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Technology, Dalian, Liaoning, China
Objective: To establish a radiomics model based on intratumoral and

peritumoral features extracted from pre-treatment CT to predict the major

pathological response (MPR) in patients with non-small cell lung cancer

(NSCLC) receiving neoadjuvant immunochemotherapy.

Methods: A total of 148 NSCLC patients who underwent neoadjuvant

immunochemotherapy from two centers (SRRSH and ZCH) were

retrospectively included. The SRRSH dataset (n=105) was used as the training

and internal validation cohort. Radiomics features of intratumoral (T) and

peritumoral regions (P1 = 0-5mm, P2 = 5-10mm, and P3 = 10-15mm) were

extracted from pre-treatment CT. Intra- and inter- class correlation coefficients

and least absolute shrinkage and selection operator were used to feature

selection. Four single ROI models mentioned above and a combined radiomics

(CR: T+P1+P2+P3) model were established by using machine learning

algorithms. Clinical factors were selected to construct the combined

radiomics-clinical (CRC) model, which was validated in the external center

ZCH (n=43). The performance of the models was assessed by DeLong test,

calibration curve and decision curve analysis.

Results: Histopathological type was the only independent clinical risk factor. The

model CRwith eight selected radiomics features demonstrated a good predictive

performance in the internal validation (AUC=0.810) and significantly improved
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than the model T (AUC=0.810 vs 0.619, p<0.05). Themodel CRC yielded the best

predictive capability (AUC=0.814) and obtained satisfactory performance in the

independent external test set (AUC=0.768, 95% CI: 0.62-0.91).

Conclusion: We established a CRC model that incorporates intratumoral and

peritumoral features and histopathological type, providing an effective approach

for selecting NSCLC patients suitable for neoadjuvant immunochemotherapy.
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1 Introduction

Lung cancer has emerged as the leading cause of cancer-related

deaths worldwide (1). Among them, non-small cell lung cancer

(NSCLC) accounts for approximately 85% (2). The past decade of

lung cancer treatment history has demonstrated that preoperative

administration of antitumor drugs can reduce tumor size, leading to

downstaging and creating favorable conditions for surgery (3).

Additionally, research has indicated that neoadjuvant therapy can

help eliminate micrometastases and reduce the risk of post-

operative recurrence (4). With the advancement of lung cancer

treatment drugs, immune checkpoint inhibitors have emerged as a

novel and promising class of antitumor agents (5, 6). Studies have

shown that the addition of nivolumab to neoadjuvant

chemotherapy in lung cancer significantly improves pathological

response in patients compared to the use of chemotherapy

alone (7, 8).

However, only part of NSCLC patients can benefit from

neoadjuvant immunochemotherapy (7). In many cases, the tumor

did not shrink significantly following neoadjuvant therapy, and

these drugs can have notable side effects such as leukopenia and

immune-related pneumonitis (3, 9). Therefore, it is crucial to

identify patients who will truly benefit from neoadjuvant

immunochemotherapy before initiating treatment (10). In fact,

assessing the efficacy of neoadjuvant therapy in lung cancer poses

certain challenges, as studying the survival outcomes of patients

after neoadjuvant treatment typically requires a long time follow-up

(11). The International Association for the Study of Lung Cancer

(IASLC) in 2021 suggested that the major pathological response

(MPR) in postoperative specimens can be used as an evaluation

criterion for neoadjuvant therapy (12). MPR was defined as the

viable tumor is less than or equal to 10% in the tumor bed, which

provided a convenient approach to assessing treatment effectiveness

after neoadjuvant therapy.

Some clinical trials have explored the use of biomarkers such as

PD-L1 expression and tumor mutational burden (TMB) to predict

MPR. However, their predictive effectiveness remained

controversial and the detection of PD-L1 and TMB is invasive.

To date, there is no reliable biomarker available to predict MPR
02
following neoadjuvant immunochemotherapy in NSCLC. Thus,

there is an urgent need for a credible and non-invasive pre-

treatment assessment method.

Radiomics aims to capture the heterogeneity within tumors

non-invasively by extracting high-throughput features from images

for analysis (13). Numerous studies have demonstrated that

radiomics plays a valuable role in tumor diagnosis, treatment, and

prognosis assessment (14–16). Research has already utilized pre-

treatment CT tumor features to build radiomics model and predict

pathological response following neoadjuvant chemoradiation for

lung cancer, yielding promising results (17). In fact, the

microenvironment surrounding the tumor can also influence the

response to immunotherapy, such as the distribution of tumor-

infiltrating lymphocytes (TILs) (18). Studies have shown that the

distribution of TILs is associated with survival outcomes and

treatment response in various diseases (19, 20). Therefore, it is

also necessary to further investigate the impact of the specificity of

the tumor microenvironment on the effect iveness of

neoadjuvant immunochemotherapy.

