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Introduction: Hypoxia plays an important role in the heterogeneity, relapse,

metastasis, and drug resistance of breast cancer. In this study, we explored the

hypoxia-related biological signatures in different subtypes of breast cancer and

identified the key prognostic factors by bioinformatics methods.

Methods: Based on The Cancer Genome Atlas (TCGA) Breast Cancer datasets,

we divided the samples into immune-activated/suppressed populations by

single-sample gene set enrichment analysis (ssGSEA) and then used

hierarchical clustering to further identify hypoxic/non-hypoxic populations

from the immune-suppressed samples. A hypoxia related risk model of breast

cancer was constructed.

Results: Nuclear factor interleukin-3 regulated (NFIL3), serpin family E member 1

(SERPINE1), FOS, biglycan (BGN), epidermal growth factor receptor (EGFR), and

sushi-repeat-containing protein, X-linked (SRPX) were identified as key hypoxia-

related genes. Margin status, American Joint Committee on Cancer (AJCC) stage,

hypoxia status, estrogen receptor/progesterone receptor (ER/PR) status, NFIL3,

SERPINE1, EGFR, and risk score were identified as independent prognostic

indicators for breast cancer patients. The 3- and 5-year survival curves of the

model and immunohistochemical staining on the breast cancer microarray

verified the statistical significance and feasibility of our model. Among the

different molecular types of breast cancer, ER/PR+ and HER2+ patients might

have higher hypoxia-related risk scores. ER/PR-negative samples demonstrated

more activated immune-related pathways and better response to most

anticancer agents.

Discussion: Our study revealed a novel risk model and potential feasible

prognostic factors for breast cancer and might provide new perspectives for

individual breast cancer treatment.
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1 Introduction

Breast cancer (BRCA) has become the most commonly

diagnosed cancer in women. The diagnosis and treatment of

BRCA are largely based on the traditional classification of the

disease based on the expression of three key receptors: the

estrogen receptor (ER), progesterone receptor (PR), and human

epidermal growth factor receptor 2 (HER2) (1). Although overall

survival has improved in recent decades, a large number of patients

still suffer from a poor response to treatments, which is largely

attributed to the heterogeneity of the tumor microenvironment

(TME) in BRCA (2).

Hypoxia is a canonical characteristic of an adverse

microenvironment that weakens most cell functions. Tumor cells

are often able to adapt themselves to hypoxia by acquiring

malignant abilities, leading to the progression of disease and

therapeutic resistance (3). It was reported that exposure to

chronic hypoxia could promote cancer cell survival upon

reoxygenation by acquiring a reactive oxygen species (ROS)-

resistant phenotype and increasing the probability of successful

metastasis (4). Several methods have been used for in vivo oxygen

content measurement and hypoxia observation in BRCA directly or

indirectly (5–7), with emerging O2 imaging techniques applied

clinically. However, the lack of convenience and productivity of

these measurements limited the in-depth application of hypoxia

research on BRCA to some degree (8).

In this study, patient data from The Cancer Genome Atlas

(TCGA) BRCA database were divided into immune-activated and

immune-suppressed populations, and the immune-suppressed

group was distinguished into hypoxic and non-hypoxic clusters.

By defining six key hypoxia-related genes, a hypoxia-related risk

model of BRCA was ultimately constructed, and a risk score

calculating formula was established. Patients with different ER/PR

and HER2 status showed distinct characteristics in risk score, drug

sensitivity, immune pathways, and TME composition. Margin

status, American Joint Committee on Cancer (AJCC) stage,

hypoxic status, ER/PR status, nuclear factor interleukin-3

regulated (NFIL3), serpin family E member 1 (SERPINE1),

epidermal growth factor receptor (EGFR), and risk score were

noted as independent prognostic indicators for BRCA patients,

which was confirmed via immunohistochemical staining with a

BRCA microarray. This study might provide novel prognostic

factors for BRCA research and help in further elucidating the role

of hypoxia in different BRCA subtypes.
2 Materials and methods

2.1 Dataset and preprocessing

TCGA BRCA dataset was selected for the analyses, and the raw

data including clinical information, gene expression, and survival

data for BRCA were downloaded from the University of California–

Santa Cruz (UCSC) Xena (https://xenabrowser.net/datapages/), as

detailed in the attachment.
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We used the R language (version 4.0.5) idmap1 package (9) to

re-annotate the expression data, followed by removal of normal

samples (retaining only the tumor samples) and extraction of

mRNA expression data according to the HUGO Gene

Nomenclature Committee (HGNC) database, which provided the

human genome gene information so that a new expression profile

for subsequent analysis was constructed. After processing, we

obtained the expression levels of 18,012 mRNAs in 1,097 BRCA

tumor samples.
2.2 Distinguishing between immune-
activated and immune-
suppressed populations

