
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Akira Sugawara,
Tohoku University, Japan

REVIEWED BY

Xiaolong Li,
Fudan University, China
Jared Shenson,
Orlando Health Cancer Institute, United States

*CORRESPONDENCE

Ting Li

liting@bme.pumc.edu.cn

Li-ping Liu

liuliping1600@sina.com

RECEIVED 04 December 2023
ACCEPTED 29 January 2024

PUBLISHED 15 February 2024

CITATION

Liu Q, Li Y, Hao Y, Fan W, Liu J, Li T and Liu L
(2024) Multi-modal ultrasound multistage
classification of PTC cervical lymph node
metastasis via DualSwinThyroid.
Front. Oncol. 14:1349388.
doi: 10.3389/fonc.2024.1349388

COPYRIGHT

© 2024 Liu, Li, Hao, Fan, Liu, Li and Liu. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 15 February 2024

DOI 10.3389/fonc.2024.1349388
Multi-modal ultrasound
multistage classification of PTC
cervical lymph node metastasis
via DualSwinThyroid
Qiong Liu1,2, Yue Li3, Yanhong Hao1, Wenwen Fan1,
Jingjing Liu1, Ting Li3* and Liping Liu1*

1Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China, 2College of
Medical Imaging, Shanxi Medical University, Taiyuan, China, 3Institute of Biomedical Engineering,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Objective: This study aims to predict cervical lymph node metastasis in papillary

thyroid carcinoma (PTC) patients with high accuracy. To achieve this, we

introduce a novel deep learning model, DualSwinThyroid, leveraging multi-

modal ultrasound imaging data for prediction.

Materials and methods: We assembled a substantial dataset consisting of 3652

multi-modal ultrasound images from 299 PTC patients in this retrospective study.

The newly developed DualSwinThyroid model integrates various ultrasound

modalities and clinical data. Following its creation, we rigorously assessed the

model’s performance against a separate testing set, comparing it with established

machine learning models and previous deep learning approaches.

Results: Demonstrating remarkable precision, DualSwinThyroid achieved an

AUC of 0.924 and an 96.3% accuracy on the test set. The model efficiently

processed multi-modal data, pinpointing features indicative of lymph node

metastasis in thyroid nodule ultrasound images. It offers a three-tier

classification that aligns each level with a specific surgical strategy for

PTC treatment.

Conclusion: DualSwinThyroid, a deep learning model designed with multi-

modal ultrasound radiomics, effectively estimates the degree of cervical lymph

node metastasis in PTC patients. In addition, it also provides early, precise

identification and facilitation of interventions for high-risk groups, thereby

enhancing the strategic selection of surgical approaches in managing

PTC patients.
KEYWORDS

papillary thyroid carcinoma (PTC), cervical lymph node metastasis, multi-modal
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1349388/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1349388/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1349388/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1349388/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1349388&domain=pdf&date_stamp=2024-02-15
mailto:liting@bme.pumc.edu.cn
mailto:liuliping1600@sina.com
https://doi.org/10.3389/fonc.2024.1349388
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1349388
https://www.frontiersin.org/journals/oncology


Liu et al. 10.3389/fonc.2024.1349388
1 Introduction

Papillary Thyroid Carcinoma (PTC) is the most common type

of thyroid cancer, constituting 85-90% of malignant thyroid

tumors. Although PTC progresses slowly with a generally

favorable prognosis, the onset of cervical lymph node metastasis

in patients can significantly increase the risk of recurrence and

distant metastasis, ultimately leading to potential mortality. 2015

American Thyroid Association Management Guidelines for Adult

Patients with Thyroid Nodules and Differentiated Thyroid Cancer

emphasized that the number of cervical lymph node metastases is a

crucial factor in assessing the recurrence risk of thyroid cancer (1).

An increase in the number of lymph node metastases corresponds

to a poorer clinical outcome for the patient, with a consequent

reduction in the 5-year survival rate (2–4).