In this study, we constructed models to predict MPR following

neoadjuvant immunochemotherapy for non-small cell lung cancer

by extracting radiomic features from both the intratumor and the

peritumor regions on CT images. Furthermore, the optimal

prediction model was validated in an independent external cohort.
2 Methods and materials

2.1 Study population

This study was granted ethical approval by the institutional

review board of Sir Run Run Shaw Hospital (SRRSH) and Zhejiang

Cancer Hospital (ZCH), which was performed in accordance with

the ethical standards of the 1964 Declaration of Helsinki. Informed

consent was waived due to the retrospective nature of this study.

This research retrospectively included patients diagnosed with

non-small cell lung cancer (NSCLC) who underwent neoadjuvant

immunochemotherapy between June 2019 and December 2022 at

two centers (SRRSH and ZCH). The inclusion criteria were as
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follows: 1) pathologically confirmed NSCLC through endoscopic

bronchoscopy or CT-guided needle puncture, 2) preoperative

neoadjuvant immunochemotherapy was received, and 3) pre-

treatment chest CT was performed. Patients were excluded if any

of the following conditions were met: 1) pre-treatment staging as

stage I or stage IV; 2) less than two cycles of neoadjuvant treatment

received; 3) unavailable enhanced chest CT; 4) time interval

between chest CT and treatment initiation exceeds one month; 5)

poor CT image quality. Patients from SRRSH were used as the

model training and internal validation set, while patients from ZCH

were used as the independent external test set. The detailed process

of patient inclusion and exclusion is shown in Figure 1.
2.2 Treatment method

All patients underwent standard preoperative evaluations and

tumor staging procedures before determining treatment, including

tumor biopsy (via bronchoscopy or CT-guided fine-needle

puncture), chest CT, abdominal ultrasound, head MRI, and

whole-body nuclear imaging. The thoracic surgeons assessed the

tumor staging of the patients according to the 8th edition of the

Lung Cancer TNM staging system, published by the Union for

International Cancer Control (UICC), and determined the

neoadjuvant treatment strategy. The standard neoadjuvant

immunochemotherapy regimen comprises 2 to 4 cycles of

immunotherapy in conjunct ion with plat inum-based

chemotherapy. Following the completion of neoadjuvant

treatment, comprehensive tumor resection is undertaken by the

thoracic surgeons.
2.3 Pathological evaluation

According to the multidisciplinary recommendations from the

IASLC regarding pathological assessment of lung cancer excision

specimens after neoadjuvant therapy (12), pathologists are

responsible for evaluating the pathological responses of surgical
Frontiers in Oncology 03
specimens. All specimens were re-evaluated by an experienced

senior pathologist (Y. Gan) who has more than 10 years of

experience in accordance with IASLC. If the initial pathology

report is different from Dr. Gan’s, Dr. Gan’s opinion shall prevail.

MPR is defined as the percentage of viable tumor cells in the tumor

bed being less or equal to 10%. Non-MPR is defined as the

percentage of residual tumor cells in the tumor bed more than 10%.
2.4 Image acquisition

The CT scanning parameters in the two centers are shown in

Table 1. The contrast-enhanced scanning technique involved

intravenous injection of nonionic contrast material (Ultravist 300

or Ultravist 370, Bayer; or ioversol 320, Hengrui) at a rate of 2.2 to 3

ml/s, based on a dosage of 1.2 ml/kg body weight. Bolus tracking

technique was employed, with the arterial phase scan initiated 8

seconds after the descending aortic CT density reached 100 HU. All

CT scans were retrieved from the picture archiving and

communication system (PACS) for further feature extraction.
2.5 Radiomics procedures

The workflow of radiomics analysis consisted of five steps:

region of interest (ROI) segmentation, radiomics features

extraction and selection, model construction and evaluation.

Radiomics analysis was performed with uAI Research Portal

(United Imaging Intelligence, China) (21), which is a clinical

research platform implemented by Python programming language

(version 3.7.3), and widely used package PyRadiomics (https://

pyradiomics.readthedocs.io/en/latest/index.html).

All images were imported into an open-source software ITK-

SNAP (Version 3.8.0). The tumor ROI was manually segmented

slice-by-slice by an experienced radiologist with over 10 years (DP.

