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Background: Advanced non-small cell lung cancer (NSCLC) presents significant

treatment challenges, with chemo-immunotherapy emerging as a promising

approach. This study explores the potential of lipidomic biomarkers to predict

responses to chemo-immunotherapy in advanced non-small cell lung cancer

(NSCLC) patients.

Methods: A prospective analysis was conducted on 68 NSCLC patients

undergoing chemo-immunotherapy, divided into disease control (DC) and

progressive disease (PD) groups based on treatment response. Pre-treatment

serum samples were subjected to lipidomic profi l ing using liquid

chromatography-mass spectrometry (LC-MS). Key predictive lipids

(biomarkers) were identified through projection to latent structures

discriminant analysis. A biomarker combined model and a clinical combined

model were developed to enhance the prediction accuracy. The predictive

performances of the clinical combined model in different histological subtypes

were also performed.

Results: Six lipids were identified as the key lipids. The expression levels of PC

(16:0/18:2), PC(16:0/18:1), PC(16:0/18:0), CE(20:1), and PC(14:0/18:1) were

significantly up-regulated. While the expression level of TAG56:7-FA18:2 was

significantly down-regulated. The biomarker combined model demonstrated a

receiver operating characteristic (ROC) curve of 0.85 (95% CI: 0.75–0.95) in

differentiating the PD from the DC. The clinical combined model exhibited an

AUC of 0.87 (95% CI: 0.79–0.96) in differentiating the PD from the DC. The

clinical combined model demonstrated good discriminability in DC and PD

patients in different histological subtypes with the AUC of 0.78 (95% CI: 0.62–

0.96), 0.79 (95% CI: 0.64–0.94), and 0.86 (95% CI: 0.52–1.00) in squamous cell

carcinoma, large cell carcinoma, and adenocarcinoma subtype, respectively.

Pathway analysis revealed the metabolisms of linoleic acid, alpha-linolenic acid,

glycerolipid, arachidonic acid, glycerophospholipid, and steroid were implicated

in the chemo-immunotherapy response in advanced NSCLC.
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Conclusion: Lipidomic profiling presents a highly accurate method for predicting

responses to chemo-immunotherapy in patients with advanced NSCLC, offering

a potential avenue for personalized treatment strategies.
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1 Introduction

Lung cancer is the leading cause of cancer-related mortality

globally, characterized by the highest incidence rates and a five-year

survival rate of less than 20% (1). Non-small cell lung cancer

(NSCLC) represents the majority, comprising 85%-90% of all

lung cancer cases (2). NSCLC is associated with a diverse array of

risk factors, from genetic mutations to environmental exposures,

highlighting the need for sophisticated treatment modalities.

Traditional therapeutic approaches have encompassed surgery,

radiotherapy, chemotherapy, targeted therapy, and recently,

immunotherapy (3).

Immunotherapy has notably advanced the treatment landscape

for NSCLC, especially in the absence of targetable genetic

mutations, offering a novel precision treatment modality (4).

However, its effectiveness as a standalone treatment in advanced

stages has been modest, benefiting only 15–20% of patients (5). The

integration of chemotherapy with immunotherapy has generated

optimism in the oncology community, demonstrating enhanced

therapeutic outcomes in recent clinical trials (6). This combination

therapy represents a pivotal shift in NSCLC treatment paradigms,

offering hope for improved survival rates.

The role of biomarkers in predicting treatment response has

become a focal point in NSCLC research. Biomarkers like PD-L1

expression (7), DNA methylation, tumor mutational burden (8),

and T cell proliferation (9) have been instrumental in guiding

treatment decisions. Nonetheless, the variable predictive value of

these biomarkers underscores an imperative for novel, more reliable

indicators (10, 11). This need is particularly pronounced in the

context of chemo-immunotherapy, where patient selection is

critical for maximizing therapeutic efficacy.