In the rapidly advancing realm of medical imaging, two

principal ultrasonography techniques have emerged as key in

predicting cervical lymph node metastasis in thyroid cancer. The

first method meticulously examines the primary tumor, while the

second method assesses suspicious lymph nodes. The assessment of

suspicious lymph nodes to gauge the aggressiveness of thyroid

cancer is a direct strategy, but the intricate anatomy of the

thyroid gland, coupled with imaging technology limitations, turns

preoperative ultrasonography of cervical lymph nodes into a

complex task that frequently obstructs the swift identification of

suspicious nodes. Therefore, the bulk of research, informed by a

pragmatic approach, is derived from studies of the primary tumor,

investigating attributes closely linked to the spread of cancer to

cervical lymph nodes (5, 6).

The recent technological renaissance has fostered the ascent of

radiomics, transcending traditional paradigms of medical imaging

analysis. Algorithms meticulously mine imaging data, unveiling

hidden information and enabling a comprehensive evaluation of

tumor heterogeneity. This forms a foundational framework for the

development of precise diagnostic and treatment models,

reinforcing the pillars of clinical decision-making. Deep learning

stands at the forefront of this innovation, threading significant

breakthroughs in computer vision into the fabric of Artificial

Intelligence (AI). This technological wonder is extensively applied

in medical imaging for tasks such as segmentation, localization,

detection, and image fusion, thus elevating the diagnostic precision

for pathological changes. Deep learning differs from traditional

machine learning—which requires intensive image preprocessing

and manual feature identification—by skillfully utilizing raw pixel

values from images as input and iteratively refining its models

through training (7). However, to our knowledge, there has yet to be

any research employing multi-modal ultrasonic radiomics data to

develop corresponding deep learning models for evaluating the

lymph node status of primary lesions (8, 9).

This study presents DualSwinThyroid, a deep learning

classification model meticulously designed for evaluating the

invasiveness of thyroid nodules. The model’s ‘Dual’ structure

processes multi-modal data, and its ‘Swin’ element utilizes the

Swin-Transformer’s (10) advanced image processing capabilities for

thorough analysis and extraction of features from ultrasound images.

‘Thyroid’ in its name highlights the model’s specific application to
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thyroid nodule assessment. DualSwinThyroid is predicated on the

Swin-Transformer’s solid framework and is finely calibrated to

harness not just its imaging strengths but also to Integrate clinical

and ultrasonic data characteristics. Such integration sharpens

diagnostic accuracy and enhances efficiency, leading to more

targeted and evidence-based treatment plans for patients.

Additionally, DualSwinThyroid transcends the conventional binary

classification of nodules, introducing a tripartite categorization that

corresponds with specific therapeutic approaches and provides a clear

framework for complex clinical decision-making processes, aiding in

the navigation of diverse treatment alternatives.
2 Methods

2.1 Patients

Approval for this retrospective study was obtained from the

Ethics Committee of the First Hospital of Shanxi Medical

University and the informed consent requirement was waived.

Data were gathered from patients who underwent thyroid

ultrasonography and subsequent surgical treatment in this

hospital from July 2021 to June 2023. Through a rigorous

selection process guided by predefined inclusion and exclusion

criteria, 299 patients were enrolled, encompassing 339 thyroid

nodules captured in 3652 ultrasound images. The postoperative

pathological findings served to divide the data into three classes:

Class I denoted no lymph node metastasis, Class II included cases

with up to five metastatic lymph nodes, and Class III involved cases

with more than five metastatic lymph nodes. Figure 1 displays the

types of data images collected.

During data analysis, stringent inclusion and exclusion criteria

were applied. The inclusion criteria consisted of: (1) patients who had

a total or subtotal thyroidectomy with cervical lymph node dissection;