Huang), without knowledge of the pathological results. Then, the

uAI Research Portal was applied for morphological expansion of

intratumor ROI. Previous study showed that it would not reduce
FIGURE 1

Patient selection and distribution flowchart.
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the risk of recurrence when the tumor resection margin exceeded

15mm (22). Based on this, we performed peritumor expansion three

times, 5mm each time, for a total of 15mm. During the delineation

and dilation process of the ROIs, non-pulmonary regions were

excluded. The peritumoral area beyond the lung outline was

manually erased when the tumor located in paramediastinal,

subpleural and other special areas. Therefore, in this study, a total

of four ROIs were delineated showed in Figure 2, namely T

(intratumor), P1 (peritumoral 0-5mm), P2 (peritumoral 5-

10mm), and P3 (peritumoral 10-15mm). Subsequently, we

established a combined radiomics (CR: T+P1+P2+P3) model by

integrating intratumoral and three peritumoral ROI features.
Frontiers in Oncology 04
In addition, to evaluate the reproducibility of image

segmentation, we randomly selected 20 patients to be re-

segmented by Dr. Huang and the other doctor (HP. Zhang, with

1 year of experience in imaging) one month later. Intra-observer

and inter-observer reproducibility of radiomics features were

assessed using intra- and inter- class correlation coefficient

(ICC). A value of ICC ≥ 0.85 was considered indicative of

good reproducibility. To eliminate index dimension difference,

the extracted radiomics features were standardized into

normal distributed z-scores. For feature selection, the least

absolute shrinkage and selection operator (LASSO) regression

was utilized.
A B

D E F

C

FIGURE 2

Region of interest (ROI) segmentation. (A) A mass showed in the upper lobe of the left lung. The ROIs of (B) intratumor(T), (C) peritumoral 0~5mm
(P1), (D) peritumoral 5~10mm(P2), (E) peritumoral 10~15mm(P3), and (F) T+P1+P2+P3(CR).
TABLE 1 Scanning parameters and CT specifications in both hospitals.

Sir Run Run Shaw Hospital Zhejiang Cancer Hospital

Brand Siemens Siemens Siemens GE GE Siemens GE Philips

Machine type SOMATOM
Definition
Flash

SOMATOM
Force

SOMATOM
go. Top

Lightspeed
VCT

Optima
CT620

SOMATOM
Definition
Flash

Optima
CT680

Ingenuity
CT

Tube voltage (KV) 120 100/120 120 120 120 120 120 120

Tube current (mAs) smart smart smart smart smart smart smart smart

Rotation time (s) 0.5 0.5 0.5 0.4、0.5 0.5 0.5 0.5 0.5

Image matrix 512×512 512×512 512×512 512×512 512×512 512×512 512×512 512×512

Field of view (mm) 350 350 350 350 350 350 350 350

Reconstruction slice thickness
and spacing

2mm/2mm 2mm/2mm 2mm/2mm 1.25mm/
1.25mm

2mm/2mm 2mm/2mm 5mm/5mm 1.25mm/
1.25mm

Reconstruction algorithm B41f B41f B41f Standard
resolution

Standard
resolution

B31f Standard
resolution

Standard
resolution
fr
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With the selected optimal feature sets, we built prediction

models for the MPR of neoadjuvant immunochemotherapy for

lung cancer by using five machine learning algorithms, including

decision tree, Gaussian process, logistic regression, random forest

and support vector machine, and the model with the best predictive

capability was reserved for external validation. The performance of

the different prediction models in internal dataset was assessed by

the cross-validation strategy to protect against overfitting due to the

limited amount data. In this study, we used five-fold cross-

validation (23): the feature set was split randomly, while, the

same ratio of positive and negative patients was kept in each

partition. Consequently, training on four-fifths of dataset and

validating on the remaining partition in each fold, the process

was repeated five times within different subgroups, and thus formed

five unlike training/validation sets and obtained an average result.
2.6 Statistics

SPSS (version 25.0) and Python (version 3.5.6) were used for

statistical analysis. Continuous data was presented as mean ±

standard deviation or median (interquartile range), and the

differences between groups were compared using independent

sample t-tests or non-parametric tests. Categorical data was

evaluated using chi-square tests or Fisher’s exact tests to assess
Frontiers in Oncology 05
intergroup differences. Univariable and multivariable logistic

regression were used to identify clinical risk factors with odds

ratio (OR) and 95% confidence interval (CI). The performance of

the model was evaluated using receiver operating curves (ROC),

and the area under the curve (AUC), sensitivity, specificity and

accuracy were quantified. The DeLong test was used for the

performance comparison between different models. The LASSO

was utilized for the radiomics features selection. Calibration curve

was applied to determine whether the projected probability matches

the actual probability. Decision curve analysis was used to assess the

prediction models’ clinical viability. A P-value less than 0.05

(P-value < 0.05) was considered statistically significant.
3 Results

3.1 Clinical characteristics

A total of 148 patients were enrolled retrospectively, and their

baseline clinical characteristics were presented in Table 2. The

training and internal validation sets consisted of 105 patients

from SRRSH, of whom 76 achieved MPR (72.4%). The

independent external test set (ZCH) included 43 patients, with 22

achieving MPR (51.2%). The average age of the entire cohort was

63.8 ± 6.3 years, predominantly male (94.6%), and most patients
TABLE 2 Clinical factors of the entire dataset.