In the search for novel biomarkers, lipidomics presents a

promising avenue. Lipids, essential in energy storage, signal

transduction, and cell membrane formation, play significant roles

in various diseases, including cancers (12). Particularly,

Phosphatidylcholine (PC) constitutes about half of the

phospholipids in cell membranes, playing key roles in

maintaining their structure and function. Cholesteryl esters (CE)

are crucial for cholesterol transport and storage. Meanwhile, fatty

acids (FA) and triacylglycerol (TAG) can influence cancer cell

proliferation (12, 13). The field of lipidomics, using advanced

techniques like mass spectrometry, offers a comprehensive

analysis of lipid profiles, potentially revealing disease-specific
02
patterns. Mass spectrometry, recognized for its precision and

evolving methodologies, has become a cornerstone in lipidomics

research (13).

The application of lipidomics in NSCLC, particularly for

predicting chemo-immunotherapy responses, is yet to be fully

explored. This study aims to fill this gap by hypothesizing that

lipidomic profiles could serve as effective biomarkers for predicting

responses to chemo-immunotherapy in advanced NSCLC. Utilizing

liquid chromatography-mass spectrometry (LC-MS), we analyzed

the lipidomic profiles of advanced NSCLC patients. Our objective

was to identify potential lipidomic biomarkers that could aid in

predicting the efficacy of chemo-immunotherapy, thereby

contributing to personalized treatment approaches and improved

patient outcomes in advanced NSCLC.
2 Materials and methods

2.1 Ethics

This study was reviewed and approved by the Institutional

Review Board of Jinshan Hospital (JIEC 2023-S84). Written

informed consent was obtained from all participants. The

methods were executed in accordance with relevant guidelines

and regulations.
2.2 Study design and patient selection

Between October 2021 and October 2022, 76 patients were

initially considered. Inclusion criteria were: (1) patients with stage

IV NSCLC, (2) the treatment regimen included 4–6 cycles of

cisplatin-paclitaxel combined with toripalimab, followed by

toripalimab monotherapy. Exclusion criteria were: (1) presence of

infection or inflammation symptoms, (2) patients undergoing

radiotherapy or targeted therapy, (3) patients loss to follow-up.

The study’s endpoint was six months post the initial chemo-

immunotherapy cycle. Ultimately, 68 patients were included and

classified into a disease control (DC) group (including complete

response [CR], partial response [PR], and stable disease [SD]) and a

progressive disease (PD) group. Tumor responses were evaluated

using the Response Evaluation Criteria in Solid Tumors, version 1.1

(RECIST v1.1) (14).
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2.3 Clinical data collection

Clinical data included age, gender, primary tumor and

metastases location (lung, brain, liver and bone), and pathological

subtype were collected. Multivariate logistic regression analysis was

performed to select clinical independent predictors for responders

of chemo-immunotherapy. Fasting peripheral blood (2 mL) was

drawn within a week before the initial chemo-immunotherapy cycle

using a serum separator tube.
2.4 Sample preparation and
lipidomics analysis

Blood samples were centrifuged at 1,200 g for 10 minutes at 4°C

within 30 min of collection. Plasma (20 mL) was mixed with 350 mL
pre-cooled isopropanol and 9 mL of an internal standard mixture.

After incubation at room temperature for 10 min and overnight

storage at -20°C, the samples were centrifuged at 12,000 g for

20 min. The supernatant (200 mL) was stored at -80°C for

subsequent LC-MS analysis.

Lipidomic profiling utilized an AB SCIEX QTRAP 5500 LC-MS

system. Analytes were separated on a Waters Acquity UPLC BEH

HILIC column, using a binary solvent systemwith specific acetonitrile-

water ratios and ammonium acetate. The flow rate was set at 0.5 mL/

min, and a gradient elution was performed. The analysis employed

both positive and negative electrospray ionization (ESI) modes.
2.5 Lipid quantification and data analysis

Data were processed using Analyst (version 1.7) and

MultiQuant software. The LIPID MAPS database was referenced

for lipid identification and quantification. Lipids detected in at least

80% of samples in either group were included, with missing values

replaced by the median. Data normalization was performed using

Pareto scaling.
2.6 Lipidomic profile and key
lipids identification

Principal component analysis (PCA) was first used to assess

clustering patterns and outliers. Projection to latent structures

discriminant analysis (PLS-DA) was then used to identify the key

lipids based on variable influence on projection (VIP) scores, false

discovery rates (FDR), and area under the receiver operator

characteristic (ROC) curves.
2.7 Discrimination performance of key
lipids and validation

The AUCs of the key lipids in differentiating PD and DC groups

was reported. A biomarker combined model using binary logistic
Frontiers in Oncology 03
regression was constructed to enhance the discrimination efficiency

between PD and DC groups. The combination of the biomarkers

and clinical independent predictors (clinical combined model) was

performed using binary logistic regression in differentiating PD and

DC groups. The predictive performances of the clinical combined

model in different histological subtypes were also performed.