Single-sample gene set enrichment analysis (ssGSEA) was

performed to process TCGA-BRCA data using the R language

GSVA package<1> based on 29 immune-related gene sets; the

enrichment score of each sample was calculated to perform sparse

hierarchical clustering to divide the samples into two populations. R

language estimate package (10) was used to calculate the

immunopurity of each sample. Differences in key immune

markers between the two clusters were statistically analyzed using

a t-test.
2.3 Distinguishing between hypoxic and
non-hypoxic populations

Hierarchical clustering was used to divide the immuno-

suppressed samples into hypoxic and non-hypoxic clusters based

on the expression of 200 hypoxic marker genes. Notably, among the

200 hypoxia marker genes, nine genes were not annotated because

of defective information, and so only the remaining 191 hypoxia

marker genes were used in subsequent analyses. Differential

analyses of these 191 hypoxia-related genes in the two

populations were performed using the R language limma package

(11), with the threshold set to |logFC| > 1 and adj-p value<0.01 to

obtain the hypoxia-related differentially expressed genes (DEGs).
2.4 Analysis of tumor
immune microenvironment

CIBERSORT is an R package of deconvolution of the expression

matrix of human immune cell subtypes based on the principle of

linear support vector regression (linear support vector regression).

It is a web version tool using a deconvolution algorithm to estimate

the composition and abundance of immune cells out of the

mixed cells based on transcriptome data. The referenced gene set

including expression signatures is LM22 containing 22 immune cell

subtypes. In this study, CIBERSORTx (12) was used to analyze the

immune cell infiltration of the expression matrix to obtain the

proportion of 22 subtypes of immune cells in BRCA tissues in

different groups.
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2.5 Analysis of tumor drug sensitivity/
drug efficacy

The half-maximal inhibitory concentration (IC50) or half-

inhibitory rate of a drug is the drug concentration that could kill

half of a cancer cell line. It is a very important parameter for

measuring the ability of a drug to induce apoptosis; specifically, a

drug with a lower IC50 value is better able to induce apoptosis in

certain cells, which are thus considered to weakly tolerate the drug.

In this study, the R language oncoPredict package (13) was used to

predict the drug sensitivity of BRCA tumor samples using the

cancer drug sensitivity genomics database (GDSC2) database

(which includes 453 drugs, 988 cell lines, and over 380,000 IC50

values) as the training set. The drugs with an average IC50< 1 in all

samples were considered specific drugs for BRCA treatment; the

sensitivity of these drugs was statistically tested in different groups

to explore the different responses of samples with different risk

levels to anticancer drugs.
2.6 Risk model construction

A risk model was constructed based on the survival data of

tumor samples in the database. All samples with a survival status of

0 and survival time<30 days in all samples were regarded as follow-

up failures and were removed from overall survival data; the

remaining 1,050 samples were used to build the hypoxia-related

risk model with the following construction strategy.

A total of 735 samples were randomly selected each time as the

training set, in which the key genes related to hypoxia were analyzed

via multifactor regression analysis in this set, and the genes

demonstrating statistical significance were recorded. The above

steps were repeated 1,000 times to obtain 1,000 results from the

multivariate regression analysis of the randomly selected 70% of the

samples. Across the 1,000 repeats, the genes that were determined to

be statistically significant in the multivariate regression analyses

were counted, and those genes that appeared more than 100 times

were regarded as high-frequency risk genes and used to construct

the hypoxia risk model.
2.7 Analysis of differences and enrichment
analysis between subgroups with different
ER/PR and HER2 status

Samples containing ER/PR and HER2 grouping information

were collected, and the R language limma package was used to

perform differential analysis among samples with different ER/PR

and HER2 status. For comparing ER/PR+ vs. ER/PR−, the threshold

was set as |logFC| > 2 and adj-p value ≤0.01. For comparing HER2+

vs. HER2−, the screening threshold for differential analysis was set

to |logFC| > 0.585 and adj-p value ≤0.01 to obtain an appropriate

number of genes for subsequent enrichment analysis. The difference

analysis results were visualized in volcano plots and

cluster heatmaps.
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Gene Ontology (GO) function and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analysis were

performed on the DEGs between ER/PR+ and ER/PR− groups

based on the R language cluster profiler package (14) to explore the

molecular biological functions that might be different between ER/

PR+ and ER/PR− groups. At the same time, the clusterProfiler

package was used to perform gene set enrichment analysis (GSEA)

based on the above differential expression analysis results in order

to obtain the activated/inhibited pathways between different groups

and explain the potential and possible mechanisms of the disease.

Data in HER2+ and HER2− groups were processed in the same way.
2.8 Clinical correlation analysis

The R language survminer package (15) was used to calculate

the optimal cutoff values for the genes included in the risk model

and the risk score to overall survival (OS) data based on gene

expression and sample survival data. Multivariate regression

analysis of overall survival was conducted according to different

clinically relevant phenotypes, followed by 3- and 5-year calibration

curve analysis according to different clinical characteristic models.
2.9 Clinical sample evidence

The breast cancer tissue microarrays (HBreD140Su06) were

purchased from Shanghai Xinchao Biotechnology Co., Ltd.

(Shanghai, China). The chip contains 140 breast cancer tissue

sites, and seven sites were excluded because of detected flaws.