Clinical factor

Entire
Training and internal validation

(n=105)
External test

(n=43)

N=148
MPR
(n=76)

Non-
MPR
(n=29)

P value
MPR
(n=22)

Non-
MPR
(n=21)

P value

Age 63.8 ± 6.3 64.0 ± 6.3 63.1 ± 6.3 0.5 63.1 ± 6.9 64.7 ± 6.3 0.43

Gender 0.25 0.58

Male 140(94.6) 74(97.4) 26(89.7) 20(90.9) 20(95.2)

Female 8(5.4) 2(2.6) 3(10.3) 2(9.1) 1(4.8)

Smoking history 0.60 0.96

Current or before 88(59.5) 35(46.1) 15(51.7) 20(90.9) 18(85.7)

Never 60(40.5) 41(53.9) 14(48.3) 2(9.1) 3(14.3)

Histopathological type 0.02* 0.02*

Adenocarcinoma 17(11.5) 4(5.3) 7(24.1) 1(4.5) 5(23.8)

Squamous 115(77.7) 64(84.2) 20(69.0) 20(90.9) 11(52.4)

Others 16(10.8) 8(10.5) 2(6.9) 1(4.5) 5(23.8)

Pretreatment clinical stage 0.74 0.32

II 34(23.0) 18(23.7) 6(20.7) 7(31.8) 3(14.3)

III 114(77.0) 58(76.3) 23(79.3) 15(68.2) 18(85.7)

Clinical T stage 0.70 0.46

T1 18(12.2) 9(11.8) 2(6.9) 2(9.1) 5(23.8)

(Continued)
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had a history of smoking (59.5%). The majority of patients had

squamous cell carcinoma as the histopathological type (77.7%). In

both of the two cohorts, there was significant difference in

histopathological type between the MPR and non-MPR groups

(p < 0.05). In the entire cohort, the majority of patients undergoing

neoadjuvant treatment were assessed as stage III lung cancer

(77.0%). Moreover, T2 (41.2%) and N2 (58.1%) stage were

accounted for the most. The main types of immunotherapy

agents employed in the two hospitals include pembrolizumab,

tislelizumab, and camrelizumab (31.4%, 23.8%, 19.0% in SRRSH

and 23.2%, 37.2%, 34.9% in ZCH, respectively). There was no

significant difference in the treatment modality for neoadjuvant

therapy between the MPR and non-MPR groups in both cohorts.
Frontiers in Oncology 06
After performing univariable and multivariable logistic

regression analysis, the histopathological type was confirmed as

an independent risk factor and then included in the clinical model

(p = 0.026; OR = 3.328, 95% CI: 1.155-9.588) (Table 3).
3.2 Selection of the radiomics features

In total, 2264 radiomic features were extracted, including 104

original features grouped as: 18 first-order statistics, 72 texture and

14 shape, and other 2160 features based on images through 25

filters, such as boxmean, wavelet, laplacian, etc. A total of 1,067

features were retained after ICC analysis (Table 4). After the feature
TABLE 2 Continued

Clinical factor

Entire
Training and internal validation

(n=105)
External test

(n=43)

N=148
MPR
(n=76)

Non-
MPR
(n=29)

P value
MPR
(n=22)

Non-
MPR
(n=21)

P value

T2 61(41.2) 28(36.8) 13(44.8) 10(45.5) 10(47.6)

T3 43(29.1) 24(31.6) 7(24.1) 8(36.4) 4(19.0)

T4 26(17.6) 15(19.7) 7(24.1) 2(9.1) 2(9.5)

Clinical N stage 0.41 0.55

N0 18(12.2) 11(14.5) 1(3.4) 4(18.2) 2(9.5)

N1 34(23.0) 19(25.0) 8(27.6) 4(18.2) 3(14.3)

N2 86(58.1) 39(51.3) 18(62.1) 13(59.1) 16(76.2)

