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Radiomics nomogram combined
with clinical factors for
predicting pathological complete
response in resectable
esophageal squamous
cell carcinoma
Zihao Lu †, Yongsen Li †, Wenxuan Hu, Yonghao Cao, Xin Lv,
Xinyu Jia, Shiyu Shen, Jun Zhao* and Chun Xu*

Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
Introduction: Predicting the efficacy of neoadjuvant immunochemotherapy

(NICT) for esophageal squamous cell carcinoma (ESSC) prior to surgery can

minimize unnecessary surgical interventions and facilitate personalized

treatment strategies. Our goal is to develop and validate an image-based

radiomic model using preoperative computed tomography (CT) scans and

clinical data to predict pathological complete response (pCR) in resectable

ESSC following neoadjuvant immunotherapy.

Methods: We retrospectively collected data from patients diagnosed with ESCC

at the First Affiliated Hospital of Soochow University between January 2018 and

May 2023, who received preoperative neoadjuvant immunochemotherapy.

Eligible patients were randomly divided into training and validation sets.

Radiomic features extracted from preprocessed CT images were used to

develop a radiomic model, incorporating Radiomic score (Rad-score) and

clinical factors through multivariate logistic regression analysis. The model’s

performance was assessed for calibration, discrimination, and clinical utility in

an independent validation cohort.

Results: We enrolled a total of 105 eligible participants who were randomly

divided into two groups: a training set (N=74) and a validation set (N=31). After

data dimension reduction and feature selection, we identified 11 radiomic

features, which collectively formed the Rad-score. Rad-score had an area

under the curve (AUC) of 0.83 (95% CI 0.72-0.93) in the training set and 0.78

(95% CI 0.60-0.95) in the validation set. Multivariate analysis revealed that

radiological response and Neutrophil–Lymphocyte Ratio (NLR) were

independent predictors of pCR, with p-values of 0.0026 and 0.0414,

respectively. We developed and validated a nomogram combining Rad-score

and clinical features, achieving AUCs of 0.90 (95% CI 0.82-0.98) in the training

set and 0.85 (95% CI 0.70-0.99) in the validation set. The Delong test confirmed

the nomogram’s superiority over pure radiomic and clinical models. Decision

curve analysis (DCA) and integrated discrimination improvement (IDI) assessment

supported the clinical value and superiority of the combined model.
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Conclusion: The nomogram, which integrates Rad-score and clinical features,

offers a precise and reliable method for predicting pCR status in ESCC patients

who have undergone neoadjuvant immunochemotherapy. This tool aids in

tailoring treatment strategies to individual patients.
KEYWORDS

r a d i om i c s , n omog r am , p a t h o l o g i c a l c omp l e t e r e s p o n s e , E SCC ,
neoadjuvant immunochemotherapy
1 Introduction

Esophageal cancer (EC) has emerged as the seventh most

prevalent cancer globally and ranks sixth among the leading causes

of cancer-related mortality (1). China is responsible for over half of the

annual new cases of EC worldwide, with more than 90% of EC cases

being diagnosed as esophageal squamous cell carcinoma (ESCC). The

lack of early clinical symptoms often leads to advanced stage diagnosis

in many ESCC patients (2). Although surgery remains the main

treatment for resectable EC, recent studies conduct both domestically

and internationally has demonstrated significant advantages in

combining neoadjuvant therapy with surgery for these patients (3,

4). The emergence of immunotherapy has ushered in a new era in the

treatment of advanced EC, with immune checkpoint inhibitors (ICIs)

showing promising efficacy (5–7). The utilization of neoadjuvant

immunotherapy in EC treatment is garnering heightened interest, as

early studies have indicated that combining neoadjuvant

immunotherapy with chemotherapy is both safe and feasible for EC

patients. These studies have also shown promising recent results,

suggesting a positive prognosis (8, 9). Treatment responses in EC

patients are highly individualized, with achieving a pathological

complete response (pCR) being a crucial predictor of positive

outcomes (10–12). Despite promising results from neoadjuvant

immunotherapy combined with chemotherapy, only approximately

one-third of patients achieve pCR (8, 9). Esophagectomy, a procedure

commonly used in treatment, is associated with a high rate of

complications, including a postoperative complication rate (Clavien-

Dindo grade ≥3) of up to 60% and a mortality rate as high as 5%,

which can greatly impact patients’ quality of life (13, 14). A meta-

analysis has demonstrated that surgical intervention following clinical

complete remission from neoadjuvant therapy for EC does not confer

long-term survival advantages over non-surgical treatments (15).

Recent research has shifted towards organ preservation strategies,

suggesting that for patients achieving pCR, active surveillance and

organ preservation techniques may serve as viable alternatives.