SERPINE1 and FOS expre s s i on was mea su r ed v i a

immunohistochemical staining. The use of tissue chips was

approved by the Clinical Research Ethics Committee of Shanghai

Xinchao Biotechnology Co., Ltd. (approval number: YBM-05-02).
2.10 Statistical description

All data processing and analyses in this analysis were completed

in R language (version 4.1.0). The original data were downloaded

from the UCSC Xena database and were preprocessed using log2

(count + 1) normalization. The differential gene expression analysis

was carried out using the R language limma package. Differences

between two groups of continuous variables were estimated using a

t-test; hierarchical clustering was used for sample grouping, and

Pearson’s correlation was used to calculate the correlation between

gene expression and immune cell composition in the TME of

BRCA. Survival analysis was performed using the R language

survminer package to calculate the optimal cutoffs, followed by

the R language survival package on the grouping results; Kaplan–

Meier (K-M) curves were plotted to illustrate the survival

differences, which were then assessed using the log-rank test.

Multivariate regression was used for hypoxia risk model

construction and clinical prognosis analysis. In this article, P

value calculation was described in corresponding figure legend. P
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< 0.05 was considered to be significant. *P < 0.05, **P < 0.01, ***P <

0.001, ****P < 0.0001.

3 Results

3.1 Classification of immune-activated and
immune-suppressed populations

Based on 29 immune-related gene sets, we calculated the

enrichment score of each sample in TCGA-BRCA data using
Frontiers in Oncology 04
ssGSEA and hierarchical clustering and obtained two groups,

referred to as immune-activated (cinnabar red) and immune-

suppressed (emerald green) populations (Figure 1A). Patients in

the immune-suppressed group had lower immune scores and

stromal scores, higher tumor purity (Figure 1B), and lower

immune-related gene expression levels (Figure 1C) compared

with those in the immune-activated group. The expression level

of T-cell inhibitors, major histocompatibility complex, and T-cell

stimulators was also significantly reduced in the immune-

suppressed cluster (Figure 1C).
A

B

D

C

FIGURE 1

Chromatographic clustering analysis of TCGA BRCA data. (A) Chromatographic clustering analysis of samples based on the immune-related scores
from ssGSEA of the 29 immune-related gene sets. (B) Heatmap of the ssGSEA and immune-related score of 29 immune-related gene sets.
(C) Analysis of the expression levels of T-cell inhibitors, major histocompatibility complex, and T-cell stimulators. TCGA, The Cancer Genome Atlas;
BRCA, breast cancer; ssGSEA, single-sample gene set enrichment analysis.
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3.2 Further differentiation between hypoxic
and non-hypoxic populations in immune-
suppressed population

We identified 200 hypoxia-related genes, defined as the

HALLMARK_HYPOXIA gene set (Supplementary Table 1) and

genes upregulated in response to low oxygen levels (hypoxia) from

the GSEA website; ultimately, the expression data of 191 hypoxia-

related genes were obtained in our expression matrix according to

the annotation method described above. Based on these expression

data, we further divided the samples in the immuno-suppressed

group (described in Section 3.1) into the hypoxic group (goose

yellow) and the non-hypoxic group (black blue) using hierarchical

clustering method (Figure 2A). The volcano plot demonstrates the

191 hypoxia-related genes differentially expressed between the

hypoxia and non-hypoxia groups (Figure 2C), and the cluster

heatmap demonstrates the expression of 29 hypoxia-related genes

in the two groups of hypoxia and non-hypoxia (Figure 2D). It was

indicated that in the hypoxic group, almost all the hypoxia-related

genes were significantly upregulated (Figure 2D), and most of the

immune checkpoint genes were highly expressed (Figure 2B).

According to the differential gene analysis and the screening

thresholds described in the Materials and Methods section, we

obtained 29 genes that were significantly differentially expressed

between the hypoxic group and the non-hypoxic group; we then
Frontiers in Oncology 05
used these significantly hypoxia-related genes to construct the

hypoxia-related risk model.
3.3 Drug sensitivity analysis and tumor
immune microenvironment analysis

As described in the Materials and Methods section, we analyzed

the sensitivity of 198 drugs in BRCA, employing the IC50 value as

an indicator of drug sensitivity or efficacy, as it is commonly used to

assess the therapeutic response to drugs: smaller IC50 value

corresponds to better potential therapeutic effects of the drug on

BRCA. Those drugs with an average IC50< 1 in all samples are

almost exclusively used in the first-line clinical treatment of

BRCA (Figure 3A).

BRCA is not only an isolated variant cell population but also a

microenvironment system composed of cancer cells, immune cells,

fibroblasts, fat cells, and endothelial cells, which were gathered

inside and around tumors. There are inextricable links and

comprehensive cross-talk between immune cells and cancer cells,

which are crucial to the biological behavior and therapeutic

response of BRCA. The diversity of immune cells makes the

analysis of the TME or immune infiltration essential for

determining the proportion of immune cells in tumor tissue. We

conducted the analysis of the composition ratio of 22 immune cells
A

B DC

FIGURE 2

Differential analysis of hypoxic and non-hypoxic populations. (A) Hierarchical clustering analysis based on 191 hypoxia-related genes; the samples
are divided into two groups: hypoxic and non-hypoxic. (B) Differential expression of relevant immune checkpoints in hypoxic and non-hypoxic
groups. (C) Volcano plot of the differences in the expression of 191 hypoxia-related genes between the hypoxia and non-hypoxia groups. (D) Cluster
heatmap of the 29 hypoxia-related genes in the two groups of hypoxia and non-hypoxia.
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in the TME of patients with BRCA (Figure 3B) and identified

significant differences in immune cell infiltration and drug response

between the immune-activated and immune-suppressed groups

(Figure 3C) and between the hypoxia and non-hypoxia groups

(Figure 3D). The response to most drugs was better in the immune-

activated group than in the immuno-suppressed group, indicating

the potential for a better therapeutic effect of these drugs in the

former (Figure 3E). Among the immuno-suppressed samples, the

hypoxic group exhibited a better response to cancer treatment drugs

than the non-hypoxic group did (Figure 3F).
Frontiers in Oncology 06
3.4 Construction of hypoxia-related
scoring system