N3 10(6.8) 7(9.2) 2(6.9) 1(4.5) 0

Treatment cycle 0.37 0.13

2 117(79.1) 61(80.3) 22(75.9) 15(68.2) 19(90.5)

3 25(16.9) 12(15.8) 7(24.1) 4(18.2) 2(9.5)

4 6(4.1) 3(3.9) 0 3(13.6) 0

Platinum drugs 0.61 0.37

Carboplatin 82(55.4) 30(39.5) 14(48.3) 18(81.8) 20(95.2)

Cisplatin 65(43.9) 45(59.2) 15(51.7) 4(18.2) 1(4.8)

Nedaplatin 1(0.7) 1(1.3) 0 0 0

ICIs 0.84 0.10

Pembrolizumab 43(29.1) 21(27.6) 12(41.4) 7(31.8) 3(14.3)

Tislelizumab 41(27.7) 19(25.0) 6(20.7) 10(45.5) 6(28.6)

Camrelizumab 35(23.6) 15(19.7) 5(17.2) 5(22.7) 10(47.6)

Sintilimab 16(10.8) 10(13.2) 4(13.8) 0 2(9.5)

Toripalimab 11(7.4) 9(11.8) 2(6.9) 0 0

Durvalumab 1(0.7) 1(1.3) 0 0 0

Penpulimab 1(0.7) 1(1.3) 0 0 0
Data are presented as mean ± SD. Data in parentheses are percentages. *p<0.05.
MPR, major pathological response; ICIs, immune checkpoint inhibitors.
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selection processes as mentioned above, the top features of each

radiomics model were selected and presented in Table 5.

The CR model incorporated a total of eight radiomics features as

follows: 1) intratumor: glszm_wavelet-LLL-SZNUN; 2) peritumoral 0-

5mm: firstorder_Maximum, glrlm_log-sigma-4-0-mm-3D-LRHGLE;

3) peritumoral 5-10mm: gldm_wavelet-LLL-SDLGLE, glcm_wavelet-

LLH-Idmn; 4) peritumoral 10-15mm: Complexity, glrlm_log-sigma-4-

0-mm-3D-LRHGLE, gldm_SDLGLE.
3.3 Development and validation of the
prediction models

The predictive performance of each model was shown in

Table 6 and Figure 3.

The clinical model showed relatively poor predictive

performance in training and internal validation sets (AUC=0.612

and 0.563, respectively). The single ROI radiomics models based on

intratumor(T), peritumoral 0-5mm(P1), peritumoral 5-10mm(P2),

peritumoral 10-15mm(P3) showed higher AUCs (0.679, 0.882,

0.746, 0.777 and 0.619, 0.712, 0.662, 0.741, respectively) in

training and internal validation sets than the clinical model.

The model CR based on Gaussian process demonstrated an

AUC of 0.810 for MPR prediction in NSCLC neoadjuvant

immunochemotherapy, which is superior than the four single

ROI models and significantly improved than the model T

(AUC=0.810 vs 0.619, p<0.05). The Delong test showed that the

AUC of models CR and CRC was significantly improved compared

to models T and P2. However, pairwise comparisons among the

remaining models indicated no statistically significant differences in

performance (Figure 3C). We fused CR model with the clinical

model to create combined radiomics + clinical (CRC) model and

obtained optimal predictive capability, which achieved an AUC of

0.814, sensitivity of 0.947, specificity of 0.567, precision of 0.851,

and accuracy of 0.838 in the internal validation set (Table 6).
TABLE 3 Univariable and multivariable logistic regression analyses of clinical factors.

Clinical factors Univariable Multivariable

OR (95% CI) P value OR (95%CI) P value

Age 1.024(0.956-1.098) 0.499

Gender 4.269(0.675-26.993) 0.123

Smoking history 0.797(0.338-1.877) 0.603

Histopathological type 3.328(1.155-9.588) 0.026* 3.328(1.155-9.588) 0.026*

Pretreatment clinical stage 0.841(0.296-2.384) 0.744

Clinical T stage 0.930(0.587-1.472) 0.756

Clinical N stage 0.758(0.435-1.321) 0.328

Treatment cycle 0.981(0.410-2.348) 0.966

Platinum drugs 0.794(0.349-1.810) 0.583

ICIs 1.127(0.900-1.411) 0.297
F
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*p<0.05.
OR, odds ratio; CI, confidence interval; ICIs, immune checkpoint inhibitors.
TABLE 4 Radiomics features distribution (Total and after ICC analysis).