Traditional imaging modalities have limitations in accurately

predicting pCR in EC following neoadjuvant therapy (16). The

Response Evaluation Criteria in Solid Tumors (RECIST) scoring

system is frequently employed to assess treatment response in solid

tumors, but discrepancies exist between RECIST scores and

pathological outcomes (17). Research has indicated that blood
02
biomarkers such as the nNLR, may offer a more reliable means of

predicting the pathological response to neoadjuvant therapy (18,

19). However, the reliability of these serum biomarkers is often

compromised by various factors such as inflammation or infection,

highlighting the necessity for more robust biomarkers to assess the

efficacy of neoadjuvant immunochemotherapy in EC, particularly

those that can be identified through non-invasive methods.

The rapid progression of medical imaging technologies, data

algorithms, and analytics has facilitated the possibility of large-scale

data mining and analysis of medical images. The concept of

radiomics, initially proposed by Lambin, allows for the high-

throughput extraction of numerous quantitative image features

from medical images, providing valuable Supplementary

Information for purposes such as disease diagnosis, prognostic

analysis, and treatment response prediction (20–22). Several

studies have utilized radiomics to forecast responses to

neoadjuvant therapy in various types of cancers, resulting in

promising outcomes (23–25). Prior studies have not examined the

potential value of radiomics in predicting pCR after neoadjuvant

immunochemotherapy in ESCC. Therefore, our objective was to

develop a composite model utilizing radiomic features extracted

from pre-treatment CT scans along with clinical factors to predict

pCR after neoadjuvant immunochemotherapy in ESCC. This model

accurately identifies suitable subgroups within the clinical

population, ensuring localized control and the potential avoidance

of surgery in specific patients, thereby maintaining organ integrity

and ultimately improving overall quality of life for these individuals.
2 Materials and methods

The patient selection and distribution process were illustrated in

Figure 1, and the radiomics analysis process was depicted

in Figure 2.
2.1 Patient

Patients with a diagnosis of with ESCC who received

neoadjuvant immunotherapy combined with chemotherapy at the

First Affiliated Hospital of Soochow University between January
frontiersin.org
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2018 and May 2023 were retrospectively included in this study.

Inclusion criteria for our study were as follows: (1) Age 18 years or

older, (2) Undergoing surgery after neoadjuvant immunotherapy,

(3) Clinical staging of II - IV A, (4) Preoperative histological

confirmation of ESCC, (5) Scored within the range of 0 to 2

according to the ECOG performance status criteria. Patients

meeting any of the following exclusion criteria were excluded: (1)

Preoperative pathology confirming adenocarcinoma, (2)

Incomplete treatment, including patients who refused surgery or

temporarily halted treatment due to immunotherapy-related

adverse effects, (3) Preoperative identification of distant

metastases, (4) Incomplete clinical information, (5) Lack of pre-

and post-treatment CT image data or poor CT image quality, and

(6) Concurrent malignancies. Ultimately, a total of 105 patients
Frontiers in Oncology 03
were enrolled, with participants randomly allocated into training

(N=74) and validation (N=31) sets at a ratio of 7:3.
2.2 Treatment groups

All patients underwent thorough pretreatment evaluation,

including physical examinations, standard laboratory tests,

pulmonary function assessments, Endoscopic Gastrointestinal

Decontamination (EGD) with endoscopic ultrasound and biopsy,

and enhanced chest/abdominal CT and PET scans (if available) for

staging according to the 8th edition of AJCC TNM classification. A

multidisciplinary team assessed patient suitability for surgery after

neoadjuvant therapy. In this study, all patients underwent a two-
FIGURE 2

Workflow of radiomics analysis.
FIGURE 1

Patient selection and distribution flowchart.
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cycle regimen of platinum-based chemotherapy combined with

taxanes (docetaxel or paclitaxel), concurrently administered with

200mg of sintilimab/tislelizumab. All patients received the complete

combination therapy of immunotherapy and chemotherapy. All

patients underwent a CT examination within one week before

surgery to assess tumor reduction rate, following the criteria of

RECIST 1.1. Response was evaluated by the relative change in

baseline and post-treatment diameters using CT, with a reduction

of 30% or greater considered indicative of a positive response and all

other cases categorized as non-responsive. After completing

treatment, patients underwent Ivor-Lewis esophagectomy with

lymph node dissection and gastric conduit reconstruction.