Based on the 29 significantly differentially expressed hypoxia-

related genes described in Section 3.2, we randomly selected 70% of

the BRCA tumor samples 1,000 times to conduct multivariate

regression analysis and counted the significant genes in each

regression analysis result (Figure 4A). Genes with frequency

exceeded 100, which were NFIL3, SERPINE1, FOS, biglycan

(BGN), EGFR, and sushi-repeat-containing protein, X-linked
A B

D

E F

C

FIGURE 3

Drug sensitivity analysis and tumor immune microenvironment analysis. (A) Drugs with an average IC50< 1 in all samples. (B) Composition ratio of 22
immune cells in the TME of patients with BRCA. (C) Analysis of immune cell composition differences in immune-activated and immune-suppressed
groups. (D) Analysis of immune cell composition differences between the hypoxia and non-hypoxia groups. (E) Heatmap of different drug responses
in immune-activated and immuno-suppressed groups. (F) Heatmap of different drug responses in the hypoxia and non-hypoxia groups. TME, tumor
microenvironment; BRCA, breast cancer.
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(SRPX), were adopted as high-frequency genes and potential key

factors in the hypoxia model to calculate hypoxia-related scores.

The resulting risk score was calculated as follows:

riskScore  =   − 0: 1637688 * FOS  +  0: 1551399 * SERPINE1  +  0: 1672584 * NFIL3

−0: 1583654 * BGN − 0: 2149130 * EGFR  +  0:2194696 * SRPX :

According to this model, the expression levels of SRPX, NFIL3,

and SERPINE1 increase along with the increase of survival risk,

indicating that they are positive high-risk factors; the expression

levels of FOS, BGN, and EGFR decrease with increasing survival

risk, representing negative high-risk factors (Figure 4B). For BRCA

patients, a higher hypoxia score was associated with worse survival

(Figure 4C). For survival prediction verification, the hypoxia-related

score demonstrated the highest predictive value for 3-year survival

in patients with BRCA (Figure 4D). Patients who died of the disease

had a statistically significantly greater hypoxia score than patients

who survived (Figure 4E); consistent with the results of the hypoxia

scoring model, SRPX, NFIL3, and SERPINE1 were risk factors for
Frontiers in Oncology 07
BRCA prognosis and survival, while FOS, BGN, and EGFR were

protective factors for BRCA prognosis and survival (Figure 4F).
3.5 Relationships between key hypoxia
factors and tumor immune
microenvironment of BRCA

Pearson’s correlation analysis was conducted between six key

hypoxic factors and 22 immune cell components in the TME and

the interaction between the immune cells. The results showed that

the six genes were correlated with the given immune cells (Figure 5).
3.6 Analysis of clinical correlation

The optimal cutoff values of the genes included in the risk model

and the risk score to OS data were calculated based on gene
A B

D E

F

C

FIGURE 4

Establishment of a hypoxia-related scoring system. (A) Statistical analysis of the significant results of the multivariate regression analysis in 70% of the
samples randomly collected 1,000 times. (B) Risk triad of the prediction model. (C) Survival analysis based on the hypoxia risk score. (D) Time-ROC
curve analysis based on the hypoxia risk score. (E) Survival status test based on the hypoxia risk score. (F) Survival analysis results for six key hypoxic
model genes in BRCA. ROC, receiver operating characteristic; BRCA, breast cancer.
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expression and sample survival data. Samples that exceeded the

optimal cutoff were defined as the high-expression or high-risk

score group, and samples that did not exceed the optimal cutoff

value were defined as the low-expression or low-risk score group.

Detailed information on each sample is shown in Supplementary

Table 2. Multivariate regression analysis for OS was conducted based

on different clinically relevant phenotypes grouped by gender, age,

margin status, AJCC T/N/M stage, HER2 status, ER/PR status,

immune status, and hypoxic status. The results showed that margin

status, AJCC stage, hypoxia status, ER/PR status, NFIL3, SERPINE1,

EGFR, and risk score could be used as independent prognostic

indicators for BRCA patients (Figure 6A). Among them, a close

margin status, AJCC stage III/IV, immune suppressed status (non-

hypoxic + hypoxic, non-hypoxic > hypoxic), high hypoxic risk score,

negative ER/PR, high NFIL3 level, high SERPINE1 level, and low

EGFR level were found to be prognostic factors for BRCA. According

to the results of multivariate regression analysis based on clinical

characteristics, 3- and 5-year calibration curves of the clinical

characteristic model were plotted to visualize the statistical

significance of the clinical characteristics on the prognosis of

patients with BRCA (Figures 6B, C). Among the clinical samples,

the levels of SERPINE1 and FOS were measured as representative

markers for verification. Breast cancer tissue microarrays (No.