(2) nodules with confirmed surgical pathological diagnoses of

papillary thyroid carcinoma; (3) patients who underwent routine

ultrasonography and elastography within two weeks before surgery,

obtaining clear, complete, and original DICOM images. The

exclusion criteria were: (1) patients who received radiofrequency

ablation, radiation therapy, or chemotherapy before surgery; (2)

ultrasound images of the target tumor marred by artifacts; (3)

patients with other malignant tumors; and (4) patients with prior

thyroid surgery.
2.2 Data collection

All ultrasound scans were performed using the Canon Aplio

i800 Color Doppler Ultrasound Diagnostic Device, equipped with

an i18LX5 linear wide-band probe with a frequency range of 5-

18MHz and real-time ultrasound elastography technology. During

routine examinations, patients were positioned supine to expose

their necks for scanning. The physician conducted a thorough

examination of the thyroid’s bilateral lobes and isthmus, focusing

on capturing the echogenicity, dimensions, and vascular flow within

the gland. Additionally, for each thyroid nodule, precise records
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were made of its location, size, composition, echogenicity,

shape, margins, presence of hyper-echoic areas, and vascular

flow characteristics.

In the ultrasonic elastography examination, the region of

interest on the elastographic image was configured to include the

entire thyroid lesion and adjacent normal tissue, typically extending

2-3 times beyond the nodule’s size. Patients were asked to hold their

breath during the procedure. The physician then positioned the

probe perpendicularly on the skin, exerted steady pressure with

minimal vibration, and attentively monitored the color patterns

displayed on the elastographic images, ensuring to archive the

pertinent images.
2.3 Data processing

For the purposes of this study, data from 299 patients were

included and subsequently randomized into training and testing

datasets at a 7:3 ratio. The image data for each patient followed the

same categorization protocol. The DualSwinThyroid model

underwent training on this dataset and its performance was

benchmarked against the Swin Transformer image processing

model and the MLP clinical and ultrasound information

classification model (11). The construction, training, and

prediction of the models were carried out using Python (version

3.8.0). Statistical analysis of the data and calculations of relevant

variables were performed using SPSS (version 26.0, IBM

Corporation, Armonk, New York).
2.4 Statistical analysis

Normality and variance homogeneity tests were conducted for

patient characteristics like age and nodule size. Subsequently, the
Frontiers in Oncology 03
Chi-Squared Test test was utilized to evaluate differences in

ultrasonic and clinical features across patient cohorts.

Multivariate ordinal logistic regression analysis was applied to

determine independent risk factors influencing the extent of PTC

lymph node metastasis, with statistical significance established at a

two-tailed P-value of less than 0.05. ROC curves were then

constructed based on these identified independent risk factors.
2.5 Model design and training

This study utilized data from 299 patients to train the model,

with 209 allocated to the training set and 90 to the test set.

Additionally, of the 3652 nodule images, 2556 were used for

training and 1096 for testing, with the pathological outcomes as

the labels for training. It is important to note that the test data were

not used during the model’s training phase. The Adam optimizer

was employed to train the model across 500 epochs, with a batch

size of 16 and an initial learning rate set at 0.0001. The

computational work was performed on a platform equipped with

an i7-13900F CPU and an RTX 4080TI GPU, and the network

architecture was developed on Pytorch 2.0.0+cuda1.18. For more

information on the training process, please see Figure 2.
2.5.1 DualSwinThyroid model
In this research, the DualSwinThyroid model serves as a deep

learning instrument for evaluating thyroid nodule invasiveness and

risk levels, detailed in Figure 3. It utilizes the Swin-Transformer

framework to adeptly process longitudinal sectional and transverse

sectional, color Doppler ultrasound and elastographic images. The

model operates through three primary image processing stages to

extract features deeply and classify invasiveness with precision.

Data, once categorized, enters the Data Fusion block, integrating
FIGURE 1

Different categories of image data.
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with clinical data vetted through univariate analysis (p-value <0.05).

After normalization, this combined data passes through a fully

connected layer with a ReLu activation function, proceeds to a

subsequent fully connected layer, and culminates in generating
Frontiers in Oncology 04
predictive probabilities for each category using the Softmax

function. Significantly, DualSwinThyroid is capable of processing

multiple ultrasound images from the same nodule to produce

diagnostic predictions.
FIGURE 3

DualSwinThyroid structure diagram.
FIGURE 2

Model training process.
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2.5.2 Single modality model
A Multi-Layer Perceptron (MLP) model with eight neurons was

developed for the classification of clinical and ultrasound data,

employing ReLu as the activation function and Softmax for the

output layer’s classification purpose. Cross-entropy served as the loss

function for optimization. In the training process, the model processed

clinical and ultrasound data as inputs, with the features selected based

on univariate analyses that produced p-values less than 0.05.

