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Aiming at the problems of small sample size and large feature dimension in the

identification of ipsilateral supraclavicular lymph node metastasis status in breast

cancer using ultrasound radiomics, an optimized feature combination search

algorithm is proposed to construct linear classification models with high

interpretability. The genetic algorithm (GA) is used to search for feature

combinations within the feature subspace using least absolute shrinkage and

selection operator (LASSO) regression. The search is optimized by applying a high

penalty to the L1 norm of LASSO to retain excellent features in the crossover

operation of the GA. The experimental results show that the linear model

constructed using this method outperforms those using the conventional

LASSO regression and standard GA. Therefore, this method can be used to

build linear models with higher classification performance and more robustness.
KEYWORDS

breast cancer, ipsilateral supraclavicular lymph node metastasis, radiomics, genetic
algorithm, LASSO regression, feature combination
1 Introduction

The incidence and mortality of female breast cancer in China have been continuously

increasing in recent years, posing a large threat to women’s health (1, 2). The survival

outcomes of patients with ipsilateral supraclavicular lymph node (ISLN) metastasis after

surgery are often unsatisfactory. Identifying ISLN status before surgery allows for categorizing

patients. ISLN patients may benefit from initial treatments such as neoadjuvant
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chemotherapy (3) rather than surgery. Furthermore, breast

ultrasound is a routine diagnostic method for breast cancer. This

approach is noninvasive, inexpensive, real-time, portable, and

radiation-free and provides internal structure imaging that contains

rich information on tumor heterogeneity. However, this information

is usually difficult to observed visually (4, 5). Radiomics refers to the

conversion of medical images into mineable data and the subsequent

analysis of these data to provide decision support (4, 5). Therefore,

preoperative ultrasound based radiomics technology is an effective

noninvasive approach to identify ISLN status before treatment and

assist doctors in making clinical decisions.

The relatively low occurrence of ISLN events (4%) results in a

limited number of samples that can be collected, especially for single

centers (6). Predicting ISLN using an ultrasound radiomics-based

approach is evidently a classical data mining problem with a small

sample size. Therefore, methods such as deep convolutional neural

networks that require a large amount of data and annotations may

not be suitable for this study (7, 8). Radiomic feature engineering

combined with linear classification models may achieve exceptional

performance in terms of model robustness and interpretability (7, 9,

10). To date, there have been no studies on ISLN identification

based on preoperative ultrasound radiomics. However, relevant

studies have been reported. In 2019, Liu et al. (11) used dynamic

contrast enhanced magnetic resonance imaging (DCE-MRI)-based

radiomic feature-trained linear logistic regression (LR), extreme

gradient boosting (XGBoost), and support vector machine models

to identify axillary lymph node metastasis in breast cancer patients.

In 2020, Qiu et al. (12) built an LR model based on ultrasound

radiomic features to identify axillary lymph node metastasis in

breast cancer patients. In the same year, Yu et al. (13) constructed

an LR model based on the radiomic features of MRI to identify

axillary lymph node metastasis and predicted the disease-free

survival of patients with early breast cancer. In the above studies,

the clinical problems to be solved were all data mining problems

with a small sample size and high-dimensional feature space, and

after feature selection, machine learning models were constructed

for classification. Further, these studies employed the least absolute

shrinkage and selection operator (LASSO) method for feature

selection. Then, linear models were constructed to evaluate the

classification performance. Although nonlinear models may offer

better the training performance, they often have limited

generalizability and poor interpretability, making it challenging to

apply them in clinical practice. A feasible way to alleviate this issue

is to use linear combinations with interpretability to build and train

models (9, 10). Currently, the vast majority of radiomics studies use

t tests or U tests in combination with correlation coefficients for

preliminary feature selection to obtain stable candidate features.

Then, conventional (widely used) LASSO regression methods are

used for further selection of the candidate features (9, 14).

