting in abnormal cell division (4). The immune system

in most cases effectively clears HPV infections, with only 1% of cases

progressing to CC (5). Therefore, the development of CC is related to

HPV infection as well as to the immune system, which has a major

impact on immune surveillance and clearance (6). The human immune

system has been shown to be a determinant of cancer development and

progression, with immune cells such as Immune cells such as

macrophages, B cells, natural killer cells, and dendritic cells being key

players in the process (7). Furthermore, the type, distribution, and

degree of infiltration of immune cells within different tumors vary

significantly (8). Moreover, many reports have demonstrated that

immune cell infiltration is critical in the development, progression,

and treatment of CC (9–11). However, there are no reports that have

studied the combination of inflammation and immune cell infiltration

in CC. Thus, we identified five inflammation and immune infiltration

related biomarkers including CXC chemokine ligand 8 (CXCL8), CXC

chemokine ligand 10 (CXCL10), CX3C chemokine receptor 1

(CX3CR1), Fc gamma receptors 3B (FCGR3B) and SELL. These

findings may contribute to the early detection and treatment of CC,

and are valuable for establishing non-invasive diagnostic methods,

identifying new therapeutic targets and elucidating the mechanistic

studies of CC development.
2 Methods

2.1 Data processing and screening of
differentially expressed genes

Gene expression microarrays of CC were obtained in the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/

geo/), including GSE39001 (CC = 28, control = 24) and GSE63514
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(CC = 43, control = 12). These datasets were normalized to the data at

the time of upload. When multiple probes corresponded to the same

gene, expression values were averaged. To eliminate batch effects and

other unwanted variations between the two datasets, the bioconductor

Substitute Variable Analysis (SVA) package was used (12). The

processed data were screened for DEGs through the “limma”

package, with screening criteria set at P.adjust < 0.05 and |log2FC|

>1 (Fold Change). Subsequently, gene heat maps and volcano plots

were drawn using the R software, with volcano plots using log2FC as

the horizontal coordinate and log10 (P.adj) as the vertical coordinate.
2.2 Identification of inflammation-
related DEGs

We used the GeneCards database to identify 320 inflammation-

related genes with correlations greater than 6. To categorize them

for further analysis, we utilized the “VennDiagram” R package,

intersecting these genes with DEGs associated with inflammation in

order to define them as inflammation-related DEGs.
2.3 GO and KEGG analysis

We performed GO functional and KEGG pathway enrichment

analyses. GO functional enrichment analyses included Biological

Process (BP), Cellular Component (CC) and Molecular Function

(MC). P<0.05 indicates that the results are significantly differentially

enriched, which can be visualized using the R software ggplot2 package.
2.4 Immune cells infiltration
correlation analysis

Using standardized gene expression patterns, CIBERSORT is

capable of quantifying the relative proportion of infiltrating

immune cells in a given sample. By downloading the

corresponding data from the CIBERSORT website (http://

CIBERSORT.stanford.edu/) and performing CIBERSORT analyses

to merge the expression data, we can calculate immune cell

infiltration (13). We use a threshold of p < 0.05 to filter the

samples. We calculated the percentage of each immune cell type

in each sample and analyzed the association between the number of

22 immune cells and new genes. The corplot and vioplot packages

in R were used to visualize the result.
2.5 Weighted gene co-expression
network analysis

We employedWGCNA to investigate gene interactions. Firstly, we

imported processed data into WGCNA, then eliminated outlier

samples to enhance the accuracy and reliability of the network

construction results. Following this, We construct the scale-free

network using the function “pick soft threshold”, selecting a soft

power of b = 2. Then we transform the adjacency matrix into a
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topological overlap matrix (TOM) and compute the dissimilarity (1-

TOM). Fourth, the functional detection module was extracted using

hierarchical clustering and a dynamic tree. To classify genes with

similar expression profiles as gene modules, average-chained

hierarchical clustering was performed based on a TOM-based

dissimilarity measure; the minimum size of the gene dendrogram to

60 (genome) was set. Finally, the WGCNA software package can be

used to calculate correlations between differentially infiltrating immune

cells and gene modules. We can identify candidate modules that are

related to differential infiltration of immune cells through calculating

correlation coefficients. Immune-related inflammation differentially

expressed genes (Immune-related inflammation DGE) were further

identified by plotting a Wayne diagram visualizing the intersection of

immune-related differentially expressed genes (Inflammation-related

DEGs) with genes in the significant modules.
2.6 PPI network construction and
screening of key genes