HBreD140Su06) harboring clinicopathological characteristics,

including tumor size, histological grade, lymph node stage, and

metastasis, and survival information were used to investigate the

correlation between SERPINE1 or FOS expression and

clinicopathological characteristics in 123 cancer patients (samples

with incomplete information were excluded) (Supplementary
Frontiers in Oncology 08
Table 3). The expression of SERPINE1 and FOS was determined

by immunohistochemical analysis (Figures 6D, E; Supplementary

Tables 4, 5). As shown in the K-M survival curves, univariate analysis

showed a significant correlation between SERPINE1 expression and

the overall survival rate, which indicated that low SERPINE1 levels

were a protective prognostic factor for BRCA patients (Figure 6F;

Table 1), whereas low FOS expression showed a non-significant

correlation with better survival (Figure 6G; Table 2), which is

consistent with our prediction in Figure 6A.
3.7 Comparison between the ER/PR+ and
ER/PR− groups

ER and PR are important receptors in the BRCA classification

system; therefore, samples containing ER/PR grouping information

were collected, and differential analysis of the ER/PR+ and ER/PR−

groups was performed using the R language limma package

(Supplementary Table 6). Principal component analysis (PCA)

revealed that the genes in the two groups exhibited distinct

expression patterns (Figure 7A), which were visualized via volcano

plots (Figure 7B) and cluster heatmaps (Figure 7C; Supplementary

Table 7). According to our risk formula, ER/PR+ patients seemed to

have higher hypoxia-related risk scores (Figure 7D). There were also

stat is t ical ly significant differences in tumor immune

microenvironment (Figure 7E) and response to drug treatment

(Figure 7F) between the two groups. These findings revealed that

ER/PR− patients might respond better to most tumor

treatment agents.
FIGURE 5

Pearson’s interaction between six key hypoxia factors and 22 immune cell components in the TME of BRCA patients and the interactions between
immune cells. TME, tumor microenvironment; BRCA, breast cancer.
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3.8 Enrichment analysis of differentially
expressed genes between ER/PR+
and ER/PR−

After obtaining the differentially expressed genes between the

ER/PR+ and ER/PR− groups, GO function and KEGG pathway

enrichment analysis were performed based on the R language
Frontiers in Oncology 09
clusterProfiler package to explore the molecular biological

functions of the two groups. Significant functional differences in

immune and metabolism-related molecular functions and pathways

were revealed under different ER/PR status (Figure 8A).

ClusterProfiler package was also used to perform GSEA to

determine differences in the pathways activated/inhibited between

the two groups to explain the potential underlying mechanisms of
A B

D E

F G

C

FIGURE 6

Clinical prognostic analysis. (A). Multivariate regression prognostic analysis of clinical characteristics related to BRCA. (B).Calibration curve for 3-year
survival. (C). Calibration curve for 5-year survival. (D, E) Immunohistochemical staining for SERPINE1 (D) and FOS (E) expression in samples of breast
cancer tissue microarrays. (F, G) Kaplan–Meier analysis of the correlation between SERPINE1 (F) and FOS (G) expression and the overall survival rate
of patients in the BRCA cohort according to the microarray data. BRCA, breast cancer.
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the disease. The ER/PR-positive group obtained activated

metabolism-related pathways and inhibited immune-related

pathways (Figure 8B); compared to those of the opposite group,

the metabolism-related pathways in the tumor tissues of the ER/PR-

positive patients were significantly activated, while the immune-

related pathways in the tumor tissues of ER/PR-negative patients

were significantly activated. GO analyses on the biological process

(BP), cellular component (CC), and molecular function (MF) of the

differentially expressed genes between the ER/PR-positive and ER/

PR-negative groups are demonstrated in Figures 8C–E, and KEGG

analysis is demonstrated in Figure 8F.
3.9 Comparison between the HER2-
positive and HER2-negative groups

HER2 is another vital marker in BRCA classification, and its

status determines the biological behavior, treatment, and prognosis

of BRCA. We also collected samples containing HER2 information

and performed differential gene analysis between the HER2-positive

and HER2-negative groups in the same way as the ER/PR group
Frontiers in Oncology 10
analysis (Supplementary Tables 8, 9). However, we did not observe

significant differences in gene expression between the HER2-

positive and HER2-negative samples (Figures 9A–C), and there

was no significant difference in either the TME or drug response

between the two groups (Figures 9E, F). However, the HER2+

patients had a higher hypoxia-related risk score (Figure 9D).
3.10 Enrichment analysis of HER2-positive
and HER2-negative differential genes

Enrichment analysis was also conducted for the HER2-positive

and HER2-negative groups as mentioned in Section 3.9

(Supplementary Table 4). The analysis revealed that the main

pathways enriched in the differentially expressed genes included

metabolic and immune-related pathways (Figures 10A, B), while no

significant activation preference was identified (Figures 10C–F). GO

analyses on the BP, CC, and MF of the differentially expressed genes

between the HER2-positive and HER2-negative groups are

demonstrated in Figures 10C–E, and KEGG analysis is

demonstrated in Figure 10F.
TABLE 1 Analysis of SERPINE1 expression and clinical characteristics.