Fifty percent of the cases were randomly selected to form the

internal validation cohort. The discrimination performance of the

biomarker combined model and the clinical combined model

were evaluated.
2.8 Pathway analysis

The key lipids were integrated into the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database for pathway enrichment

analysis via MetaboAnalyst.
2.9 Statistical analyses

Statistical analyses were conducted in R (Version 4.0.2). The PD

and DC groups’ ages were expressed as mean (standard deviation)

and compared using t-tests; gender, tumor and metastases

locations, and pathological subtypes were expressed as N (%) and

analyzed using Chi-Square tests. A p-value < 0.05 was deemed

statistically significant.
2.10 Sample size calculation

We aimed to detect significant differences in lipid expression

levels with adequate statistical power. The lipid expression levels

were used as the primary outcome measure and assumed a

moderate effect size (Cohen’s d = 0.5). We set a desired statistical

power of 0.80 (80%) to minimize the risk of Type II error and a

significance level of 0.05 was chosen to control the Type I error rate.

Therefore, a sample size of approximately 34 participants per group

would provide sufficient power to detect significant differences in

lipidomic profiles between PD and DC groups.
3 Results

3.1 Patient demographics and
baseline characteristics

The work flow of this study is shown in Figure 1. The study

evaluated 68 patients with an average age of 64 (SD: 10.1), ranging

from 44 to 86 years. The DC group included 37 patients, averaging

61 years (SD: 9.7), with a spread from 44 to 83 years. This group

included 1 patient (2.9%) achieving CR, 2 (5.4%) with PR, and 34

(91.9%) with SD. It consisted of 11 females (average age 61, range

49–72) and 26 males (average age 60, range 44–83). The PD group

comprised 31 patients, with an average age of 68 years (SD: 9.2),
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ranging from 51 to 86 years, including 9 females (average age 69,

range 53–83) and 22 males (average age 67, range 51–86).
3.2 Clinical characteristics

No significant differences were observed between the DC and

PD groups concerning gender distribution, tumor location,

metastases sites (lung, brain, bone, and other sites) or

pathological subtypes. However, patients in the PD group were

older and exhibited more frequent liver metastases compared to the

DC group (Table 1). Multivariate logistic regression analysis

showed that liver metastases was the independently significant

clinical predictor for responders to chemo-immunotherapy in

advanced NSCLC (Supplementary Table 1).
3.3 Lipidomic profile and key
lipids identification

A total of 781 lipids were identified and quantified. PCA

(Supplementary Figure 1) and volcano plots indicated differential

lipid regulation between groups (Figure 2). PLS-DA effectively

separated the lipid profiles of the DC and PD groups, with an

accuracy of 0.71, R2 of 0.31, and Q2 of 0.07 (Figure 3). Six key lipids

were identified with VIP > 1, FDR < 0.01, and AUC > 0.6, showing

significant concentration differences between groups. A heatmap

illustrated the correlation between these lipids and clinical

characteristics (Figure 4). Six lipids were identified as the key

lipids. The expression levels of Phosphatidylcholine (PC)

including PC(16:0/18:2), PC(16:0/18:1), PC(16:0/18:0), and PC

(14:0/18:1) and Cholesteryl Ester (CE) including CE(20:1) were

significantly up-regulated. While the expression level of
Frontiers in Oncology 04
Triacylglycerol (TAG) and Fatty Acid (FA) includingTAG56:7-

FA18:2 was significantly down-regulated.
3.4 Discrimination performance of key
lipids and validation

The six key lipids showed varying abilities to discriminate to

distinguish PD from DC, with AUCs spanning 0.60 to 0.75

(Table 2). A biomarker combined model (includes all six

identified key lipids) was created using binary logistic regression,

exhibited an AUC of 0.85 (95% CI: 0.75–0.95), with specificity,

sensitivity, negative predictive value, and positive predictive value of

0.78, 0.87, 0.88, and 0.77, respectively, in differentiating the PD from

the DC. The clinical combined model exhibited an AUC of 0.87

(95% CI: 0.79–0.96), with specificity, sensitivity, negative predictive

value, and positive predictive value of 0.71, 0.94, 0.93, and 0.73,

respectively, in differentiating the PD from the DC. There was no

statistic significant between the AUC of the clinical combined

model and the biomarker combined model (P = 0.590).