However, the feature space of datasets in radiomics research is

generally a hyperdimensional space composed of thousands of

radiomic features, and finding a suitable combination of a finite

number of features remains a challenging task (9, 10). LASSO (15) is a

linear regression algorithm that can intuitively and explicitly express

the representation ability of a feature set. LASSO adds a regularization

term to the general linear regression to ensure the best fitting error
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and to keep the parameters as simple as possible (reducing the

number of nonzero parameters) to reduce overfitting. Therefore,

LASSO can enable a machine learning model to exhibit strong

generalizability and outstanding robustness (16, 17). However, as a

multivariate regressionmethod that searches for a feature subset from

the feature space, LASSO first searches the entire feature space. When

the dimension of the feature space is very high, the choice of the

optimal penalty factor lambda (i.e., the weight of the L1 norm or

penalty value/penalty factor) can be challenging. A high lambda can

keep the parameters as simple as possible, thereby improving the

robustness of the constructed linear model. However, the model

performance may decrease. On the other hand, a low lambda value

may lead to overfitting the model constructed in the next step. Liu

et al. (9) proposed preselecting features based on statistical testing, i.e.,

preselecting candidate features. In this process, first, the total

dimensionality of the feature space is reduced by defining a feature

subspace in advance. Then, LASSO is used to search for the optimized

feature combination within this subspace. This approach is widely

used in radiomics studies (9, 10). Nevertheless, on the one hand, the

predefined feature subspace may still be a high-dimensional feature

space. On the other hand, LASSO only searches for feature

combinations within this feature subspace, which is still redundant

to include more candidate features. A more optimized solution is to

further extract subspaces in this feature subspace multiple times and

use LASSO to search for feature combinations in each of these

extracted subspaces. To ensure completeness, extracted subspaces

must cross each other, a requirement similar that when sampling

with replacement.

This study aims to address the issue of small sample size and

high-dimensional feature space in the identification of the ISLN

metastasis status of breast cancer patients by ultrasound radiomics.

To this end, we combine the genetic algorithm (GA) with LASSO

and propose GALambda, in which the crossover operation of

individuals is carried out based on LASSO regression with a high

penalty factor. In this approach, the GA is used to extract feature

subspaces as well as evaluate and iterate over these extracted

subspaces to determine if LASSO can find feature combinations

that can construct high-performance linear prediction models

within these subspaces. Furthermore, for the GA, a strategy is

designed to dynamically set excellent genes based on the high

penalty parameter lambda. Thus, the excellent genes are

preserved for crossover to generate offspring in the hope that the

search for feature combination can be optimized.
2 Materials and methods

2.1 Dataset

2.1.1 Study population
Female patients diagnosed with primary breast cancer with ISLN

metastasis at West China Hospital between December 2010 and May

2020 were retrospectively included in this study. The diagnosis of

breast cancer and ISLN metastasis was confirmed by preoperative

biopsy or postoperative pathological examination of ISLN specimens.

The inclusion criteria were as follows: (1) female patients with
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primary breast cancer; and (2) patients who underwent preoperative

ISLN biopsy or postoperative pathological examination of ISLN

specimens. The exclusion criteria were as follows: (1) lack of

ultrasound image records; and (2) negative ISLN biopsy results

without postoperative pathological records. A total of 181 patients

were finally included in this study. These patients were randomly

divided into a training set (n=109) and an independent test set (n=72)

at a ratio of 6:4. The results of the statistical tests indicated that there

were no significant differences in important baseline features (age, T-

stage, invasive ductal carcinoma, progesterone receptor status,

estrogen receptor status, and intraductal carcinoma in situ of the

breast) between the training and test sets (p≥ 0.05). In the statistical

test of significant differences, Fisher’s exact test was used for

categorical variables and the Mann–Whitney U test (also known as

theMann–Whitney rank sum test) was used for continuous variables.

The p values for the above six baseline features were 0.7256, 0.3979,

0.1322, 0.4391, 0.2079, and 0.4429, respectively.

2.1.2 Ultrasound images
All patients in this study underwent preoperative breast and

lymph node ultrasound. The ultrasound equipment used were as

follows: an Acuson S3000 with an 18-5 MHz linear transducer

(Siemens, Munich, Germany) and an iU22 with a 12-5 MHz probe

(Philips, Amsterdam, Netherlands). The stored ultrasound images

should (1) be from the most recent ultrasound examination before

ISLN status confirmation through biopsy or dissection, (2) contain

the entire tumor or lymph node lesions and as many features as

possible, (3) clearly show the tumor lesions, and (4) be obtained by

an experienced sonographer. Two sonographers with more than 10

years of experience in breast ultrasound outlined primary lesions as

the region of interest (ROI) on the ISLN ultrasound images.
2.2 Methods

The technical route of this study, which is also the conventional

technical roadmap of radiomics, is shown in Figure 1. Both feature

selection and training were performed on the training set. A five-
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fold cross-validation (CV) strategy was used during the training.