Features
Total
(n=2264)

After ICC
analysis
(n=1067)

Original First-order features 18 6

Original Shape features 14 3

Original GLCM based features 21 11

Original GLRLM based features 16 6

Original GLSZM based features 16 1

Original GLDM based features 14 5

Original NGTDM based features 5 2

Filtered Box mean based features 90 35

Filtered
Additive Gaussian noise
based features

90 32

Filtered
Binomial blur image
based features

90 32

Filtered
Curvature flow
based features

90 30

Filtered
Box sigma image
based features

90 64

Filtered Log based features 360 193

Filtered Wavelet based features 720 395

Filtered Normalize based features 90 14

Filtered
Laplacian sharpening
based features

90 41

Filtered
Discrete Gaussian
based features

90 34

Filtered Mean based features 90 34

(Continued)
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Finally, the CRC model was validated in an independent

external test set and achieved favorable predictive performance,

with an AUC of 0.768 (95% CI, 0.62-0.91) (Figure 3D).
3.4 Calibration curve and decision curve
analysis of the prediction models

The calibration curve of the model CR showed that the

predicted probability had a good consistency in the internal

validation set. And the fusion model CRC had the smallest Brier

score loss, which means it has the best predictive performance

(Figures 4A, B).
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Decision curve analysis showed that the fusion model CRC

provided a better net benefit than other radiomics models for the

most of the threshold range (Figures 4C, D).
4 Discussion

Neoadjuvant immunochemotherapy has emerged as a promising

therapeutic approach for non-small cell lung cancer (NSCLC) (7).

However, the evaluation of neoadjuvant treatment efficacy relies on

postoperative pathological assessment, leading to time delay.

Additionally, the effects of immune checkpoint inhibitors on tumors

are complex, and atypical responses such as hyperprogression or

pseudoprogression may occur (24, 25), making it challenging to

assess the efficacy of neoadjuvant immunochemotherapy through CT

follow-up during treatment. Our research showed that the combined

radiomics model based on intratumoral and peritumoral regions

derived from pre-treatment CT images can predict MPR to

neoadjuvant immunochemotherapy in NSCLC. After incorporating

the independent risk factor of histopathological type, the model

achieved the optimal predictive performance. Furthermore, its

predictive efficacy was validated in an external center, indicating

its robustness.

Squamous cell carcinoma was identified as an independent

clinical risk factor for predicting MPR in neoadjuvant

immunochemotherapy in our research, consistent with previous
TABLE 4 Continued

Features
Total
(n=2264)

After ICC
analysis
(n=1067)

Filtered
Speckle noise
based features

90 34

Filtered
Recursive Gaussian
based features

90 34

Filtered Shortnoise based features 90 61
GLCM, gray level co-occurrence matrix; GLRLM, gray level run length matrix; GLSZM, gray
level size zone matrix; GLDM, gray level dependence matrix; NGTDM, neighbourhood gray-
tone difference matrix.
TABLE 5 The selected radiomics features in different radiomics models.

Radiomics Models The selected Radiomics Features

T(Intratumor)
(n=5)

boxsigmaimage_glrlm_LongRunHighGrayLevelEmphasis
wavelet_glcm_wavelet-LHH-Idn
wavelet_gldm_wavelet-LHH-SmallDependenceLowGrayLevelEmphasis
wavelet_glszm_wavelet-LLL-SizeZoneNonUniformityNormalized
wavelet_glcm_wavelet-HHL-Idn

P1(Peritumoral 0-5mm)
(n=8)

log_firstorder_log-sigma-2-0-mm-3D-Skewness
log_glrlm_log-sigma-4-0-mm-3D-LongRunHighGrayLevelEmphasis
wavelet_gldm_wavelet-HHL-SmallDependenceHighGrayLevelEmphasis
boxsigmaimage_glszm_SmallAreaLowGrayLevelEmphasis
shotnoise_glcm_Imc1
wavelet_glcm_wavelet-LLH-Idn
wavelet_gldm_wavelet-LLH-SmallDependenceHighGrayLevelEmphasis
mean_firstorder_Maximum

P2(Peritumoral 5-10mm)
(n=4)

wavelet_gldm_wavelet-HLH-LargeDependenceEmphasis
shotnoise_glcm_Idmn
wavelet_glcm_wavelet-LLH-Idmn
wavelet_gldm_wavelet-LLL-SmallDependenceLowGrayLevelEmphasis

P3(Peritumoral 10-15mm)
(n=3)

laplaciansharpening_gldm_SmallDependenceLowGrayLevelEmphasis
shotnoise_ngtdm_Complexity
log_glrlm_log-sigma-4-0-mm-3D-LongRunHighGrayLevelEmphasis

CR (Combined radiomics)
(n=8)