For the classification of images, the Swin-Transformer model

was trained, utilizing its Swin-base as the pre-trained model. The

input image data were primarily drawn from Regions of Interest

(ROI) delineated by physicians during detailed scans and ultrasonic

elastography of the thyroid’s bilateral lobes and isthmus.

2.6 Evaluation metrics

After training each model, Receiver Operating Characteristic

(ROC) curves were plotted, and Area Under the Curve (AUC)
Frontiers in Oncology 05
values were computed for performance evaluation. Algorithms

processed ultrasound images of thyroid nodules to accurately

determine the extent of metastasis. The test set was then used to

further assess the model’s predictive capabilities, including an

examination of predicted outcomes and an evaluation of

predictive accuracy. Graphs depicting the evolution of prediction

accuracy and loss throughout the training were plotted for visual

representation, as illustrated in Figure 4.
3 Results

3.1 Data processing results

From July 2021 to June 2023, data from 504 patients who

received thyroid ultrasound examinations were initially collected.

After rigorous screening, exclusions were applied as follows: 114

cases for the absence of surgery, 20 cases for pathology results not
FIGURE 4

Delineates the training curves of three distinct models. The figure illustrates the training trajectories for multi-modal fusion, single image data, and
single text data, each presented with three distinct curves: training loss, training accuracy, and ROC alongside AUC values. The training loss curve
gradually stabilizes in the depicted region, contrasting the training accuracy curve, which exhibits significant oscillations. Comprehensively, the ROC
curve and AUC values furnish insights into the model's true positive and false positive rates at varying thresholds, notably demonstrating that the
multimodal model secures the highest AUC value.
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confirming Papillary Thyroid Carcinoma (PTC), 3 cases for missing

lymph node dissection records, and 68 cases for incomplete image

data. Consequently, the study was narrowed down to 299 cases,

which included 339 thyroid nodules and 3652 ultrasound images,

along with 19 clinical and ultrasound features, detailed in Figure 5.
3.2 Statistical analysis results

Univariate analysis assessed clinical and ultrasonic features

linked to the degree of cervical lymph node metastasis in

Papillary Thyroid Carcinoma (PTC), examining 339 nodules.

These were divided into three groups by metastasis count: 158

nodules in Group I, 120 in Group II, and 61 in Group III. The

analysis revealed statistically significant differences in various

factors, including age, gender, nodule location 2, maximum

diameter, boundary, homogeneity, longitudinal-transverse ratio,

halo sign, type of calcification, calcification ratio, capsular

invasion, blood flow signal, and ultrasound-detectable suspicious

lymph nodes. Each factor had P-values below 0.05, which are

presented in Table 1.

Multivariate analysis using ordered logistic regression

determined that variables like age over 45 years, a maximum

nodule diameter of 1.0 cm or less, male gender, nodule position

at the upper and lower poles, specific calcification types, and

ultrasound-visible suspicious lymph nodes were statistically

significant. Specifically, being over 45 years old, having nodules

with a maximum diameter of 1.0 cm or less, microcalcification,

coarse calcification, and a longitudinal-transverse ratio of 1 or less

were identified as protective factors. In contrast, being male,

nodules at the upper and lower poles, and suspicious lymph

nodes on ultrasound were established as independent risk factors.

These findings are elaborated in Table 2.
3.3 Model performance results

The development of the DualSwinThyroid model incorporated

a 5-fold cross-validation approach to optimize hyperparameters.

The model’s predictive performance was thoroughly evaluated,

tracking not just the loss curve but also deriving accuracy metrics
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from the test set. The ROC curve was plotted, and the AUC value

was calculated, as shown in Figure 4 (Training Curve). Additionally,

essential metrics like sensitivity and specificity were analyzed.