The STRING database (https://www.string-db.org/) enabled us to

build PPI networks of target genes. The screening conditions were a

reciprocal score of > 0.4. The PPI network can be visualized using

Cytoscape software (http://www.cytoscape.org/). With the help of the

cytoHubba plugin in Cytoscape, we were able to screen the five most

important genes (hub genes) using the MCC algorithm.
2.7 Construction and prediction of
regulatory networks of potential TF and
miRNA target genes

The miRNet online database (https://www.mirnet.ca/) was used

to find out possible miRNA target diagnostic genes and to predict

upstream transcription factors (TFs). To visualize these results,

Cytoscape software can be used.
2.8 ROC curve analysis and
expression analysis

The ‘pROC’ package was employed to plot Receiver Operating

Characteristic (ROC) curves to validate the accuracy of each hub

gene diagnosis (14). Hub genes with AUC>0.7 were considered

important for disease diagnosis.
2.9 Correlation analysis of infiltrating
immune cells with diagnostic genes

We performed Spearman correlation analysis between infiltrating

immune cells and diagnostic genes based on the above immune
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infiltration results. Also to show the correlation more intuitively, we

used visualization tools to generate lollipop plots showing the

association between diagnostic genes and immune cells. The above

process was implemented by corrplot and ggpubr packages in R.
2.10 PCR validation of expression

In this study, we collected tissue samples from those who

underwent colposcopy between January and April 2023 for abnormal

CC screening. Inclusion criteria were: single HPV16 infection; local

residence for at least one year; and none were pregnant, had not

undergone hysterectomy and treatment for cervical or vaginal lesions,

and had no history of other malignancies. By rigorously matching the

epidemiological data, including age ( ± 2 years), number of

pregnancies, number of births, and number of sexual partners, we

finally selected 5 cases of chronic cervicitis and 6 cases of CC tissue with

a clear pathological diagnosis for the validation study of the gene. The

clinical stages of CC in this group were all ≤ stage IIa1. Written

informed consent was obtained from all participants and the study was

also approved by the Ethics Review Committee of the Second Hospital

of Shanxi Medical University [IRB no. (2019) YX (280)].

We examined the expression of target gene in HPV16-positive

normal and cervical cancer tissues using real-time PCR reverse

transcription methods under suitable conditions. Each group

contained 5-6 samples. The real-time fluorescence quantitative

PCR experimental experiment consisted of the following steps:

firstly, a pre-denaturation of 30 seconds at 95°C; followed by 40

cycles of PCR reaction, each cycle lasting 3 seconds and still at 95°C;

and finally 30 seconds at 60°C. Cycling threshold (Ct) values were

recorded, and the 2-DDCt function was applied to compute target

gene expression. To accurately measure the relative amount of

change in gene expression, we normalized the data using 18S rRNA
TABLE 1 Primers for PCR assay.

Name Primer sequence

CXCL8-F CTCTTGGCAGCCTTCCTGATTTC

CXCL8-R GGGTGGAAAGGTTTGGAGTATGTC

CXCL10-F AGGGTGAGAAGAGATGTCTGAATCC

CXCL10-R AGACCTTTCCTTGCTAACTGCTTTC

CX3CR1-F CCTGTCCATATTCTACTCCGTCATC

CX3CR1-R GGCTTCTTGCTGTTGGTGAGG

FCGR3B-F GCGTGCTTGAGAAGGACAGTG

FCGR3B-R TGTGGCAGCGTCAATGAAGTAG

SELL-F ACAACAAGAAGAACAAGGAGGACTG

SELL-R TGGCAGGCGTCATCGTTCC
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or GAPDH as internal reference standards. Please refer to Table 1

for information on specific primer sequences.
3 Results

3.1 Identification and functional
enrichment analysis of inflammation-
related DEGs

After analyzing the processed data, we detected 520 differentially

expressed genes (DEGs), comprising 240 upregulated and 280
Frontiers in Oncology 04
downregulated genes (Figures 1A, B). These screened DEGs were