Pathological response to neoadjuvant immunochemotherapy was

assessed by two independent pathologists, with pCR defined as the

absence of viable cancer cells.
2.3 CT data acquisition and
retrieval procedure

All patients underwent contrast-enhanced CT (CE-CT) scans at

two time points: one week prior to the initiation of neoadjuvant

Immuno-Chemotherapy and one week prior to surgery, referred as

pre-treatment and preoperative CE-CT scans, respectively. Imaging

was conducted using a GE Lightspeed 64-slice spiral CT scanner

(GE Healthcare, Milwaukee, Wisconsin) with specific parameters:

tube voltage of 120 kV, tube current of 120 mAs, gantry rotation

time of 0.6 seconds, detector collimation of 64×0.625 mm, field of

view ranging from 400 to 500 mm, matrix size of 512×512, slice

thickness of 5 mm, and interslice gap of 5 mm. A contrast agent was

administered intravenously at a rate of at 3.0 ml/s (dose of 1-1.5 ml/

kg, utilizing iopromide injection at a concentration of 300 mg

iodine/ml) using a high-pressure injector. This was followed by a

saline flush of 30-40 ml, and late arterial phase CT images were

obtained after a delay of 30 seconds.
2.4 Tumor masking and radiomic
feature extraction

In order to define regions of interest (ROIs) for subsequent

radiomic analysis, post-contrast CT images were manually

segmented using the open-source software, ITK-SNAP (http://

www.itksnap.org/pmwiki/pmwiki.php). The 2D ROIs were

delineated on the slice with the maximum tumor axis diameter

and then imported into 3D Slicer (https://www.slicer.org/) for

further analysis. To minimize inter-image variability, scans were

resampled to a voxel size of 1×1 millimeter prior to

feature extraction.

A total of 851 radiomic features were extracted, comprising 162

first-order statistics, 14 shape-based features, 216 gray-level co-

occurrence matrix (GLCM) features, 144 gray-level run length

matrix (GLRLM) features, 144 gray-level size zone matrix

(GLSZM) features, 126 gray-level dependence matrix (GLDM)

features, and 45 neighborhood gray-tone difference matrix

(NGTDM) features.
Frontiers in Oncology 04
To assess the reliability of radiomic features, tumor

segmentation was independently performed by a radiologic

oncologist and another radiologist. Reproducibility was assessed

by having the same observer repeat tumor segmentation for 30

randomly chosen patients after a two-month interval, with

consistency being evaluated using Intra-class correlation (ICC).
2.5 Feature selection

After features extraction, all the radiomic features were

normalized using Z-score normalization by which the feature

values were centered by removing the mean value of each feature,

then divided by the standard deviation of each feature. The pre-

processing made feature values lie within similar ranges, which

reduced the influence of features with large discrete values. To

reduce redundancy, we employed a three-step dimensionality

reduction approach: (1) Univariate feature selection with T-tests

or Mann-Whitney U-tests, retaining features with p-value < 0.05

related to pCR. (2) The intra-class correlation coefficient (ICC)

analysis was performed to evaluate the reproducibility of each

radiomics feature through Pearson and Spearman tests. Only the

features with ICCs value ≥ 0.70 were selected for further analysis.

(3) Regularized multivariate logistic regression with the least

absolute shrinkage and selection operator (LASSO) was employed

to select the best predictive features for pCR in the training set. With

a linear combination of the selected features weighted by their

respective coefficients, a model was used to estimate the

immunochemotherapy outcomes based on the radiomic features.

The model was defined as follows:

y =od
j=1bjxj + b0 + e

Where y is 1 for patients with pCR and 0 for non-pCR patients;

d is the number of features used in the model; xj(j = 1, 2,…, d) is the

feature; bj(j = 0, 1, 2,…, d) is the model parameter, and e is the

error term.

Using regularized regression to estimate the parameters of the

model, feature selection (by forcing many parameters to zero value)

can be performed simultaneously. The aim of this approach is to

minimize the cost function:

oN
i=1 yi − S od

j=1bjxij + b0
h ih i2

+lod
j=1 j bj j

Where yi is the outcome of patient i, N is the number of

patients, S is the sigmoid function, xij is the jth feature of the ith

patient, and l is the regularization parameter which chosen via five-

fold cross-validation, minimizing mean squared error. The sigmoid

function S is defined as follows:

S(x) =
1

1 + e−x

with the LASSO penalty od
j=1 j bj j applied, leading to sparse

models by setting some parameters (bjs) to zero. Features with

greater contributions to the model are selected. Subsequently, we

calculated the Radiomic score (Rad-score) for each patient based on

the weighted coefficients from the LASSO regression model in the
frontiersin.org
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training set. The LASSO logistic regression formula:

Rad� score = b0 + b1x1 + b2x2 + b3x3 +⋯+bnxn

In the above formula, xn represents the radiomics feature

identified by the LASSO logistic regression model, b0 is the

constant for Rad-score, and bn is the regression coefficient of the

corresponding feature in the regression model. The Rad-score for

each patient can be calculated according to the formula. Receiver

operating characteristic (ROC) curve analysis was used to assess the

performance of Rad-score.
2.6 Model construction and validation

Within the training set, radiomic, clinical, and combined

radiomic-clinical models were developed to predict pCR. Optimal

clinical variables for pCR prediction were identified through a

combination of univariate and multivariate logistic regression

analysis, encompassing factors such as age, gender, BMI, tumor

characteristics, smoking, alcohol consumption, cancer staging,

neoadjuvant immunochemotherapy details, and blood markers.