In training the single-modality models, training accuracy and

loss were also monitored, as shown in Figure 4. A significant

observation was the Swin-Transformer’s classification results

varying considerably with different image data types in the test

set. Color Doppler ultrasound and elastography images yielded

higher classification accuracy than transverse and longitudinal

images, as evidenced by superior accuracy in Figure 6

(Classification Performance).
4 Discussion

In Papillary Thyroid Carcinoma (PTC), cervical lymph node

metastasis is a common occurrence, with an estimated 40-90% of

PTC patients potentially experiencing such metastasis (12, 13). In

2015, the American Thyroid Association issued management

guidelines for adult thyroid nodules and differentiated thyroid

cancer patients, highlighting the degree of cervical lymph node

metastasis as a significant indicator of thyroid cancer recurrence.

To curb the rapid progression of PTC, a crucial step is early

identification of tumors with metastatic potential in clinically

diagnosed PTC patients. Surgical removal is regarded as the

primary treatment modality (14). For patients at risk of suspected

lymph node metastasis, prophylactic central or lateral neck

dissection is recommended. When performing prophylactic

lymph node dissection and total thyroidectomy, the increased risk

of postoperative complications, especially hypoparathyroidism,

must be considered. The study by Henry et al. (15) reported that

central neck lymph node dissection could escalate the risk of

permanent hypoparathyroidism from 0% to 4%. However,

research by Nixon I J et al. indicates that reoperation post PTC

recurrence is relatively challenging, significantly elevating surgical

complications and impacting the quality of life of patients (16).

Hence, early identification of cervical lymph node metastasis in

PTC not only aids in clinically selecting the appropriate surgical

plan and scope, reducing the occurrence of postoperative

complications, but also in minimizing recurrence risks, averting

secondary surgeries, and proactively improving prognosis.

Nonetheless, the sensitivity of solely relying on ultrasonographic

characteristics to indicate lymph node metastasis remains

insufficient, with some lymph node metastases exhibiting

unremarkable ultrasonic features - a common scenario in clinical

practice. Studies also revealed a mere 33% sensitivity of ultrasound

in detecting central lymph node metastasis (17). Preoperative

neck ultrasonography is inevitably influenced by inter-observer

variability, thereby rendering the diagnostic outcome lacking in

certain objectivity.

This study conducted a thorough investigation into the

independent risk factors for cervical lymph node metastasis in

Papillary Thyroid Carcinoma (PTC), analyzing 3,652 multi-modal

ultrasonographic images and data from 299 patients. The results

underscore the need for increased attention to cervical lymph node

metastasis and recurrence risk, particularly in male patients, those
FIGURE 5

Inclusion and Exclusion diagram.
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TABLE 1 Univariate analysis of factors associated with cervical lymph node metastasis in PTC.

Variables
Cervical Lymph Node Metastasis Grading

c2 p
I n (%) II n (%) III n (%)

Gender 25.598 <0.001

Female 123(77.85) 90(75.00) 27(44.26)

Male 35(22.15) 30(25.00) 34(55.74)

Age 14.213 <0.001

>45years 101(63.92) 63(52.50) 22(36.07)

≤45years 57(36.08) 57(47.50) 39(63.93)

Location 1 6.67 0.154

Right lobe 76(48.10) 63(52.50) 31(50.82)

Isthmus 3(1.90) 8(6.67) 1(1.64)

Leftt lob 79(50.00) 49(40.83) 29(47.54)

Largest Diameter 43.635 <0.001

1 cm 124(78.48) 79(65.83) 19(31.15)

>1 cm 34(21.52) 41(34.17) 42(68.85)

Location 2 17.076 0.009

Upper pole 19(12.03) 16(13.33) 16(26.23)

Lower pole 32(20.25) 39(32.50) 17(27.87)

Midsection 101(63.92) 57(47.50) 26(42.62)

Near isthmus 6(3.80) 8(6.67) 2(3.28)

Echo 7.598 0.107

Hypoechogenic 153(96.84) 116(96.67) 55(90.16)

very hypoechogenic 0(0.00) 2(1.67) 2(3.28)

isoechoic 5(3.16) 2(1.67) 4(6.56)