Characteristics All cases (n = 123)

SERPINE1 expression

c2 p-ValueLow (n = 81) High (n = 42)

Age (years)

≤55 68 45 23 0.007 0.933

>55 55 36 19

Pathological grade

1–2 86 60 26 1.947 0.163

3–4 37 21 16

T

T1 55 36 19 0.007 0.933

T2 68 45 23

N

N0 66 43 23 0.031 0.86

N1–3 57 38 19

Recurrence

No 92 64 28 2.236 0.135

Yes 31 17 14

Clinical grade

1–2 83 53 30 0.453 0.501

3 40 28 12

Survival status

Alive 95 68 27 6.083 0.014

Dead 28 13 15
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4 Discussion

BRCA remains one of the leading causes of cancer death in

women (16). However, mortality of the disease remains high due to

the development of metastasis and the emergence of drug

resistance. Numerous studies have shown that the proliferation

and metastasis potential of malignant cells are strongly influenced

by the TME. Hypoxia is a canonical feature of a low-oxygen level

environment, and it is vital to physiological and pathological

mechanisms (17). This condition plays important roles in nearly

all aspects of BRCA, including oncogenesis, invasion, metastasis,

and drug resistance as results of the process of cancer cells adapting

to hypoxic stress. Hypoxia also helps promote tumor cells escape

from immune surveillance and even immunotherapy (18). There is

evidence that hypoxia in the TME might suppress the expression of

immune effector genes in T and natural killer (NK) cells, resulting

in immune cell dysfunction and resistance to immunotherapy (19).

Clinical studies have demonstrated that hypoxia is associated with

immune evasion, leading to therapeutic resistance to immune

checkpoint inhibitors in some tumors (20–22). In BRCA, the

hypoxic phenotype was considered a prognostic factor for tumor

relapse and poor survival regardless of the subtypes and stages of
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the disease (23). Several other reports have revealed that hypoxia in

the TME might induce T-cell exhaustion in mice, and deprivation

of hypoxia-inducible factor-1 alpha (HIF-1a) could increase NK

cell activity and infiltration in tumor areas (24).

For BRCA treatment, it is widely assumed that tumor hypoxia is

related to a negative response to chemo- or radiotherapy and that

targeting hypoxia should be included in BRCA therapy (25). HIF-

1a was one of the hypoxia markers that was previously investigated

in numerous studies, as reports have shown a lower rate of

pathological complete response (PCR) with higher HIF-1a
expression in BRCA patients (26, 27); however, different

strategies, such as targeting key players in metabolic and

angiogenic pathways and even bevacizumab in BRCA, have

yielded unsatisfactory results (28). Therefore, there is an urgent

need for additional potential markers and the identification of links

between hypoxia and BRCA treatment.

In this study, after ssGSEA based on 29 immune-related gene

sets, the BRCA samples from TCGA database were sparsely

stratified and clustered into two populations: immune activation

(cinnabar red) and immunosuppression (emerald green). Patients

in the immuno-suppressed group had lower immune scores, lower

stroma scores, and higher tumor purity, along with significantly
TABLE 2 Analysis of FOS expression and clinical characteristics.

Characteristics All cases (n = 123)

FOS expression

c2 p-ValueLow (n = 104) High (n = 20)

Age (years)

≤55 68 56 12 0.563 0.453

>55 55 48 7

Pathological grade

1–2 86 77 9 5.433 0.02

3–4 37 27 10

T

T1 53 41 12 3.691 0.555

T2 70 63 7

N

N0 66 54 12 0.815 0.367

N1–3 67 50 7

Recurrence

No 92 80 12 1.615 0.204

Yes 31 24 7

Clinical grade

1–2 83 70 13 0.009 0.924

3 40 34 6

Survival status

Alive 95 82 13 0.993 0.319

Dead 28 22 6
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lower expression levels of T-cell inhibitors, major histocompatibility

complex, and T-cell stimulators. These results illustrated the

heterogeneity of immune status in the TME and may be closely

related to the treatment response and prognosis of BRCA patients.

In the following analyses, the hypoxia and non-hypoxia groups

were further distinguished from the immuno-suppressed

population. In the hypoxia group, most of the immune

checkpoint genes had higher expression levels, and almost all

hypoxia-related genes were significantly upregulated. This

suggested that hypoxia might be an important factor influencing

the tumor microenvironment and treatment response, especially in

pre-existing immunosuppression. Consistent with the findings of

previous studies, the immune-suppressed group presented a poorer

response to most BRCA-related drugs, and the non-hypoxic group

exhibited a worse response than the hypoxic group did. In other

words, our model showed that under immune suppression

circumstances, a non-hypoxic condition might exacerbate the

suppressive immune microenvironment, which provided novel

perspectives on the connections between tumor hypoxia

and microenvironment.

In this study, by multiple regression analysis, we obtained genes

with high frequency and statistical significance and then

constructed a hypoxia-associated risk score model. Six genes

including NFIL 3, SERPINE1, SRPX, FOS, BGN, and EGFR were

defined as key hypoxia-related factors in this model. NFIL3 is a

transcriptional repressor. The abnormal expression of NFIL3 was
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reported to be a poor prognostic factor in various types of tumors

(29–31). Furthermore, the level of NFIL3 protein was significantly

increased in triple-negative breast cancer (TNBC) and was

associated with poorer prognosis (32). SERPINE1 or plasminogen

activator inhibitor 1 (PAI-1) has been reported to be involved in

metabolic changes, progression, metastasis, and drug resistance in

various cancers, including BRCA (33–36). In TNBC, SERPINE1

was noted to mediate obesity-associated tumor radioresistance (37).