Model performance was evaluated using AUC metric, with ROC

curves comparisons conducted via the DeLong test. Superiority of

the models was evaluated with integrated IDI and NRI, while model

adequacy was tested with the Hosmer-Lemeshow test. Clinical

usefulness was assessed with Decision curve analysis (DCA).
2.7 Statistical analysis

Statistical analysis was carried out using IBM SPSS version 20.0

and R software version 4.1.3. For continuous variables, we used t-

tests or Mann-Whitney U tests, while chi-square tests or Fisher’s

exact tests were used for categorical variables. Clinical variables

predicting pCR were determined through univariate and

multivariate logistic regression, including Lasso algorithm for

variable selection. Model development, nomograms, and

calibration plots were created using the ‘rms’ package. Internal

validation was performed, and ROC comparisons were done using

the ‘pROC’ package. DCA used the ‘rmda’ package, and IDI and

NRI were computed with the ‘PredictABEL’ package. Statistical

significance was set at p-value < 0.05.
3 Results

3.1 Baseline characteristics

A total of 105 patients were enrolled in this study, comprising

74 in the training set and 31 in the validation set (Table 1). The age

in all patients was 66.99 (6.11) years, with 84 (80.0%) males and 21

(20.0%) females. The majority of patients were in stage III (64 cases,

61.0%), and 61 cases (58.1%) exhibited radiological evidence of

response. The pCR rates in the training and validation sets were

32.4% and 35.5%, respectively. There were no significant differences
Frontiers in Oncology 05
in clinical characteristics between the training and validation sets

(Supplementary Table 1), confirming their comparability for use as

training and validation datasets.
3.2 Model construction

3.2.1 Radiomics feature selection and Rad-
score construction

Following an initial analysis of 851 radiomic features through

differential and correlation analyses, a reduction to 98 features was

achieved. Subsequent dimensionality reduction was carried out

using the LASSO algorithm, resulting in the selection of optimal

radiomic features for predicting pCR within the training set

(Figures 3A, B). Ultimately, a total of 11 radiomic features were

chosen with detailed information on feature names and coefficients

provided in Figure 3C. The intra-observer and inter-observer ICC

were calculated for these 11 features, all of which surpassed 0.800,

suggesting their reliability and appropriateness for additional

analysis (ICC range: 0.818–0.998, Supplementary Table 2).

Following this, Rad-scores were determined for each patient.

Significant differences in Rad-scores between patients with pCR

and those without (Non-pCR) were observed in both the training (p

< 0.001) and validation cohorts (P = 0.009) (Figure 3D).

3.2.2 Model building
Univariate and multivariate logistic analyses (Table 2) were

performed to determine clinical predictors of pCR status in the

training set. Significant associations were observed between pCR

status and tumor diameter, radiological response, and NLR in the

univariate analysis. However, no correlations were found between

pCR status and age, gender, tumor location, staging, platelet to

lymphocyte ratio (PLR), prognostic nutritional index (PNI), or

lymphocyte to monocyte ratio (LMR) (as indicated in Table 2).

Multivariate analysis validated the influence of radiological

response and NLR levels as independent factors on achieving

pCR. Three distinct models were developed based on selected

Rad-scores, clinical indicators, and their various combinations

(radiomic only , c l in ica l on ly , and radiomic-c l in ica l

combined models).

3.2.3 The combined model demonstrates
superior predictive capability

In this study, we conducted a comparison of ROC curves of

three models within the training set (Figure 4A) and subsequently

assessed their predictive performance for pCR in the validation set

(Figure 4B). The AUC for the pure radiomic model in the training

set was 0.83 (95% CI, 0.72-0.93), while the AUC for the pure clinical

model was 0.80 (95% CI, 0.57-0.80). Following the training phase,

both the radiomic-only and clinical-only models demonstrated

accurate prediction of pCR in the validation set, achieving AUCs

values of 0.78 (95% CI, 0.60-0.95) and 0.78 (95% CI, 0.61-0.94),

respectively. The radiomic-clinical combined model exhibited

superior performance, with AUCs of 0.90 (95% CI, 0.82-0.98) in

the training set and 0.85 (95% CI, 0.70-0.99) in the validation set
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TABLE 1 Clinicopathological characteristics of the dataset.