further intersected with inflammation-related genes to identify 37

inflammation-related DEGs (Figures 2A, B). Subsequently, we

conducted GO and KEGG enrichment analyses on the obtained 37

inflammation-related DEGs to explore the biological functions

related to inflammation in CC (Figures 2C, D). In the GO

enrichment analyses (see Figure 2C), we found that these genes

were associated with various processes, including response to

lipopolysaccharide, specific granule lumen, and cytokine receptor

binding. For the KEGG enrichment analysis (Figure 2D), our findings

revealed associations with pathways such as the IL-17 signaling

pathway, lipid metabolism, and TNF signaling.
A

B

FIGURE 1

Thermogram (A) and volcano (B) diagram for identification of DEGs.
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3.2 Analysis of immune infiltration

Figures 3A, B show the immune cell profiles for 22 distinct types

identified in CC and normal tissues. Figure 3A shows the

proportions of infiltrating immune cells within each sample.

Based on the data in Figure 3B, we can find significant differences

(P<0.05) between CC and normal tissues (P<0.05) in the 3 immune

cell types. These include resting mast cells, M1 macrophages, and

CD4+ memory resting T cells. Specifically, the CC group exhibited

increased macrophages M1, as well as decreased mast cells resting

and T cells CD4 memory resting compared to the control group.
3.3 Construction of WGCNA immune-
expression network and acquisition of
key modules

WGCNA was used to analyze gene expression correlations,

resulting in 1445 genes showing significant correlations with each

other. A soft threshold of b = 6 was set for gene expression

correlation, and a weighted gene co-expression network was

exhibited (Figure 4A). Subsequently, we conducted cluster

analysis with a minimum module size set to 60, generating

distinct gene modules and hierarchical clustering trees. These

trees were then clipped with a similarity coefficient of 0.25,
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resulting in seven gene modules (Figures 4B, C). Notably, among

these modules, MEblue and MEbrown showed the strongest

correlation with features (immune cell infiltration in CC). The

blue module was highly negatively correlated with activated mast

cells, and the brown module was highly positively correlated with

CD4+ memory T cells and gamma delta T cells. Therefore, we

determined the close correlation of these two modules with immune

infiltrating cells and analyzed them further.
3.4 Identification and functional
enrichment analysis of immune-associated
inflammation DEGs

We screened the Inflammation-Related DEGs intersecting with

important modular gene fetches to obtain 15 immune-associated

inflammatory DEGs (Figures 5A, B). We analyzed these genes for

KEGG pathway enrichment and GO annotation (Figures 5C, D).

The GO analysis showed that these 15 genes were mainly enriched

in processes such as leukocyte migration, the external side of the

plasma membrane, and CXCR chemokines. In addition, the KEGG

analysis confirmed their enrichment in pathways such as the IL-17

signaling pathway, viral protein interaction with cytokines and

cytokine receptors, and NF-kappa B signaling pathway, etc.
A B

DC

FIGURE 2

Identification of inflammation-related DEGs and functional enrichment analysis. (A) Venn diagram of DEGs and inflammation-related genes. (B)
Heatmap for identification of DEGs. (C) GO analysis of inflammation-related DEGs. (D) KEGG analysis of inflammation-related DEGs.
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3.5 Construction of protein interactions
network and screening of hub genes

In order to select the most important core genes from the above

15 genes, we used the String database to construct protein

interaction networks and used Cytoscape software to present the

results. (Figure 6A). Simultaneously, we used the Cytoscape package

“CytoHubba” to screen five hub genes in the center of the

interaction network, including CXCL8, CXCL10, CX3CR1,

FCGR3B, and SELL (Figure 6B). In addition, correlations between

these five hub genes are shown. These five genes are the core of the

protein interaction network; along with their expression varying in

tumor cells, they also interact with most other differentially

expressed genes.
3.6 miRNA-TF-mRNA regulatory network

The interaction network comprised five Hub genes, 80

miRNAs, and 39 TFs (Figure 7). Among these, 29 TFs, including
Frontiers in Oncology 06
ATF4, CEBPB, and DDIT3, regulate CXCL8 expression. Six TFs:

IRF1, IRF3, IRF7, NFKB1, RELA, and STAT1 regulate CXCL10

expression. Two TFs, GATA4 and YY1, regulate FCGR3B

expression, while SELL is regulated by one TF and KLF2.
3.7 ROC curve analysis of hub genes

We assessed the value of five hub genes in the diagnosis of CC

by plotting ROC curves. (Figure 8). The five hub genes (AUC>0.7)

could be used as diagnostic markers. Specifically, the AUCs of these

genes were 0.815, 0.801, 0.823, 0.798, and 0.796, signifying their

substantial diagnostic value.
3.8 Correlation analysis between hub
genes and immune cells

Using the CIBERSORT technique,we investigated the

correlation between CXCL8, CXCL10, CX3CR1, FCGR3B, and
A

B

FIGURE 3

Differences in immune characteristics between normal and CC tissues. (A) Relative percentages of 22 immune cells in normal and CC tissues.
(B) Comparison of infiltrating immune cells between normal and CC tissues.
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A B

C

FIGURE 4

Co-expression network analysis of immune-related genes. (A) Optimal soft threshold power. (B) Immune-related co-expressed gene modules
indicated by different colors under the gene tree. (C) Heatmap of association between WGCNA modules and immune cells.
A B

DC

FIGURE 5

Identification of Immune-associated inflammation DEGs and functional enrichment analysis. (A) Venn diagram of inflammation-associated DEGs and
important modular genes. (B) Heatmap for identification of Immune-associated inflammation DEGs. (C) GO analysis of Immune-associated
inflammation DEGs. (D) KEGG analysis of Immune-associated inflammation DEGs.
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A B

FIGURE 6

(A) Protein-protein interaction network. (B) Hub genes extracted from the PPI network.
FIGURE 7

miRNA network and TF network of Hub genes. Green nodes represent miRNAs and blue nodes represent TFs.
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SELL expression levels and infiltrating immune cells in CC.

Specifically, CXCL8 exhibited strong positive correlations with

Macrophages M0 and CD4 memory-activated T cells, while

displaying pronounced negative correlations with regulatory T

cells (Tregs). CXCL10 showed positive correlations with

Macrophages M1 and negative correlations with Tregs. CX3CR1

displayed positive correlations with T cell gamma delta and highly

negative correlations with activated Mast cells. FCGR3B showed

positive correlations with neutrophils and marked negative

associations with CD4+ memory resting T cells. SELL exhibited

pronounced positive correlations with CD4+ memory-activated T

cells and Macrophages M1, while showing negative correlations

with regulatory T cells (Tregs). (Figure 9).
3.9 Expression levels of five genes
in tissues

We included 5 cases of chronic cervicitis tissues and 6 cases of

CC tissues, in which the expression level of each gene was examined

separately. Among them, qPCR was performed for CXCL8,

CXCL10, FCGR3B and SELL with GAPDH as an internal

reference, and CX3CR1 with 18srRNA as an internal reference.

The results showed that the expression levels of CXCL8, CXCL10,

FCGR3B and SELL were increased compared to the control. On the

contrary, the expression level of CX3CR1 was lower, which was

consistent with our prediction (Figure 10).
Frontiers in Oncology 09
4 Discussion

CC is one of the four most prevalent gynecological

malignancies, with persistently high incidence and mortality rates

in less economically developed countries. Key risk factors for CC

including HPV infection, smoking, multiple sexual partners, and

HIV positivity. Notably, persistent HPV infection is the primary

cause of CC (15, 16). The body’s immune response typically

eliminates the inflammation triggered by HPV infection. Chronic

inflammation is caused by immune dysregulation and

autoimmunity. However, the interaction between HPV infection

and the immune microenvironment can foster chronic

inflammation, contributing significantly to the process of cervical

precancerous lesions to cancer (17). Nevertheless, few studies have

focused on biomarkers associated with inflammation and immune

cell infiltration in CC. Identifying such biomarkers could directly

facilitate disease monitoring and offer new perspectives for

targeted CC therapy, early detection and treatment, and enhanced

patient prognosis.