In informatic analyses, SRPX has been used to construct a model for

predicting the prognosis of colorectal cancer (38) and is another

hypoxia-related signature for prognosis prediction in head and neck

squamous carcinoma (39). In our study, NFIL3, SERPINE1, and

SRPX were considered adverse prognostic risk factors for BRCA,

which is consistent with the findings of the literature. Among the

protective factors in our model, FOS is a proto-oncogene of the

activator protein-1 (AP-1) transcription factor subunit (40) and

participates in a variety of cellular functions and apoptotic cell

death, including regulating the development and progression of

BRCA (41, 42), and its overexpression attenuates the malignant

phenotypes of BRCA cells according to the lines of evidence from in

silico and in vitro studies (43). The protein encoded by BGN

(biglycan) was proven to induce BRCA cell normalization (44)

and inhibit the initial outgrowth of brain metastases in BRCA

patients (45). EGFR is generally considered to stimulate cell

proliferation and promote cancer cell survival (46). However, in

both clinical and preclinical settings, the therapeutic efficacy of
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FIGURE 7

Differential gene expression analysis of the ER/PR+ and ER/PR− groups and comparative analysis results of tumor microenvironment and drug
response. (A) PCA of the gene expression of the ER/PR+ and ER/PR− groups. (B) Volcano plot of the ER/PR grouping difference analysis. (C) Cluster
heatmap of the ER/PR grouping difference analysis. (D) Risk score comparison between the two groups. (E) Differential analysis of tumor immune
cell infiltration in the two groups. (F) Difference analysis of drug treatment efficacy. ER, estrogen receptor; PR, progesterone receptor; PCA, principal
component analysis.
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EGFR-targeted therapies, including monoclonal antibodies for

TNBC treatment, has been unsatisfactory (47). Several studies

have attempted to explain the mechanisms underlying the

unsatisfactory effects of these strategies (48, 49), suggesting the

need for additional exploration. After the identification of the six

key hypoxia-related factors, we conducted Pearson’s correlation

analysis between six key hypoxic factors and 22 immune cell

components in the TME and the interaction between the immune

cells. Understanding the effects of hypoxia on immune infiltration,

especially immunosuppression, would contribute to better

exploring the mechanisms of tumor development and therapeutic

resistance in breast cancer. This might also provide certain guidance

for the development of combined treating strategies against

immunosuppression and hypoxia to improve the clinical

outcomes of BRCA patients.

Our hypoxia-related risk score model is able to predict the 3-

year survival of BRCA effectively, and the dead patients had higher

hypoxia scores than the surviving patients. We verified good

correlation through both 3-year and 5-year survival curves.

Additionally, the calibration curves of 3- and 5-year survival rates
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were similar in showing relatively high reliability of the model. In

particular, the calibration curve for 3-year survival is also consistent

with our findings in Figure 9D that the hypoxia-related risk score

has the highest predictive value for 3-year survival in BRCA. The

margin status, AJCC stage, hypoxia status, and ER/PR status can be

used as important indicators for the survival outcome of BRCA

patients. In the calculation, the C-index is approaching 0.8 (1–

0.204), indicating a clinically relevant model with high confidence.

These clinical parameters were combined to provide more

comprehensive and precise information about the prognosis of

BRCA patients. This reliable and accurate predicted prognostic

risk scoring system for BRCA as well as the key genes might provide

more prognostic markers and some potential targets for BRCA

research and treatment.

Moreover, we estimated different signatures of major pathways

between ER/PR− and ER/PR+ clusters and found that samples with

ER/PR+ and ER/PR− showed statistically significant differences in

gene expression, tumor immune microenvironment, and response

to drug treatment. There are more activated metabolism-related

pathways in ER/PR+ populations along with more inhibited
A B
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FIGURE 8

Enrichment analysis results of the differentially expressed genes between ER/PR+ vs. ER/PR− breast cancer. (A) Bubble diagram of the GSEA results
for the top 20 genes. (B) GSEA results with top 10 NESs. (C–E) GO BP/CC/MF enrichment analysis. (F) KEGG enrichment analysis. ER, estrogen
receptor; PR, progesterone receptor; GSEA, gene set enrichment analysis; NESs, normalized enrichment scores; GO, Gene Ontology; BP, biological
process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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immune-related pathways in ER/PR− populations. The role of ERa
in regulating the balance and homeostasis of energetic metabolism

was revealed to be linked to its classical nuclear activity (50), upon

which our analyses might provide supportive data and the necessity

of metabolism regulation in BRCA treatment. We also

demonstrated that the immune-related pathways in tumor tissues

of ER/PR-negative patients were significantly activated, which is

bioinformatically consistent with the acknowledgment that HR-

positive BRCA tends to have fewer immune infiltrates and be more

immunogenic than HR-negative microenvironment (51–53). In our

analyses, samples of ER/PR−might respond better to BRCA-related

drugs. These findings reveal the importance of estrogen receptor

and progesterone receptor status for breast cancer biological

characteristics and the selection of therapeutic strategies.