(validation set) All patients

N = 11 P-value1 N = 105

(7.39) 0.90 66.99 (6.11)

0.38

.1%) 21 (20%)

91%) 84 (80%)

(2.76) 0.73 22.71 (2.91)

0.42

55%) 77 (73%)

45%) 28 (27%)

0.15

36%) 65 (62%)

64%) 40 (38%)

>0.99

18%) 28 (27%)

73%) 64 (61%)

.1%) 13 (12%)

0.54

27%) 32 (30%)

64%) 52 (50%)

.1%) 19 (18%)

0%) 2 (1.9%)

0.87

27%) 42 (40%)

55%) 46 (44%)

18%) 17 (16%)

>0.99

(Continued)

Lu
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
4
.13

4
76

5
0

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
6

Characteristic

Patients, No. (%)

Institution 1 (training set) Institution 2

Non-pCR, N = 50 pCR, N = 24 P-value1 Non-pCR, N = 20 pCR,

Age, Mean (SD) 67.58 (5.65) 66.46 (5.76) 0.57 66.35 (7.18) 66.6

Sex, n (%) 0.54

Female 9 (18%) 6 (25%) 5 (25%) 1 (

Male 41 (82%) 18 (75%) 15 (75%) 10

BMI, Mean (SD) 22.41 (3.00) 22.95 (2.57) 0.27 23.05 (3.26) 22.9

Alcohol use, n (%) 0.93

No 38 (76%) 18 (75%) 15 (75%) 6

Yes 12 (24%) 6 (25%) 5 (25%) 5

Tobacco use, n (%) 0.41

No 34 (68%) 14 (58%) 13 (65%) 4

Yes 16 (32%) 10 (42%) 7 (35%) 7

Clinical T stagea, n (%) 0.15

2 16 (32%) 6 (25%) 4 (20%) 2

3 30 (60%) 12 (50%) 14 (70%) 8

4a 4 (8.0%) 6 (25%) 2 (10%) 1 (

Clinical N stagea, n (%) 0.28

0 19 (38%) 5 (21%) 5 (25%) 3

1 24 (48%) 12 (50%) 9 (45%) 7

2 6 (12%) 6 (25%) 6 (30%) 1 (

3 1 (2.0%) 1 (4.2%) 0 (0%) 0

Clinical stage group, n (%) 0.18

II 23 (46%) 10 (42%) 6 (30%) 3

III 21 (42%) 7 (29%) 12 (60%) 6

IV A 6 (12%) 7 (29%) 2 (10%) 2

Tumor location, n (%) 0.78
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TABLE 1 Continued

tients, No. (%)

Institution 2 (validation set) All patients

-pCR, N = 20 pCR, N = 11 P-value1 N = 105

3 (15%) 1 (9.1%) 14 (13%)

13 (65%) 8 (73%) 60 (57%)

4 (20%) 2 (18%) 31 (30%)

3.03 (0.60) 2.95 (0.74) 0.77 3.09 (0.64)

0.24

11 (55%) 9(82%) 57 (54%)

9 (45%) 2 (18%) 48 (46%)

0.81

10(40%) 6 (55%) 59 (56%)

10(35%) 5 (45%) 64 (44%)

0.13

10 (50%) 2 (18%) 44 (42%)

10 (50%) 9 (82%) 61 (58%)

2.88 (0.81) 2.30 (0.91) 0.066 2.82 (0.80)

140.22 (49.72) 131.95 (39.10) 0.73 151.07 (56.96)

3.53 (1.43) 3.97 (1.95) 0.74 3.52 (1.54)

45.18 (5.45) 48.25 (2.83) 0.094 46.46 (5.35)

2.03 (1.20) 1.57 (1.01) 0.25 1.58 (0.94)
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Characteristic

Pa

Institution 1 (training set)

Non-pCR, N = 50 pCR, N = 24 P-value1 Non

Proximal third 6 (12%) 4 (17%)

Middle third 26 (52%) 13 (54%)

Distal third 18 (36%) 7 (29%)

Diameter, Mean (SD) 3.01 (0.64) 3.36 (0.57) 0.031

Histologic grade, n (%) 0.14

G1+G2 22 (44%) 15 (63%)

G3 28 (56%) 9 (38%)

Immunotherapy_Regimen,
n (%)

0.14

Sintilimab 32 (64%) 11 (50%)

Tisleizumab 18 (63%) 13 (50%)

Response, n (%) <0.001

No 30 (60%) 2 (8.3%)

Yes 20 (40%) 22 (92%)

NLR, Mean (SD) 3.03 (0.77) 2.57 (0.64) 0.018

PLR, Mean (SD) 154.33 (60.30) 162.06 (61.56) 0.27

LMR, Mean (SD) 3.58 (1.48) 3.18 (1.57) 0.39

PNI, Mean (SD) 46.55 (5.93) 46.50(4.85) 0.84

SCCA, Mean (SD) 1.43 (0.77) 1.53 (0.94) 0.88

1Wilcoxon rank sum test; Fisher’s exact test; Pearson’s Chi-squared test.
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(Supplementary Table 3). This improvement was further

substantiated by the Net Reclassification Index (NRI) and IDI

(Supplementary Table 4). In the training cohort, the combined

model exhibited superior performance compared to both the

clinical and radiomic models, with NRI improvements of 0.26

and 0.17, and IDI improvement of 0.17 and 0.17, respectively. In

the validation cohort, the combined model continued to show

improved performance over the clinical model, with NRI and IDI
Frontiers in Oncology 08
improvements of 0.14 and 0.13, while outperforming the radiomic

model with NRI and IDI improvements of 0.28 and

0.11, respectively.