Homogeneous 8.528 0.014

non-uniform 88(55.70) 72(60.00) 47(77.05)

Uniform 70(44.30) 48(40.00) 14(22.95)

Internal Structure 0.189 0.910

Cystic-solid 3(1.90) 3(2.50) 1(1.64)

Solid 155(98.10) 117(97.50) 60(98.36)

Number of lesions 3.004 0.223

Unifocal 105(66.46) 70(58.33) 34(55.74)

Multifocal 53(33.54) 50(41.67) 27(44.26)

Boundary 6.776 0.034

Indistinct 73(46.20) 42(35.00) 33(54.10)

Distinct 85(53.80) 78(65.00) 28(45.90)

Margin 1.407 0.495

Irregular 79(50.00) 67(55.83) 35(57.38)

Regular 79(50.00) 53(44.17) 26(42.62)

(Continued)
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TABLE 1 Continued

Variables
Cervical Lymph Node Metastasis Grading

c2 p
I n (%) II n (%) III n (%)

Longitudinal-Transverse Ratio>1 7.272 0.026

NO 84(53.16) 64(53.33) 44(72.13)

YES 74(46.84) 56(46.67) 17(27.87)

Capsular Invasion 41.712 <0.001

0 38(24.05) 32(26.67) 3(4.92)

<0.25 69(43.67) 53(44.17) 14(22.95)

0.25-0.50 45(28.48) 31(25.83) 34(55.74)

0.50 6(3.80) 4(3.33) 10(16.39)

Suspicious Lymph Nodes 94.933 <0.001

Yes 16(10.13) 37(30.83) 47(77.05)

No 142(89.87) 83(69.17) 14(22.95)

Halo Sign 13.639 0.009

Intact 26(16.46) 23(19.17) 2(3.28)

Partial 68(43.04) 59(49.17) 40(65.57)

None 64(40.51) 38(31.67) 19(31.15)

Calcification Type 19.064 <0.001

Microcalcification 67(42.41) 59(49.17) 45(73.77)

Coarse calcification 26(16.46) 13(10.83) 6(9.84)

No calcification 65(41.14) 48(40.00) 10(16.39)

Calcification Ratio 28.409 <0.001

0 65(41.14) 48(40.00) 9(14.75)

<0.25 50(31.65) 40(33.33) 17(27.87)

0.25 - 0.50 27(17.09) 18(15.00) 15(24.59)

>0.50 16(10.13) 14(11.67) 20(32.79)

Elasticity Hardness 9.648 0.291

Grade I 14(8.86) 11(9.17) 3(4.92)

Grade II 37(23.42) 26(21.67) 10(16.39)

Grade III 34(21.52) 28(23.33) 15(24.59)

Grade IV 68(43.04) 53(44.17) 27(44.26)

Grade V 5(3.16) 2(1.67) 6(9.84)

Blood Flow Signal 12.144 0.016

Grade I 109(68.99) 71(59.17) 29(47.54)

Grade II 38(24.05) 41(34.17) 22(36.07)

Grade III 11(6.96) 8(6.67) 10(16.39)
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TABLE 2 Ordered regression analysis of features associated with the extent of cervical lymph node metastasis in PTC.