It is noteworthy that the HER2+ and HER2− samples showed

no significant statistical differences in gene expression, tumor

immune microenvironment, and response to drugs in our study.

This implies that HER2 status might not be the only or key decisive

indicator of breast cancer cure sensitivity or medication.

In this study, we found some significant differences in

metabolism and immune pathways among groups with different

hormone receptor status. Similar associations have been found

between HIF-1a and other markers used to identify BRCA

classes, including the hormone receptor and HER2 status. In
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some studies, HIF-1a levels in the tissues of BRCA patients

correlated with ERa expression and HER2 positivity (54–56).

Interestingly, a greater hypoxia-related risk score was estimated in

the ER/PR+ and HER2+ groups. For the first time, we reported the

associations between hypoxia signatures and different hormone

receptor or HER2 status. Future studies should further investigate

hypoxia among patients with different BRCA subtypes.

There are several limitations to our study. First, the raw data

were mainly from TCGA database, and additional databases should

be involved in future analyses, which should take batch-to-batch

variation into consideration. It is worth noting that as a highly

aggressive and hypoxia-associated subtype of BRCA, TNBC is not

separately or specifically investigated in our current study due to an

insufficient number of TNBC cases in the collected samples. It is

reported that TNBC demonstrated a more pronounced hypoxic

signature than other BRCA subtypes (57) (58); even under

normoxia, TNBC cells demonstrate a hypoxia gene signature (59).

Targeting HIF-1a and the associated epigenetic machinery is

reported to be a promising strategy to reverse the immune

effector dysfunction and overcome resistance to PD-1 blockade

(60). Our future studies will be devoted to accumulative TNBC

sample collection in the research projects and deeply analyze the

differences in hypoxia and other characteristics with other BRCA

subtypes, which calls for continuous data accumulation and
A B

D

E F

C

FIGURE 9

Differential gene expression analysis and comparative analysis of the tumor microenvironment and drug treatment efficacy between the HER2-
positive and HER2-negative patients. (A) PCA of the gene expression of HER2-positive and HER2-negative samples. (B) Volcano plot of the
difference analysis results of HER2-positive and HER2-negative samples. (C) Cluster heatmap of the difference analysis results for the two groups.
(D) Risk score comparison between the HER2+ and HER2− groups. (E) Differences in tumor immune microenvironment cell composition between
the HER2-positive and HER2-negative groups. (F) Differences in drug response between the two groups. PCA, principal component analysis.
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deepening research in the future. We look forward to a better

understanding of the characteristics and treatment strategies of

TNBC and hypoxia so as to contribute to the research and

treatment of BRCA.

In addition, the key factors previously reported in the literature

that are consistent with our analyses were mostly investigated via a

bioinformatics approach, and additionally, more solid evidence is

needed to support the results, especially that from more biological

experiments and clinical verification of the key factors and the

relationship between hypoxia signatures and the TME.
5 Conclusions

In summary, we distinguished immune-activated and immune-

suppressed populations from TCGA database, the latter of which

was further divided into hypoxic and non-hypoxic clusters. The

drug response was presented better in the immune-activated group
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than in the immuno-suppressed group and in the hypoxic group

than in the non-hypoxic group. A hypoxia-related risk model of

BRCA was constructed with high reliability in this study using six

key hypoxia-related genes adopted. ER/PR-negative patients

exhibited significantly activated immune-related pathways and

improved drug response, while ER/PR-positive patients exhibited

increased activation of metabolism-related pathways. ER/PR+ and

HER2+ patients might have higher hypoxia-related risk scores. Our

study could lead to the identification of novel prognostic

biomarkers and perspectives on BRCA treatment, especially

immune therapy.
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FIGURE 10

Enrichment analysis results of the differentially expressed genes between HER2-positive and HER2-negative breast cancer. (A) Bubble diagram of the
top 20 genes identified by GSEA. (B) GSEA results of the top 10 NESs. (C–E) GO enrichment analysis. (F) KEGG enrichment analysis of the two
groups. GSEA, gene set enrichment analysis; NESs, normalized enrichment scores; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes.
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SUPPLEMENTARY FIGURE 1

Flowchart and design of the analyses. Firstly, gene expression data from the

TCGA breast cancer dataset were re-annotated using R language, and yielded

gene expression profiles fo BRCA samples. Then, ssGSEA was performed
based on immune-related gene sets, and we divided samples into immune-

activated and immune-suppressed populations. According to hypoxia marker
genes, the immunosuppressed population were further divided into hypoxic

and nonhypoxic populations, and differential analysis was performed to
obtain differentially expressed genes associated with hypoxia. The immune

cell subtype proportions was analyzed based on the expression matrix and

the oncoPredict package was used for tumor drug sensitivity prediction and
statistical tests. Subsequently,we constructed a hypoxia-related risk model

based on the candidate gene set, and performed a series of clinical relevant
analysis. Additionally, differential analysis and enrichment analysis were

perfromed between ER/PR+ and ER/PR- populations, as well as Her2+ and
Her2- populations.
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