3.2.4 Radiomics-based nomogram construction
A radiomic-clinical combined model, incorporating Rad-scores

and clinical data, and was illustrated as a nomogram (Figure 5A) to

predict pCR following neoadjuvant immunochemotherapy.
FIGURE 3

We utilized LASSO logistic regression to choose radiomic features for predicting pCR. (A) Optimal l (lambda) value, selected through 5-fold cross-
validation, was determined to be 0.091 at log(l) = -2.398. (B) LASSO coefficient profile plot for radiomic features. (C) Final list of selected radiomic
feature names and coefficients. (D) Rad-scores showed significant differences between pCR and Non-pCR groups in both the training (P < 0.001)
and validation sets (P = 0.009).
FIGURE 4

Receiver operating characteristic curve analysis of three models in the training set (A) and the validation set (B) for predicting Pathological
Complete Response.
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TABLE 2 Univariate and multivariate analysis of clinical data.

Variable Univariate analysis Multivariate analysis

OR (95%CI) P-value OR (95%CI) P-value

Age 0.97(0.88-1.05) 0.424

Sex 0.66(0.21-2.22) 0.49

BMI 1.07(0.90-1.27) 0.45

Alcohol use 1.06(0.32-3.20) 0.93

Tobacco use 1.52 (0.55- 4.16) 0.42

Clinical T stage

2

3 1.07(0.34- 3.55) 0.91

4a 4.000.86-21.05) 0.08

Clinical N stage

0

1 1.90(0.59-6.84) 0.30

2 3.80(0.86-18.14) 0.08

3 3.8(0.13-108.47) 0.37

Clinical stage group

II

III 0.77(0.24-2.36) 0.65

IV A 2.68(0.72-10.44) 0.14

Tumor location

Proximal third

Middle third 0.75(0.18-3.37) 0.69

Distal third 0.58(0.12- 2.86) 0.49

Diameter 2.59(1.13-6.66) 0.03 * 1.83(0.63-5.76) 0.28

Histologic grade 0.47(0.17-1.26) 0.14

G1+G2

G3

Immunotherapy_Regimen 0.74(0.78-5.75) 0.14

Sintilimab

Tisleizumab

Response 16.50(4.23-110.33) 0.00041 *** 12.25(2.88-86.49) 0.0026 **

NLR 0.38(0.14-0.91) 0.04 * 0.38(0.14- 0.91) 0.041 *

PLR 1.00(0.99-1.01) 0.61

LMR 0.83(0.58-1.16) 0.296

PNI 1.00(0.91- 1.09) 0.970

SCCA 1.15(0.63-2.08) 0.64
F
rontiers in Oncology
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*p<0.05 **p<0.01 ***p<0.001.
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3.2.5 Performance and clinical utility of the
constructed nomogram

The calibration curves of the pCR probability nomogram

demonstrate strong agreement between predicted and observed

values in both the training and validation cohorts (Figure 5B).

The Hosmer-Lemeshow test, conducted with calibration curves,

resulted in p-values greater than 0.05 for both the training and

validation sets (P=0.210 and P=0.213, respectively), indicating a

high level of fit between the model and the data.

Decision curves were utilized to assess the impact of the

nomogram model on clinical treatment decisions. Analysis of the

decision curves revealed that the nomogram model yielded greater

benefit within a risk threshold range of 0.3 to 0.8, in contrast to the

‘treat-all’ or ‘no treatment’ strategies. Conversely, both the clinical

and radiomic models exhibited lower net benefits than the

nomogram model (Figure 5C).
4 Discussion

In the context of neoadjuvant immunochemotherapy for patients

with EC, the ability to predict pCR prior to surgery facilitates the

identification of specific subgroups who may benefit from alternative

treatment approaches, such as organ-preserving strategies and active

surveillance protocols. This tailored approach not only holds promise

for sparing select patients from surgical resection but also aims to

maintain long-term survival outcomes and improve overall quality of
Frontiers in Oncology 10
life. Following the completion of radiomic feature extraction, we

selected the most effective features for predicting pCR using the

LASSO algorithm. We then calculated the Radiomics score based on

the weighted coefficients from the LASSO regression model,

establishing a radiomics model. Furthermore, we identified two

clinically relevant independent risk factors associated with pCR,

namely NLR and Response, through univariate and multivariate

logistic regression analyses, which contributed to the development

of a clinical model. Moreover, we formulated a combined model that

integrates clinical features and the Rad-score derived from radiomic

features. The AUC values for the three models in the training dataset

were 0.90, 0.83, and 0.80, respectively. Delong’s test revealed that the

combined model exhibited significantly superior discriminative

capacity compared to both the standalone radiomics and clinical

models. Additionally, NRI and IDI showed substantial improvement

in predictive performance for the combined model compared to both

the standalone radiomics and clinical models. In the course of the

study, a nomogram model incorporating clinical and radiological

features, denoted as Rad-score, was developed and validated for its

ability to forecast the pCR status of ESCC patients receiving

neoadjuvant immunochemotherapy. The nomogram demonstrated

strong predictive performance in both the training and validation

cohorts, achieving AUC values of 0.90 and 0.85, respectively.