The cl inica l combined model demonstrated good

discriminability in DC and PD patients in different histological

subtypes with the AUCs of 0.78 (95% CI: 0.62–0.96), 0.79 (95% CI:

0.64–0.94), and 0.86 (95% CI: 0.52–1.00) in squamous cell

carcinoma, large cell carcinoma, and adenocarcinoma

subtype, respectively.

Thirty-four cases were randomly selected to form the internal

validation cohort. The discrimination performance, specificity,

sensitivity, negative predictive value, and positive predictive value

were 0.78 (95% CI: 0.60–0.96), 0.88, 0.75, 0.80, and 0.86,

respectively, for the biomarker combined model and 0.83 (95%

CI: 0.68–0.97), 0.72, 0.88, 0.87, and 0.74, respectively, for the clinical

combined model.
FIGURE 1

The work flow of this study. DC, disease control; PD, progressive disease.
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3.5 Pathway analysis

Pathway enrichment analysis identified several metabolic

pathways involved in chemo-immunotherapy response, including

linoleic acid, alpha-linolenic acid, glycerolipid, arachidonic acid,

glycerophospholipid, and steroid metabolism (Figure 5).

4 Discussion

This research leveraged lipidomic analysis to identify

biomarkers predictive of chemo-immunotherapy outcomes in

advanced NSCLC. We pinpointed six key lipids with potential as

prognostic indicators for treatment response, underscoring

lipidomics’ utility in uncovering novel biomarkers and elucidating

lipid metabolism’s role in cancer pathophysiology. A biomarker

combined model (combination of the six key lipids) and a clinical

combined model (combination of the six key lipids and clinical

independent predictors) were performed. However, no statistic

significant was found between the two models.

Lipids are crucial molecules involved in various biological

processes, including membrane composition, energy metabolism,

and signal transduction (15). Disruptions in lipid metabolism have

been associated with tumorigenesis, indicating a potential utility for

lipidomic profiles in identifying cancer biomarkers. The field of

lipidomics, by delineating lipid profiles, offers insights into cancer’s

metabolic alterations and facilitates biomarker identification (16). It

has been effectively utilized in identifying novel biomarkers and

characterizing lipid metabolic pathways in cancers such as lung,

prostate, liver, and colorectal cancers (17). Previous research has

highlighted the link between dysregulated lipid metabolism and the

5-year survival rate in lung cancer (18).

Previous studies showed that significant alterations in various

lipid classes in lung cancer, including sphingomyelin (SM), ceramide

(Cer), phosphatidylserine (PS), cholesterol ester (ChE),

phosphatidylethanolamine (PE), phosphatidylcholines (PC),

phosphatidylglycerol (PG), and fatty acids (FA) (19–21). However,

until now, no serum lipidomic biomarkers have been identified for

predicting response to chemo-immunotherapy in advanced NSCLC

patients. Our findings contribute to the growing evidence of altered

lipid metabolism in cancer, specifically identifying PC(16:0/18:2), PC

(16:0/18:1), PC(16:0/18:0), CE(20:1), PC(14:0/18:1), and TAG56:7-

FA18:2 as significant predictors. Phosphatidylcholines (PCs) are

essential components of cell membranes and are involved in cell

signaling and apoptotic pathways (19, 20). The specific PCs may

reflect the altered cell membrane dynamics in cancer cells, affecting

processes like cell proliferation, migration, and interaction with the

immune system. Our study postulates that these PCs could influence

the tumor microenvironment and thereby impact the response to

chemo-immunotherapy.

Fatty acid metabolism is often disrupted in cancer cells.