The model evaluation was primarily based on the results from CV

and independent testing. GALambda is an improved GA proposed

in this study based on LASSO regression that obtains the features

corresponding to nonzero coefficients by selecting a high penalty

factor from the LASSO CV results. GALambda dynamically sets

excellent genes for the crossover operation on individuals in the GA

based on the minimum mean square error from CV. As a result, the

features that are retained under the high penalty factor in each

combination from multivariate LASSO regression can be carried

over to the new individuals generated. This algorithm will be

described in more detail in the subsequent section.

2.2.1 Radiomic feature extraction
Quantitative radiomic features were extracted from the ROIs

and the subbands of filtered ROIs. The filtering methods included

the Laplacian of Gaussian (LoG), wavelet transform, and contourlet

transform methods. The quantitative feature extraction methods

included the histogram, cooccurrence matrix, run-length matrix,

difference matrix, size-zone matrix, neighborhood difference

matrix, and neighborhood dependency matrix methods. Shape

features were also extracted. The above methods were applied

again to the subbands of the filtered ROIs, and there were a total

of 25 feature extraction methods, resulting in a total of 5031 features

extracted from a single ROI (18–20).

2.2.2 GALambda: GA and LASSO regression
In feature selection, the GA can be used to search randomly and

in parallel for a feature combination in the feature space so that the

objective cost (i.e., fitness) of the feature combination is minimized.

However, standard GAs randomly converge and fail to effectively

control the generalizability of the feature combination. On the other

hand, the LASSO regression is characterized by variable screening

and complexity adjustment (regularization, L1 norm) while fitting a

generalized linear model. The L1 norm of LASSO regression

constrains, adjusts, or shrinks the coefficient estimates towards

zero, so LASSO regression can be used for feature selection.

Besides, when the penalty factor for the L1 norm is larger, the
Dataset: 
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FIGURE 1

Technical route of identifying ISLN by ultrasound radiomics.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1349315
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1349315
feature corresponding to the nonzero coefficient can play a more

important role in multivariate regression. As the lambda value

increases, the number of nonzero coefficients gradually decreases.

However, LASSO regression searches for which features are more

important (controlled by the size of the lambda value) for the

regression result within a specific combination. Therefore, the

regression performance depends not only on the choice of

lambda but also obviously on the combination to be searched. In

general, conventional LASSO regression selects lambda based on

the minimum mean square error of k-fold CV. However, if LASSO

regression is used to screen for variables from a large feature space,

this approach can still result in too many nonzero coefficients,

causing overfitting. If it is possible to select variables from an

appropriate feature space, the number of nonzero coefficients can

be reduced. However, a search in a specific feature space may limit

the results obtained (which potentially leads to a local optimal

result). Therefore, the plan in this study is to screen for variables in

two steps based on the principles of the GA: the first step is the

feature subspace search, and the second step is LASSO regression

within the identified feature subspace. The specific framework is

shown in Figure 2.

First, feature preselection is performed based on the Fisher

correlation coefficient and statistical U test to obtain candidate

features (9, 10). In the U test, a p-value less than 0.05 is commonly

considered a significant difference statistically. The Fisher

correlation coefficient approach is to calculate the pairwise

correlation coefficients of features, and a threshold of 0.8 is

empirically chosen. When the correlation coefficient is greater

than or equal to 0.8, the two features are strongly correlated, and

the feature with a higher average correlation is removed (9).

Then, LASSO and its lambda configuration are combined in the

GA as follows:
Fron
1. The gene expression of an individual is represented as a

binary string, with a length equal to the number of

candidate features. Here, ‘0 ’ indicates that the

corresponding feature is not selected, while ‘1’ indicates
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that the corresponding feature is selected. In this context,

‘selected’ refers to being included in a feature subspace,

rather than being in the final feature result. LASSO

regression is then applied to this feature subspace to

obtain the final feature results.

2. After performing LASSO regression with k-fold CV on the

feature subspace, the features with a lambda value less than

the minimum mean standard error and nonzero

coefficients are the finally selected features. The fitness

function is located as the 1-area under the curve (AUC)

value of the k-fold CV after performing a linear logistic

regression on the final selected features.