Inflammatory responses triggered by HPV infection are known

to be determinants of CC development and progression. In this

study, we identified 520 inflammation-associated DEGs in CC by

integrating two GEO datasets. GO and KEGG enrichment analysis

revealed that inflammation-associated DEGs are involved in

multiple cellular components, pathways, and diseases. In addition,

the key role of the immune response in CC pathogenesis has

attracted more attention. Neutrophils, macrophages, B cells,
A B

D E

C

FIGURE 8

ROC curve analysis of (A) CXCL8, (B) CXCL10, (C) CX3CR1, (D) FCGR3B, and (E) SELL.
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dendritic cells, monocytes, mast cells, and T cells of the immune

system can be abnormally infiltrated within CC (18). Therefore, we

performed an immune infiltration analysis using CIBERSORT to

compare immune cell compositions between CC and normal

samples. Moreover, we found three differences in immune cells,

with an increase in M1 macrophages and a decrease in resting mast

cells and CD4+ memory resting T cells. Furthermore, we employed

WGCNA to identify seven immune infiltration-related gene

modules. Subsequent correlation analysis revealed that the blue

and brown modules exhibited the highest correlation with CC.

These findings led to identifying 15 inflammation-associated

immune DEGs by crossing inflammation-associated DEGs with

significant gene modules. Subsequently, we performed GO and

KEGG enrichment analyses. We constructed PPI networks and

miRNA-TF-mRNA regulatory networks. Through these

comprehensive analyses, we identified five hub genes associated

with both inflammation and immune cell infiltration in CC:

CXCL8, CXCL10, CX3CR1, FCGR3B, and SELL. Recently, these

genes were identified as important factors involved in inflammation
Frontiers in Oncology 10
and immune response in the physiology and pathology of

cancer development.

CXCL8 and CXCL10 belong to the CXC chemokine family and

are predominantly secreted by endothelial cells, stromal cells, and

immune cells. The primary function of these chemokines lies in

directing inflammatory cells to the site of infection and stimulating

the release of various growth factors. Notably, these chemokines

can also be secreted by tumor cells, interacting with receptors on

autologous or other cells within the tumor microenvironment. This

dual secretion operates in an autocrine and paracrine manner,

exerting a pivotal role in inflammation, neovascularization, and

tumour growth and invasion (19–21). Existing research has

demonstrated a significant positive correlation between CXCL8

protein expression and CC (22), with HPV infection stimulating

CC cells to secrete CXCL10 (23). Our study further validates

previous findings that CXCL8 and CXCL10 expression is elevated

in cervical cancer.

CX3CR1, the only member of the CX3CR chemokine receptor

family, is a seven-transmembrane receptor coupled to a
A B

D E

C

FIGURE 9

Correlation of (A) CXCL8, (B) CXCL10, (C) CX3CR1, (D) FCGR3B, and (E) SELL with infiltrating immune cells.
A B D EC

FIGURE 10

PCR validation of (A) CXCL8, (B) CXCL10, (C) CX3CR1, (D) FCGR3B, and (E) SELL expression in CC. *P<0.05 **p<0.01
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heterotrimeric G protein. It functions as both an adhesion molecule

and a chemokine receptor by binding to its ligand, Fractalkine.

CX3CR1 is expressed on the surfaces of various cells, for example

NK cells and monocytes, and is critical in initiating the immune

response. Relevant studies have shown that CX3CR1 is crucial for

the recruitment of infiltrating immune cells and is significantly

related to clinical stage, histological type, histological grading and

distant metastasis, of some tumors (e.g., colorectal cancer,

pancreatic cancer) (24–26). However, no studies have investigated

its use in the treatment of CC. Based on our findings, we found that

CX3CR1 showed reduced expression in cervical cancer.

FCGR3B is a member of the Fcg receptor family. Not only does

it stimulate inflammatory responses, it is also a core immune

receptor that controls both humoral and innate immunity, and

plays a crucial role in maintaining autoimmune homeostasis and

response to infection. Once the balance is disrupted, the individual

has an increased susceptibility to autoimmunity and infection (27).