Variables B S.E Wald P

I -14.539 0.795 334.852 <0.001

II -12.08 0.816 219.372 <0.001

Age (>45years) -0.577 0.236 5.979 0.014

Gender (Male) 0.837 0.254 10.840 <0.001

Largest Diameter (≤1.0cm) -0.791 0.318 6.19 0.013

Boundary (Indistinct) 0.206 0.253 0.661 0.416

Longitudinal-Transverse Ratio >1 (NO) -0.134 0.261 0.262 0.608

Homogeneous (Uniform) 0.128 0.286 0.199 0.655

Location 2

Near isthmus -0.152 0.56 0.074 0.786

Upper pole 0.927 0.339 7.480 0.006

Lower pole 0.826 0.274 9.110 0.003

Midsection – – – –

Suspicious Lymph Nodes (YES) 2.164 0.29 55.567 <0.001

Halo Sign

Intact -0.219 0.386 0.32 0.572

Partial 0.079 0.282 0.079 0.779

None – – – –

Calcification Type

Micro-Calcification -15.216 0.495 943.168 <0.001

Coarse-Calcification -14.108 0.448 993.29 <0.001

No-Calcification – – – –

Calcification Ratio

0 -14.99 0 – –

<0.25 -0.781 0.419 3.469 0.063

0.25-0.50 -0.627 0.42 2.234 0.135

>0.50 – – – –

Capsular Invasion

0 0.099 0.613 0.026 0.872

<0.25 0.054 0.571 0.009 0.924

0.25-0.50 0.031 0.547 0.003 0.955

>0.50 – – – –

Blood Flow Signal

Grade I 0.402 0.455 0.781 0.377

Grade II 0.613 0.464 1.746 0.186

Grade III – – – –
F
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aged 45 or younger, with thyroid cancer nodules larger than

1cm, nodules at the lower pole and center of the gland, presence

of calcification, and suspicious lymph nodes detected by

ultrasonography. To improve the accuracy of predicting cervical

lymph node metastasis in PTC, the study introduced the

DualSwinThyroid Model, a deep learning tool combining

ultrasonographic images with clinical data. The model achieved a

high AUC of 0.924, with an accuracy rate of 96.3%, and

commendable sensitivity and specificity, highlighting its potential

as an effective non-invasive assessment tool for lymph node

involvement in PTC. Model performance is detailed in Table 3.

Earlier research has typically hinged on machine learning and

statistical methods, analyzing image, clinical, and ultrasonic

features in isolation, without an in-depth approach (18–23).

Luchen Chang et al. employed deep learning, alongside ultrasonic

and clinical data, to develop a composite nomogram for predicting

central lymph node metastasis in PTC patients, using grayscale

images for radiomics and six related features. However, the absence

of multi-modal ultrasonic data and additional correlating factors

slightly impeded the predictive accuracy (22). Fu Li et al. achieved

promising results in forecasting cervical lymph node metastasis

using conventional machine learning models (19). These models,
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however, sometimes fail to discern complex patterns in large

datasets, particularly with fluctuating data distributions or noise,

which can hinder their generalization. Additionally, they depend on

manual feature processing, which can compromise performance if

not done meticulously. Notably, most current studies focus on

merely detecting cervical lymph node metastasis, which affects the

precision of choosing surgical methods and predicting patient

outcomes. Details on comparative studies can be found in Table 4.

The DualSwinThyroid model introduces a refined thyroid

nodule management method by categorizing them into three

different levels to enhance clinical decision-making accuracy. For

Class I nodules without lymph node metastasis, unilateral

lobectomy and isthmectomy are advised as the primary surgical

path. In Class II cases with less than five metastatic lymph nodes,

the model recommends total or near-total thyroidectomy and

‘selective’ cervical lymph node dissection, in conjunction with

clinical judgment. The term ‘selective’ cervical lymph node

dissection, as used here, refers to a process where the surgeon,

integrating systematic preoperative evaluation with intraoperative

biopsy pathology, determines the necessity of lymph node

dissection and identifies the specific regions for dissection,

thereby minimizing the risk of secondary surgical interventions.
FIGURE 6

The prediction accuracy of different data in the corresponding model. The evaluation indicates that multi-modal data performs optimally within the
test set. Specifically, when considering single modality data, the accuracy of Doppler ultrasound images and elastography images within the test set
surpasses that of transverse and longitudinal images.
TABLE 3 Performance comparison of models in this study.