3. Crossover operation. The crossover operation is applied to

the genes of two individuals to generate new individuals.

The main idea of the GALambda method for crossover is as

follows. When searching for feature combinations in the

feature subspace specified by an individual, the features

corresponding to nonzero coefficients that are still retained

under the penalty parameter lambda can be retained, while

the remaining genes are randomly selected from their

parents. This process enables the excellent genes that are

retained even under high penalty parameters in LASSO

regression to be directly inherited by the next generation as

features in the feature subspace specified for the next

generation, allowing feature combinations in the next

generation to still include these features in the search.

This also ensures diversity in the feature subspace,

maximally mitigating the issue of the feature search

becoming too localized in a single feature subspace. The

specific pseudocode for the crossover operation is shown in

Algorithm 1.
Input:

nvars: number of genes, i.e., the number in the feature

space;
Start

Feature preselection

Mann-Whitney U test

Fisher's correlation coefficient

GA & LASSO

Calculate fitness by LASSO

Create an initial population (based 

on R-squared value of single factor 

regression)

Select the individuals that rank in the 

top n% of AUCs

Random crossover algorithm with 

excellent gene retention

Dynamic screening of excellent genes based on LASSO with high penalty factor

Iterate the population until 

convergence
End

FIGURE 2

Basic framework of the GALambda method.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1349315
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1349315

Fron
Bs: pop-by-1 cellular data, where pop is the population

size. Bs{i} represents the coefficients corresponding

to each lambda returned by executing LASSO on an

individual i, and it is a nvars-by-nlambdas matrix,

with the j-th column being the coefficient

corresponding to j-th lambda;

Fs: pop-by-1 cellular data. Fs{i} represents the

fitting information returned by executing LASSO on

individual i, including the mean square error (MSE)

vector and the lambda index/location corresponding to

the minimum mean square error (indexMinMSE);

a, b: both are 1-by-nvars vectors, the features are

arranged from 1 to nvars, with an element value of 0 or

1, where 1 means that the corresponding feature is

selected and 0 means that the corresponding feature is

not selected;

ia, ib: denote the locations of individuals a and b in the

population, respectively.

Output:

offspring: 1-by-nvars vector.

1 Begin:

2 //Step 1/5: List of the predefined number of

excellent genes and the average mean square error

3 nums = [ … ];//list of the number of excellent genes

4 mses = [ … ];//list of the average mean square error

corresponding to nums

5 na = 1; nb = 1;//Numbers of excellent genes for

individuals a and b, with default values of 1

6 //Step 2/5: Dynamically set the number of excellent

genes according to the LASSO average mean square

error

7 for i=1 to length (mses) {

8 if Fs{ia}.MSE(Fs{ia}.indexMinMSE)<= mses(i) {

9 na/nb = nums(i); break};

10 }

11 //Step 3/5: Screen for excellent genes based on a

high penalty lambda (refer to Algorithm 2).

12 excellentGeneAIndices=screenExcellentGenes(Bs

{ia}, a);

13 excellentGeneBIndices=screenExcellentGenes(Bs

{ib}, b);

14 //Step 4/5: Set the index of excellent genes to 1,

indicating that a new individual has been selected

15 excellentGeneIndices = unique

([excellentGeneAIndices,

excellentGeneBIndices]);

16 offspring = zeros(1, nvars);//A new individual

17 offspring(excellentGeneIndices)=1;//set

excellentgenes

18 //Step 5/5: Randomly select other genes from their

parents (half from each parent)

19 offspring = combine(new Individual, a, b);

20 End
Algorithm 1. Pseudocode for the crossover operation in GALambda.
tiers in Oncology 05
In Algorithm 1, lines 6-13 are the mechanism for dynamically

setting excellent genes; lines 14-17 set excellent genes for new

individuals; and lines 18-19 randomly assign other genes from

parental individuals to new individuals.