Tumors demonstrate variability in spatial and temporal

characteristics (26, 27). Radiomics, as a non-invasive biomarker,

has the capability to quantitatively analyze intratumoral

heterogeneity (21). Previous studies indicate an association between
FIGURE 5

Nomogram, Calibration curve and Decision curve analysis. (A) Nomogram and (B) Calibration curve for Pathological Complete Response in the
training and validation set. (C) Decision curve analysis for each model (clinical (Clinics) model, radiomics (Radiomics) model, and integrated
(combined) model).
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pretreatment CT radiomic features and the efficacy of ICIs in solid

tumor patients (28). Several current studies highlight the effectiveness

of radiomic models in predicting the pathological response following

neoadjuvant therapy in patients with EC (29, 30). The integration of

immunotherapy with chemotherapy has been shown to

synergistically enhance the immunogenicity of the tumor

microenvironment (31). Multiple clinical studies have confirmed

the safety and effectiveness of neoadjuvant immunochemotherapy

in managing EC. This study represents the first attempt to predict

pCR after neoadjuvant immunochemotherapy in potentially

resectable ESCC using a radiomics-clinical combined method.

The preoperative assessment of the efficacy of neoadjuvant

therapy is crucial for the subsequent development of individualized

treatments. However, the presence of unconventional response

patterns, such as pseudo-progression and hyper-progression, linked

to immunotherapy, poses challenges to the accurate assessment of

effectiveness using traditional response criteria. The dominant

response criterion remains clinical complete response (cCR).

Currently, there is no standardized diagnostic criteria for cCR,

primarily denoting the absence of residual tumors confirmed

through various non-surgical methods. Previous studies suggest that,

for esophageal cancer (EC) patients achieving cCR after neoadjuvant

therapy, the addition of esophagectomy can reduce short-term local

recurrence rates, although no significant long-term survival benefits

have been observed (32, 33). Pathological examination remains the

gold standard for assessing treatment response. Despite employing

various diagnostic methods for a comprehensive evaluation of cCR,

the results still exhibit some inconsistency with pCR outcomes (34).

Only one-third of cCR patients ultimately achieve pCR, potentially

contributing to the higher local recurrence in non-surgical patients.

For patients with EC, achieving pCR is associated with improved

outcomes, indicating potentially better survival and lower local

recurrence (35). The nomogram developed in this study

incorporates Rad-score and two clinical parameters, which can be

obtained through routine CT scans and blood tests. This model serves

to assess the efficacy of neoadjuvant immunochemotherapy in EC

patients, with higher nomogram scores suggesting a likelihood of

achieving pCR. These patients may potentially avoid surgery without

compromising long-term survival benefits, leading to an enhanced

quality of life for the entire organ system.

Our research indicates that pre-treatment peripheral blood NLR is

an independent prognostic indicator for pCR in ESCC patients

following neoadjuvant immunotherapy. Increasing evidence

supports the crucial role of tumor-associated inflammation in the

host’s immune response to malignant tumors (36). The ratio of NLR,

defined by the absolute counts of neutrophils and lymphocytes, may

represent a balance between pro-tumor inflammatory status and anti-

tumor immune response. ICristina et al. conducted a retrospective

analysis to explore the association between pre-treatment peripheral

blood NLR and response rates in patients undergoing ICI therapy.

Their comprehensive pan-cancer analysis revealed that patients with

elevated NLR levels experienced diminished efficacy of ICIs. Further

validation in an independent cohort demonstrated a correlation

between high NLR and lower rates of remission (17% vs. 28%) and

clinical benefit (26% vs. 41%) (37). These findings may be associated

with the tumor microenvironment. The observed associations
Frontiers in Oncology 11
between peripheral blood NLR and outcomes following Immune