Previous studies have suggested that FAs can modulate cancer

cell proliferation (22). Metabolic remodeling of FAs is also
TABLE 1 Comparison of clinical characteristics between DC and
PD group.

DC (N=37) PD (N=31) P

Endpoint <0.001

SD 34 (91.9%) 0 (0%)

CR 1 (2.7%) 0 (0%)

PR 2 (5.4%) 0 (0%)

PD 0 (0%) 31 (100%)

Gender 1.000

Female 11 (29.7%) 9 (29.0%)

Male 26 (70.3%) 22 (71.0%)

Age 60.7 (9.73) 68.0 (9.20) 0.002

Tumor location 0.843

Central 9 (24.3%) 6 (19.4%)

Peripheral 28 (75.7%) 25 (80.6%)

Lung metastases 0.460

Negative 28 (75.7%) 20 (64.5%)

Positive 9 (24.3%) 11 (35.5%)

Brain metastases 0.346

Negative 25 (67.6%) 25 (80.6%)

Positive 12 (32.4%) 6 (19.4%)

Bone metastases 0.203

Negative 29 (78.4%) 19 (61.3%)

Positive 8 (21.6%) 12 (38.7%)

Liver metastases 0.003

Negative 33 (89.2%) 17 (54.8%)

Positive 4 (10.8%) 14 (45.2%)

Other metastases 1.000

Negative 35 (94.6%) 29 (93.5%)

Positive 2 (5.4%) 2 (6.5%)

Pathological subtype 0.114

Adenocarcinoma 23 (62.2%) 16 (51.6%)

Large cell 2 (5.4%) 7 (22.6%)

Squamous carcinoma 12 (32.4%) 8 (25.8%)

Smoke 1.000

Negative 3 (8.1%) 3 (9.7%)

Positive 34 (91.9%) 28 (90.3%)

ECOG
performance status

1.9 (0.6) 1.9 (0.4) 0.394
DC, disease control; PD, progressive disease. Data presented as mean (SD) or N (ratio).
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observed in inflammation and various cancers (23). For the

triacylglycerol TAG56:7-FA18:2, our results suggest a potential

link with the energy balance in cancer cells. Cancer cells often

exhibit altered energy metabolism, and the dysregulation of

triacylglycerols could reflect changes in how cancer cells utilize
Frontiers in Oncology 06
and store energy, potentially affecting their growth and survival

under the metabolic stress induced by chemo-immunotherapy. The

potential implications of our findings on treatment response are

also explored. For example, the differential expression of TAG56:7-

FA18:2 might influence the tumor’s metabolic adaptation to the
FIGURE 2

The volcano map shows the comparison of serum lipid content between the two groups (PD/DC). The decrease in lipid content is represented by
blue, and the increase in lipid content is represented by red (FDR <0. 05).
FIGURE 3

Projection to latent structures discriminant analysis (PLS-DA) of the lipids in DC and PD groups. The plot displays the distribution of advanced NSCLC
patients based on their serum lipidomic profiles. The plot identifies two distinct clusters corresponding to patient responses to chemo-
immunotherapy: DC (red circles) and PD (green circles). Each point represents an individual patient’s lipidomic profile projected onto the plane
defined by the first two principal components, which capture the largest variance within the dataset.
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cytotoxic environment created by chemo-immunotherapy, which

could be leveraged to predict or even enhance treatment efficacy.

The role of cholesterol esters, such as CE(18:2), is known in

atherosclerosis. However, their involvement in lung cancer

tumorigenesis remains unclear (24). Our study suggested that CE

(20:1) might play a role in chemo-immunotherapy response in
Frontiers in Oncology 07
NSCLC patients. This could be due to the involvement of cholesterol

esters in the formation of lipid rafts, which are known to mediate signal

transduction involved in cell proliferation and immune response

modulation. Moreover, increased levels of PC and PE have been

associated with NSCLC status (25, 26). We propose that the observed

upregulation of certain PCs in our study might be indicative of an

increased demand for membrane synthesis in rapidly proliferating

tumor cells, while alterations in cholesterol esters like CE(20:1) might

reflect changes in lipid raft composition, influencing signaling pathways

that regulate cell proliferation and apoptosis (27, 28).