Algorithm 2 is the pseudocode that first screen for excellent

genes of the parental individuals in the crossover process, that is, the

mechanism that dynamically sets the excellent genes according to

the lambda parameter and fitness in the LASSO regression of the

individual to be crossed over. The search starts from the maximum

lambda value and stops when the number of nonzero coefficients

meets the value specified by the input parameter. The input

parameter n is determined by the predefined fitness interval in

the crossover (refer to lines 2-5 of Algorithm 1).
Input:

B: nvars-by-nlambdas matrix, where nvars is the number

of genes (the number of features, i.e., the dimension of

the feature space), nlambdas represents the number of

penalty parameter lambda, and lambda is sorted in

ascending order from the first to the last column in B;

B is obtained by executing LASSO, so the value of the

excellent genes screened must be 1, indicating that the

corresponding feature is selected;

n: The features are arranged from 1 to nvars, with the

elements in a or b having values of 0 or 1, where 1 means

that the corresponding feature is selected and 0 means

that the corresponding feature is not selected.

Output:

geneIndices: 1-by-n vector, expressing the locations

of excellent genes.

1 Begin:

2 //Lambda starts to search from the maximum value and

stops when the number of nonzero coefficients is

greater than or equal to n

3 for j=width(B):-1:1

4 //v is a vector coefficient of the j-th lambda

5 v = abs(B(:j));

6 v = sort(v, ‘descend’);//Sort v in descending order

7 indices = find(v~=0);//Features corresponding to

nonzero coefficients

8 if length (indices) >= n {

9 geneIndices = indices (1:n);

10 return gene Indices};

11 }//end for: End of loop for traversing lambda

12 End
Algorithm 2. Pseudocode for screening for excellent genes based on
high penalty parameters.

For a given lambda value, the minimization problem to be solved

by LASSO regression is defined in Equation 1, where N is the number

of training samples, i and j are the sample numbers, and x and y

represent the sample (feature vector) and response (i.e., the outcome

variable, which in this study is either 1 for the presence of metastasis or
frontiersin.org
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0 for the absence of metastasis), respectively, l is the regularization

parameter, that is, the penalty parameter lambda, which is

nonnegative, b is the coefficient vector corresponding to the feature,

and b is the intercept scalar. As can be observed from the last term of

Equation 1, the lambda parameter is actually the weight of the L1

norm/regularization as a penalty factor/parameter. In regression, the

contribution of a feature to the total score is noted with a nonzero

coefficient value, but a larger penalty factor reduces the values of less

important coefficients, possibly even down to 0, thus removing the

feature corresponding to the coefficient from the regression.

min
o
N

i=1
(yi − b − xTi b)

2

2N
+ lo

M

j=1
bj
�� ��

0
BBB@

1
CCCA (1)

In addition, considering that the GALambda method searches

for linear combinations of features from the feature subspace, if the

dimension of the feature subspace in the initial population is too

low, GALambda may search in the sparse feature subspace.

However, the method itself has the capability to sparsify the

feature subspace through lambda tuning. Therefore, the

GALambda method generates an initial population based on the

univariate regression results. Specifically, the value of the regression

evaluation metric R-squared in univariate regression is converted to

a probabilistic expression—the gene being 1 (greater than or equal

to 0.5) or 0 (less than 0.5). R-squared, as defined in Equation 2, is

also known as coefficient of determination and is an important

metric for assessing how well the coefficients fit the true value of y.

In Equation 2, y represents the true value, the symbol ˆ denotes the

predicted value, the symbol ˉ denotes the average value, and N is the

number of samples to be fitted/trained.

R2 = 1 −
o
N

i=1
(ŷ − yi)

2

o
N

i=1
(yi − �y)2

(2)
3 Experimental results and discussion

The features selected by GALambda are shown in Table 1. A

one-level wavelet decomposition can produce an approximate

component that represents low-frequency information and three

detail components that represent horizontal, vertical, and diagonal

high-frequency information, respectively. The approximate

component can be decomposed again. A one-level contourlet

transform consists of a pyramid decomposition and a directional

filter decomposition, which can produce an approximate

component that represents low-frequency information and 2n

(decided by the directional filter bank) detail components. The

approximate component can be decomposed again. Specifically, (1)

the wavelet transform is carried out with three-level decomposition;

the method names have the prefix CMS-W; feature extraction is

performed on nine high-frequency components, where components

1, 2, and 3 are obtained from the first-level decomposition,
Frontiers in Oncology 06
components 4, 5, and 6 are obtained from the second-level

decomposition, and components 7, 8, and 9 are obtained from

the third-level decomposition; and (2) the contourlet transform is

performed with the three-level decomposition; the method names

have the prefix CMS-C; eight high-frequency components are

obtained from the first-level decomposition, and four components

are each obtained from the second-level and third-level

decomposition. The components of contourlet decompositions

are similarly numbered as the wavelet decompositions.