Model AUC Acc (%) Sen (%) Precision F1 Score

Single-Modal (Image) 0.713 75.74 77.48 58.59 65.81

Single-Modal (Text) 0.752 77.53 78.77 60.85 67.80

DualSwinThyroid (Image and Text) 0.924 96.35 99.45 97.93 98.66
*Bold font denotes the predictive performance of the optimal model in this study.
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For Class III nodules with more than five metastatic lymph nodes,

total or near-total thyroidectomy and extensive cervical lymph node

dissection are advised, which is more extensive than standard

elective central neck dissection, especially in cases of widespread

metastasis. Physicians expand the scope of dissection based on a

comprehensive assessment of other clinical indicators. This

recommendation balances comprehensive treatment and the risk

of overtreatment. The DualSwinThyroid model’s multi-tiered

classification not only demonstrates diagnostic accuracy but also

conforms to contemporary medical guidelines, enhancing patient-

centered surgical decision-making.

Throughout the development of our model, several key findings

emerged. Initially, it was apparent that the accuracy of predictions

using single-modality data alone was relatively low, with image data

outperforming clinical and ultrasonic data, highlighting the

importance of imaging in predictive models. In the training dataset,

accuracy confidence was higher for transverse and longitudinal

images than for color Doppler and elastography. Yet, this pattern

shifted in the testing phase, where color Doppler and elastography

images achieved greater accuracy, revealing variable performance

across imaging types during different phases. Moreover, integrating

four types of images—transverse, longitudinal, color Doppler, and

elastography—with clinical and ultrasonic data provided the most

accurate predictions for individual cases. Adding more images did

not improve but rather slightly reduced the predictive performance.

These findings have been instrumental in fine-tuning the model

and determining the most effective imaging techniques to

increase accuracy, setting a course for future advancements in

model enhancement.

This study successfully developed a multi-modal ultrasound

radiomics deep learning model for predicting cervical lymph node

metastasis in PTC. It aims to leverage machine learning to identify

features related to metastasis, thereby improving surgical
Frontiers in Oncology 11
decision-making in PTC. However, the work is retrospective and

exploratory in nature. Moreover, its scope is limited by its single-

institution design, which might not fully represent a wider patient

population. Currently, the final pathological assessment of the

extent of lymph node metastasis still relies on the thoroughness

and accuracy of surgical removal. While the prediction model offers

a potential foundation for clinical decision support, its benefits are

yet to be confirmed in prospective clinical trials. Therefore, the

anticipated advantages, such as reducing lymph node dissections,

financial burden, and supporting emerging practitioners, are

promising but need further validation in various clinical settings.

Future efforts will focus on expanding data sources and rigorously

validating the model’s clinical utility in different institutions.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by First Hospital of

Shanxi Medical University. The studies were conducted in accordance

with the local legislation and institutional requirements. The ethics

committee/institutional review board waived the requirement of

written informed consent for participation from the participants or

the participants’ legal guardians/next of kin because retrospective

nature of the study: if the study is retrospective, analyzing previously

collected data, written informed consent may not be required as the

data is often de-identified and does not pose a risk to the privacy of the

individuals involved.
TABLE 4 Comparison among the prediction models of PICC-RT.

Research
Group

Predicted
Performance

Research
data

Research objectives Number of
risk factors

Prediction
Method

Jinhua Yu et
al. (18)

AUC=0.90-0.93 3172(I) Prediction of LNM in PTC
(2 classification)

– TLR

Fu Li et al. (19) AUC=0.803
Sensitivity =

0.727 Specificity=0.800

126(P) Prediction of LNM in thyroid cancer
(2 classification)

1079
(Radiomics Features)

Machine Learning

Jia Zhan et al. (20) AUC=0.757 405(P) Prediction of LNM in PTC
(2 classification)

3 logistic regression

Wen-Hui Li et
al. (21)

AUC=0.838 450(P) Prediction of cervical LNM in patients
with mPTMC
(2 classification)

6 Nomogram

Luchen Chang et
al. (22)

AUC=0.809 3359(I) Predicting CLNM.
(2 classification)

6 Nomogram

Chenxi Liu et
al. (23)

AUC=0.669 966(P) Prediction of LNM in PTC
(2 classification)

5 logistic regression

Ours AUC=0.924
ACC = 96.35%

3652(I)/299(P) Prediction of LNM in PTC
(3 classification)

13 Deep Leaning
*Bold font denotes the predictive performance of the model in this study.
P, Patients data; I, Image data.
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