Numerous previous studies have suggested that FCGR3B may be a

risk factor for a range of autoimmune diseases, such as systemic

lupus erythematosus and rheumatoid arthritis (28).The exact

rationale for the role of FCGR3B in the treatment of CC is

unclear. Yan and his team extracted and sequenced total RNA

from 21 CC samples and showed that FCGR3B had high expression

levels in these samples (29). This study confirms this observation.

Therefore, FCGR3B has the potential to become a biomarker in the

diagnosis of CC and a core target for treatment, as well as providing

a new direction and reference for the prevention and treatment

of CC.

SELL, a member of the selectin family, is a cell surface

glycoprotein that induces T-cell homing and enhances T-cells

cytotoxicity against tumor cells, thereby exerting anti-tumor

effects. Our findings are consistent with previous studies (30).

However, the mechanism underlying the role of SELL in the

development of CC requires further study. Additionally, we have

observed strong diagnostic accuracy for these five indicators in CC

diagnosis. This suggests that, as key proteins related to both

inflammation and immune mechanisms, they can be used as

biomarkers for the early diagnosis and adjuvant therapy of CC.

With the deepening of scientific research, many evidences are

supporting the theory that the tumor immune microenvironment

influences malignant tumors, and at the same time, tumor-

infiltrating immune cells are showing great importance in the

detection and development of cancer. Immune factors and

immune cells in the tumor immune microenvironment play a

central role in tumor development and formation (31). Tumor

growth and progression are closely related to the degree of

infiltration of immune cells into the tumor, and this relationship

may have an impact on the efficacy of chemotherapy and

immunotherapy as well as on prognosis (32). In this study, we

demonstrated that correlation analysis between CXCL8, CXCL10,

CX3CR1, FCGR3B, SELL, and immune cells showed significant

associations. Specifically, CXCL8, CXCL10, FCGR3B, and SELL

were significantly associated with macrophage M1, whereas CXCL8,

CXCL10, CX3CR1, FCGR3B, and SELL were all associated with T
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cells CD4. In addition, CXCL8, CXCL10, CX3CR1, FCGR3B and

SELL were significantly associated with T cells CD4 memory

resting. The role of how these five genes affect the immune

microenvironment in CC remains unknown. They may alter the

tumor immune microenvironment by inhibiting or increasing

the occurrence of immune infiltration of specific immune cell

subsets of relevance, which ultimately affects the progression of

CC. For example, in gastric cancer, CXCL8 promotes an

immunosuppressive microenvironment by inducing macrophages

(33).Targeting the CXCL8-CXCR2 axis may hinder dendritic cell

activation or recruitment, which in turn exerts a critical anti-tumor

effect on colorectal cancer (34). From this, we hypothesized that

CXCL8, CXCL10, CX3CR1, FCGR3B, and SELL might affect CC

progression by regulating the infiltration level of corresponding

immune cells. Moreover, detecting the expression level of these

genes or the number of specific immune cells as well as their

functional status can predict the response to existing therapies, and

this prediction can help in the design and optimization of

individualized therapy, providing better treatment options for

patients and ultimately improving the prognosis of the disease

(35). We expect this to provide new directions for future

diagnosis and treatment of CC. However, further clinical and

experimental studies are needed regarding the complex

interactions between these genes and immune cells.

This study had some limitations. This study validated the

sample shortage, analyzed the functions of five biomarkers related

to inflammation and immune cell infiltration, and performed a

prospective analysis. Therefore, expanding the sample size is

necessary to further validate the study’s conclusions. In addition,

the conclusions drawn herein should be experimentally validated

both in vitro and in vivo.
5 Conclusion

In summary, we initially aimed to use various bioinformatic

tools and databases to identify useful and potential inflammation-

related immune targets associated with CC. Our study showed

significant differences in the expression of five genes (CXCL8,

CXCL10, CX3CR1, FCGR3B, and SELL) between CC and normal

tissues. Various immune cells such as macrophages, CD4+ T cells,

and mast cells, may exhibit diverse roles in the progression of CC.

Consequently, these cells may become biomarkers for the diagnosis

of CC, as well as key treatment targets. Hence, this study provide

new ideas and references for the prevention and management of

malignant cervical tumors.
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