GALambda first performed feature preselection based on

thresholds of Fisher’s correlation coefficient and the Mann–

Whitney U test. Then, GALambda performed the genetic

algorithm as described in section 1.2.2 on the preselected features.

As for an individual, LASSO regression was performed on the

feature space corresponding to this individual. As described in

Algorithms 1 and 2, high penalty factors were set to screen excellent

genes and then a customized crossover operation was performed.

After population iteration, 16 features were finally selected. Logistic

linear regression was performed based on the selected features, and

predictions were made on the independent test set. The AUC and

the accuracy corresponding to the maximum Youden index were

calculated. The results are shown in Table 2 (the values in

parentheses represent the 95% confidence interval based on the
TABLE 1 Features selected by GALambda.

Method
name

Feature name Parameter

FOD 10th percentile

GLRLM Low gray-level run emphasis

CMS-WRLM Long run emphasis component = 5

CMS-WSZM Zone entropy component = 4

CMS-WSZM Low gray-level zone emphasis component = 4

CMS-WSZM
Size-zone
nonuniformity normalized

component = 6

CMS-WNDM Dependency variance
component=1
| distance=3

CMS-WNDM Dependence entropy
component=9
| distance=3

CMS-WNTM Strength
component=6
| distance=1

CMS-WNTM Complexity
component=6
| distance=3

CMS-CFOD Kurtosis component=16

CMS-CCOM Correlation
component=14
| distance=3

CMS-CSZM
Size-zone
nonuniformity normalized

component = 2

CMS-CSZM Gray-level variance component=10

CMS-CSZM
Size-zone
nonuniformity normalized

component=14
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sampling strategy with replacement—100 calculations), and the

corresponding ROC curves are shown in Figure 3. Considering

that previous relevant studies (11–13) have used LASSO to select

features, and most radiomics studies also usually applied LASSO for

feature selection (9, 10), a conventional LASSO method was also

implemented in the experiments of this study. Besides, GALambda

searches for linear combinations of features in random subspaces
Frontiers in Oncology 07
delineated by a genetic algorithm. For comparison, the standard

genetic algorithm is also implemented to select features. The

selected features by conventional LASSO and standard GA are

shown in the Supplementary Materials.

In the results of Table 2 and Figure 3, all three methods are based

on the search for linear combinations of features based on the

preselected candidate features. In the medical literature, 1/10 or 1/5
B

C D

A

FIGURE 3

Classification ROC curves for the linear models constructed using feature combinations obtained by three methods. (A) ROC curves of conventional
LASSO-based model. (B) ROC curves of standard GA-based model. (C) ROC curves of GALambda-based model. (D) Compare test ROC curves.
TABLE 2 AUCs and accuracies for CV and the test results.

CV AUC CV accuracy Test AUC Test accuracy

Conventional method 0.720 (0.631-0.828) 0.688 (0.607-0.773) 0.737 (0.644-0.851) 0.681 (0.584-0.789)

Standard GA 0.814 (0.729 - 0.903) 0.780 (0.688 - 0.853) 0.688 (0.560 - 0.820) 0.694 (0.609 - 0.788)

This work 0.798 (0.702 - 0.896) 0.761 (0.684 - 0.849) 0.783 (0.668 - 0.890) 0.778 (0.701 - 0.876)
Bold values means the classification results of the GALambda method model.
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of the training sample size is widely used as the lower limit of feature

number for developing prediction models that predict a binary

outcome, which also generally been accepted as a methodological

quality item in appraising published prediction modeling studies (14).

To further reduce overfitting, the maximum number of nonzero

coefficients was limited in LASSO regression. This value was

empirically set to 1/10 or 1/5 of the training sample size. The

conventional method optimizes the parameters for feature

preselection during the experiment, that is, a grid search was

conducted for the thresholds of the statistical significance tests and

Fisher’s correlation coefficient. A p-value less than 0.05 in the U test is

commonly considered a significant difference statistically, and Fisher’s

correlation coefficient is greater than or equal to 0.8 is commonly

considered that the corresopnidng two features are strongly correlated

(9, 10). Therefore, we developed a small threshold grid centered at 0.05

and 0.8 for the U test and Fisher’s correlation coefficient respectively,

and used the cross-validation AUC as the evaluation criterion to select

the optimal thresholds. Table 2 shows that the Galambda-based model

achieves higher test AUC and accuracy than the models of the other

two methods. Correspondingly, as shown in Figure 3, the test ROC

curve of the GALambda-based method approaches the upper left

corner of the figure faster than the other two curves.