Additionally, we explored the potential correlation between

lipidomic alterations and disease progression. Our results suggest

that the dysregulation of specific lipid species may contribute to the

modulation of the tumor microenvironment, affecting tumor growth,

immune evasion, and response to immunotherapy. These findings not

only advance our understanding of NSCLC biology but also propose a

framework for employing lipidomic profiles in developing non-

invasive, predictive tools for chemo-immunotherapy efficacy. This

approach could significantly impact personalized treatment strategies,

aligning with the broader goals of precision medicine in oncology.

However, this study had several limitations. The dynamic and

sensitive nature of lipids necessitates further validation of our

results for consistency and reproducibility. Additionally, larger-

scale, multi-center, and prospective studies are required to provide

more reliable evidence for clinical application.
FIGURE 4

The heatmap depicts the correlation between clinical characteristics, patient demographics, a treatment group, and identified lipid biomarkers. The
color gradient from blue to red represents the correlation coefficient values, with blue indicating a negative correlation (with DC), red a positive
correlation (with DC), and the intensity of the color indicating the strength of the correlation. The stars represent the statistical significance of the
correlation, with more stars indicating higher significance levels. *P < 0.05; **P < 0.01, ***P <0.001.
TABLE 2 The variable influence on projection score, false discovery rate,
fold change, and area under the receiver operator characteristic curve of
the six key lipids.

Lipids VIP FDR FC AUC 95% CI

PC(16:0/18:2) 11.6 0.003 1.52 0.71 0.58–0.83

PC(16:0/18:1) 8.91 0.002 1.56 0.61 0.50–0.75

PC(16:0/18:0) 1.61 0.003 1.36 0.65 0.52–0.79

CE(20:1) 1.38 0.001 3.46 0.75 0.63–0.86

PC(14:0/18:1) 1.08 0.004 1.35 0.61 0.47–0.76

TAG56:7-
FA18:2

1.04 0.001 0.73 0.60 0.46–0.75
AUC, area under the receiver operator characteristic curve; FC, fold change (DC/PD); FDR,
false discovery rate; VIP, variable influence on projection score. For the lipids, the first number
(before the colon) indicates the number of carbon atoms in the fatty acid chain, while the
number after the colon (): indicates the number of unsaturated bonds (double bonds). The
slash (/) separates the two fatty acids, indicating that they are each attached to different
positions on the glycerol backbone of the phospholipid.
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5 Conclusions

Our study underscores the potential of lipidomic profiling as a

highly accurate method for predicting chemo-immunotherapy

responses in NSCLC. By offering a path towards personalized

medicine, lipidomics could enhance therapeutic strategies for

patients with NSCLC, marking a significant step forward in

cancer treatment and management.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by Institutional

Review Board of Jinshan Hospital. The studies were conducted in

accordance with the local legislation and institutional requirements.

The participants provided their written informed consent to

participate in this study.
Author contributions

HJ: Conceptualization,Writing – original draft. XL: Data curation,

Formal analysis, Writing – original draft. YY: Data curation, Formal

analysis, Writing – original draft. RQ: Conceptualization, Formal

analysis, Funding acquisition, Writing – original draft.
Frontiers in Oncology 08
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research was funded by Shanghai Science and Technology

Committee (No. 20JC1418200) and Shanghai Jinshan District

Science and Technology Innovation fund project (No. 2021-3-03).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2024.1348164/

full#supplementary-material
A B

FIGURE 5

The key lipids and pathway analysis. (A) The variable influence on projection (VIP) score of the lipids by PLS-DA. Each dot represents a lipid species,
and its position on the x-axis indicates the VIP score. The higher the score, the more influential the lipid is in distinguishing between the patient
outcomes. The VIP scores suggest that certain lipid species, such as PC(16:0/18:2), is more predictive of patient response to chemo-
immunotherapy. (B) Pathway analysis shows top three metabolism pathway involved in the chemo-immunotherapy treatment. The plot’s y-axis lists
the metabolic pathways, while the x-axis indicates the significance of enrichment, which is a common transformation to highlight smaller p-values.
The size of each bubble represents the enrichment ratio, and the color indicates the p-value, with warmer colors representing more statistically
significant associations.
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