T_wavelet_glszm_wavelet-LLL-SizeZoneNonUniformityNormalized
P1_mean_firstorder_Maximum
P1_log_glrlm_log-sigma-4-0-mm-3D-LongRunHighGrayLevelEmphasis
P2_wavelet_gldm_wavelet-LLL-SmallDependenceLowGrayLevelEmphasis
P2_wavelet_glcm_wavelet-LLH-Idmn
P3_shotnoise_ngtdm_Complexity
P3_log_glrlm_log-sigma-4-0-mm-3D-LongRunHighGrayLevelEmphasis
P3_laplaciansharpening_gldm_SmallDependenceLowGrayLevelEmphasis
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related research (26). A meta-analysis exploring the impact of

histopathology on the efficacy of immune checkpoint inhibitors

in treating NSCLC showed that immunotherapy can improve

overall survival (OS) and progression-free survival (PFS) in both

squamous cell carcinoma and non-squamous cell carcinoma, with

squamous cell carcinoma patients benefiting more significantly

(27). Studies have indicated that compared to non-squamous cell

carcinoma, lung squamous cell carcinoma exhibits higher PD-L1
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expression, higher tumor mutational burden (TMB), and a greater

density of functional TILs in the tumor microenvironment, factors

that collectively contribute to the enhanced therapeutic effects of

immunotherapy in squamous cell carcinoma patients (28).

In this study, the radiomics model based on intratumoral region

had an AUC of only 0.619 (sensitivity of 0.698, specificity of 0.587)

in the internal validation group. The peritumoral models showed

improvement in AUC compared to the intratumoral model
TABLE 6 The performance of different models in training and internal validation sets.

Model
Training set Internal validation set

AUC [95%CI] Sen Spe Pre Acc AUC [95%CI] Sen Spe Pre Acc

Clinical 0.612[0.55, 0.67] 0.947 0.242 0.766 0.752 0.563[0.44, 0.69] 0.947 0.247 0.768 0.752

T 0.679[0.62, 0.74] 0.648 0.604 0.810 0.636 0.619[0.49, 0.74] 0.698 0.587 0.823 0.667

P1 0.882[0.84, 0.92] 0.967 0.347 0.799 0.795 0.712[0.59, 0.83] 0.947 0.200 0.760 0.743

P2 0.746[0.69, 0.80] 0.687 0.655 0.840 0.679 0.662[0.54, 0.78] 0.670 0.660 0.834 0.667

P3 0.777[0.72, 0.83] 0.937 0.293 0.777 0.760 0.741[0.63, 0.85] 0.934 0.273 0.775 0.752

CR 0.889[0.85, 0.93] 0.964 0.613 0.868 0.867 0.810[0.71, 0.91] 0.921 0.533 0.840 0.810

CRC 0.897[0.86, 0.94] 0.977 0.630 0.874 0.881 0.814[0.71, 0.92] 0.947 0.567 0.851 0.838
fron
AUC, area under the curve; CI, confidence interval, Sen Sensitivity; Spe, Specificity, Pre, Precision; Acc, Accuracy; T, intratumor; P1, peritumoral 0-5mm; P2, peritumoral 5-10mm, P3,
peritumoral 10-15mm; CR, combined radiomics; CRC, combined radiomics+clinical.
A B

DC

FIGURE 3

The predictive performance of different models. The AUCs of different models in (A) training and (B) internal validation sets. (C) Delong test showed
that the model CR was significantly better than model T. By adding clinical independent risk factor to the model CR, the fusion model (CRC)
obtained the best predictive performance [AUC=0.814 (0.71, 0.92)]. (D) Receiver operating characteristic (ROC) curve of the fusion model (CRC) in
the external test set [AUC=0.768 (0.62, 0.91)].
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(ranging from 0.662 to 0.741) and higher sensitivity (ranging from

0.670 to 0.947) while their specificity was notably low (P1, P2,

P3 = 0.2, 0.273, 0.66, respectively). This pointed out that any

radiomics model based on single ROI either intratumoral region

or peritumoral region cannot achieve the ideal prediction ability in

predicting the effect of neoadjuvant immunochemotherapy

in NSCLC.

Prior studies, including one in which our center participated,

built prediction models focusing on intratumoral features to predict

MPR in NSCLC following neoadjuvant therapy and achieved

favorable results (26, 29). Considering that immune checkpoint

inhibitors exert their anti-tumor effects by influencing the tumor

and its surrounding immune microenvironment (30), it is crucial to

investigate the peritumoral microenvironment’s features and their

impact on immunotherapy. We extracted radiomics features from

both intratumoral and peritumoral regions in arterial-phase,

establishing a combined radiomics model with eight top-level

radiomics features (one feature from the intratumoral region and

the remaining seven from the peritumoral regions). Furthermore,

among the seven peritumoral top-level radiomic features, six were

texture features, including the common feature (log-glrlm-

LRHGLE) from P1 and P3. These results highly suggested that
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the heterogeneity of the peritumoral microenvironment plays a

crucial role in neoadjuvant immunochemotherapy for NSCLC.