Although the standard GA did identify a linear combination of

features with the highest CV AUC, its robustness is poor because

the standard GA lacks an effective regularization parameter to

control overfitting. The linear combination of features identified

by the conventional method exhibited lower CV and test AUCs

than the GALambda method. The same comparison results were

also performed in terms of accuracy. This may be attributed to the

fact that it only conducts a global search within a large feature

subspace. In contrast, GALambda, because of its combination with

the GA, initially searches for feature subspaces and can obtain a
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good feature subspace before performing LASSO regression,

resulting in a more focused and richer search for linear

combinations of feature and thereby ultimately leading to the

discovery of a linear combination of features that can better

predict lymph node metastasis. In addition, confidence intervals

account for the variabilities in results. As for CV AUCs of standard

GA and GALambda, the upper bounds of 95% confidence intervals

are almost close to each other (0.903 vs. 0.896). As for CV accuracies

of standard GA and GALambda, the lower bounds of 95%

confidence intervals are almost close to each other (0.688 vs.

0.684). It may indicate that the model of GLambda would be no

worse than the model of standard GA in the training.

Figure 4 shows the population iteration process of the GALambda

algorithm, which gradually converges after approximately 75 iterations.

The convergence is relatively fast and the complexity of the GA is not

significantly increased. To further evaluate the clinical utility of the

linear combination of features optimized by the GALambda algorithm

in the construction of a linear model to predict lymph node metastasis,

decision curves were used to assess the utility of the constructed linear

model for guiding clinical intervention. For predictive models related to

clinical problems, decision curves are also a crucial metric for assessing

the model robustness. The decision curves in Figure 5 show that the

linear model constructed based on the feature combination obtained by

GALambda for the prediction of lymph node metastasis to guide the

interventions can achieve a higher net benefit than those of the other

two methods over a broader range of risk thresholds, suggesting that

the linear model constructed by the feature combination obtained

using the GALambda method has greater robustness and clinical

utility. Besides, prediction models such as linear combinations such

as regression are generally considered effective means of reducing

overfitting. However, this has high criteria for the number of training

samples and variables. Generally, the smaller the number of variables
FIGURE 4

The population iterative process using GALambda.
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relative to the number of training samples, the lower the potential

overfitting of a model (14). GALambda screens features in random

subspaces divided by a genetic algorithm, thus screening out fewer

features, which helps reduce overfitting. The experimental results also

showed that the GALambda-based model performs the best on the

independent test.

However, this study also has some limitations. First, it is a

single-center study, and an external validation set usually preferably

reflects the robustness and generalization ability of models, which

can further verify the superiority of GALambda. Then, GALambda

is a method based on random search. The final result is related to an

initial state. Initialization population can affect the searching in

subspaces and the subsequent evolution. Future studies can try

various initialization methods to optimize GALambda.
4 Conclusion

In this study, to address the problems of small sample size and

high-dimensional feature space of datasets to predict ISLN

metastasis for breast cancer patients using ultrasound radiomics,

we explored a GA, referred to as GALambda. GALambda performs a

crossover operation dynamically set by LASSO regression based on a

high penalty factor to optimize the search for feature combinations

and construct linear prediction models with high interpretability.

The experimental results showed that the GALambda method

exploits the advantages of the GA by first searching for a feature

subspace and then performing regularized LASSO regression to

identify feature combinations within this feature subspace. In

addition, based on the minimum mean square error through CV

in LASSO regression, the GALambda method dynamically selects

the features corresponding to nonzero coefficients under a high

penalty factor for individual crossover in the GA, obtaining better

feature combinations than those obtained using the conventional

LASSO method and the standard GA after a finite number of
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population iterations. The evaluation of the AUCs of the ROC and

decision curves showed that the linear prediction model constructed

based on the feature combination obtained by the GALambda

method could obtain better prediction results, which is helpful for

the construction of prediction models of ISLN metastasis for breast

cancer patients using ultrasound radiomics. In addition, this method

also has value in quantitative data mining in other radiomics studies.
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