Checkpoint Inhibitor (ICI) therapy may be explained by a potential

correlation between circulating neutrophils and neutrophils present in

the tumor microenvironment (38). First, neutrophils are known to

produce immunosuppressive factors and angiogenic molecules such as

reactive oxygen species, vascular endothelial growth factor (VEGF),

and matrix metalloproteinase 9 (MMP-9), which can promote tumor

growth. The infiltration of neutrophils into the tumor

microenvironment may play a role in creating a favorable

environment for tumor progression (38, 39). Neutrophils have been

implicated in tumor initiation, progression, and early dissemination,

while decreased levels of circulating lymphocytes are associated with

reduced tumor-infiltrating lymphocytes and a compromised anti-

tumor T-cell response (40, 41). Additionally, an increased

abundance of myeloid cells, including neutrophils, can exacerbate T-

cell suppression (41, 42). These combined factors contribute to the

establishment of an immunosuppressive tumor microenvironment,

potentially reducing the efficacy of immune checkpoint inhibitors

(ICIs). Concurrently, recent research has demonstrated that

neutrophils in the peripheral blood can enhance the efficacy of

distant metastasis by engaging with circulating tumor cells and

amplifying their metastatic characteristics through promoting cell

cycle advancement and hastening metastasis establishment (43,

44).Our study revealed NLR levels in both the pCR subgroup

training set and validation set were significantly lower compared to

those in the Non-pCR subgroup (2.57 vs. 3.03, 2.30 vs. 2.88).

In our study, a significant correlation was observed between the

reduction in the maximum tumor diameter and pCR. Multiple

studies have reported a notable association between the reduction in

tumor volume after neoadjuvant therapy and the occurrence of pCR

(45, 46). However, volumetric calculations are labor-intensive and

time-consuming. We assessed the reduction rate in the maximum

tumor diameter, a parameter easily calculated by measuring the CT

lesion diameter. In the NICE trial, the CT-measured reduction in

the longest lesion diameter was moderately positively correlated

with the pathological regression rate (r=0.600) (9). Moreover, a

recent study has assessed the relationship between CT

measurements and the pathological response of esophageal

squamous cell carcinoma patients. Their findings indicate that

both the reduction rates in the long and short diameters are

associated with the tumor’s pathological response. The reduction

rates in both the long and short diameters effectively predict the

pathological response of the tumor, with respective areas under the

curve of 0.761 and 0.781 (47).In our study, 58% of patients exhibited

a reduction in tumor diameter compared to pre-treatment levels,

and this group demonstrated a pCR rate over four times higher than

patients with no reduction in tumor diameter.

It is widely acknowledged that PD-L1 expression stands as one

of the most commonly used immune therapy biomarkers. However,

our study did not prioritize its inclusion, as our focus was on

incorporating markers easily assessable in clinical settings. The

clinical utility if PD-L1 expression is limited due to the

substantial amount of tumor tissue required for its determination

and the absence of a standardized quantitative scoring system for

immune cells or PD-L1 immunohistochemistry (48). A post hoc

analysis of JUPITER-06 and a meta-analysis have revealed that PD-
frontiersin.org

https://doi.org/10.3389/fonc.2024.1347650
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lu et al. 10.3389/fonc.2024.1347650
L1 expression may not serve as a reliable biomarker for predicting

immunotherapy efficacy. Despite the correlation between high PD-

L1 expression in tumors and better tumor responses, its sensitivity

is insufficient, given that a considerable portion of patients with low

PD-L1 expression also achieved improved tumor responses (49).

Moreover, various molecular and genomic biomarkers demonstrate

predictive efficacy for immune therapy in diverse cancer types.

These include tumor mutational burden (TMB), specific gene

mutations, human leukocyte antigen class I zygosity and diversity,

and microsatellite instability (MSI) status (50, 51). However, these

biomarkers have limitations that hinder their widespread clinical

use, such as the need for sufficient tumor tissue and tumor DNA

sequencing (52). There is a need for the development of predictive

biomarkers that are easily accessible at low cost, applicable in

diverse environments, and independent of advanced genomic

technologies or specialized histopathologic expertise.
5 Limitation

This study has certain limitations. Firstly, this is a retrospective

study and the possibility of selection bias during data collection cannot

be ruled out. Therefore, a prospective study is needed for further

validation. Secondly, the small sample size of pCR patients relative to

the entire cohort, all from a single center, may pose challenges in

balancing baseline characteristics when conducting randomization.

Moreover, the majority of participants in the study were male

individuals diagnosed with middle esophageal cancers. Our model

may demonstrate improved applicability to this specific demographic,

while further validation is necessary to assess its effectiveness in female

patients with upper and lower esophageal cancers. Additionally, the

potential impact of dynamic changes in radiomics (delta radiomics)

and other relevant clinicopathological factors, including tumor

infiltrating lymphocytes, gene mutation profiles, PET images, and

serum densities of specific immune cell subgroups, remains

unexplored. Furthermore, it is advisable to explore larger datasets

from multiple centers to validate the robustness and reproducibility of

the proposed radiomics model through multicenter studies and

randomized controlled clinical trials. Lastly, the limited spatial

resolution of CT, may introduce bias in determining the boundaries

between lesions and normal esophageal tissue during manual ROI

segmentation. Future efforts should explore and develop accurate

automated segmentation methods.
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