Moreover, when combining the intratumoral and peritumoral

models, there was a significant increase in predicting MPR

(AUC=0.810), achieving a relative balance between sensitivity and

specificity (0.921 and 0.533, respectively), resulting in a satisfactory

accuracy of 0.810.

The tumor microenvironment is composed of fibroblasts,

immune and inflammatory cells, as well as interstitial

components and microvessels (31). Several studies indicated a

correlation between peritumoral texture features and tumor-

infiltrating lymphocyte (TIL) density, and higher TIL levels are

associated with immune system activation for tumor suppression,

indicating a greater likelihood of responding to immunotherapy

(32, 33). The distribution of blood vessels in the peritumoral

environment also influences the efficacy of chemotherapy and

immunotherapy (34). Research by Vaidya P et al. demonstrated

that peritumoral texture features can reflect biological pathways

such as tumor vascular invasion and neovascularization (35).

Disorganized and irregular peritumoral blood vessels promote

tumor growth, inhibit the anti-tumor effects of drugs, and are

often associated with more heterogeneous radiomic features (17,
A B

DC

FIGURE 4

The calibration curves and decision curve analysis for different models. The calibration curves for different models in (A) training and (B) internal
validation sets showed the fusion model CRC had the smallest Brier score loss, which means it has the best predictive performance. The decision
curve analysis for the different models in (C) training and (D) internal validation sets showed that the fusion model CRC provided a better net benefit
than other radiomics models for the most of the threshold range.
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35). Additionally, it was demonstrated that different ranges of

peritumoral regions are associated with differences in treatment

response (36) and exhibit distinct texture feature expressions (37).

Our study confirmed a strong correlation between the peritumoral

microenvironment and neoadjuvant immunochemotherapy in

NSCLC. By incorporating different ranges of peritumoral

microenvironment texture features, the prediction model got

obvious improvement in predicting MPR.

Although the addition of independent clinical risk factor to

model CR resulted in a slight improvement in prediction

performance, there was no statistically significant difference in

AUC between CR and the best model CRC. This may suggest

that information contained within combined intratumoral and

peritumoral radiomics adequately capture the efficacy of

neoadjuvant immunochemotherapy for NSCLC, thus constraining

the representation of clinical factor in the model. However, this

requires further verification.

In addition, there is a clear difference in the proportion of MPR

patients between the two hospitals included in our study. Indeed,

according to a review on neoadjuvant therapy for non-small cell

lung cancer, the attainment of MPR varies significantly across

different studies, ranging approximately from 36.9% to 84.6%

after neoadjuvant immunochemotherapy (10). This variability

may be attributed to differences in the patient demographics,

disease stages at presentation, and the specific neoadjuvant

immunochemotherapy regimens. Based on the aforementioned

understanding, we consider the MPR proportions in both

hospitals in our study to still fall within a reasonable range. On

the other hand, despite the differences in patients and treatment

regimens at the two hospitals in our study, our research results still

demonstrate that the combined intratumoral and peritumoral

radiomics model achieves favorable predictive performance at

external center, possibly indicating the effectiveness and

robustness of this model.

Our research has several limitations. Firstly, the study was

retrospective and might be subject to selection bias. Secondly,

while the study included patients receiving neoadjuvant

immunochemotherapy, there were variations in the selection of

chemotherapy drugs and immune checkpoint inhibitors, as well as

differences in the treatment cycles. Therefore, it is essential to

unified treatment protocols or conduct a stratified study focusing

on different regimens in future research. Thirdly, the imaging data

from the two centers were obtained from different manufacturers

and multiple models of CT machines, which may introduce

inconsistencies in equipment parameters. Lastly, the sample size

of this study is limited, and it is necessary to further expand the

sample for future research.

In conclusion, our study constructed a CRC model comprising

intratumoral and peritumoral features and independent clinical risk

factors for predicting MPR in NSCLC patients receiving

neoadjuvant immunochemotherapy. The combined model

achieved an optimal predictive performance (AUC=0.814), and

successfully validated in an external center (AUC=0.768). This

provides a non-invasive and effective predictive approach for

clinical physicians to identify suitable NSCLC patients for

neoadjuvant immunochemotherapy.
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