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Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
Hematopoiesis is a tightly regulated process that produces all adult blood cells

and immune cells from multipotent hematopoietic stem cells (HSCs). HSCs

usually remain quiescent, and in the presence of external stimuli like infection

or inflammation, they undergo division and differentiation as a compensatory

mechanism. Normal hematopoiesis is impacted by systemic inflammation, which

causes HSCs to transition from quiescence to emergency myelopoiesis. At the

molecular level, inflammatory cytokine signaling molecules such as tumor

necrosis factor (TNF), interferons, interleukins, and toll-like receptors can all

cause HSCs to multiply directly. These cytokines actively encourage HSC

activation, proliferation, and differentiation during inflammation, which results

in the generation and activation of immune cells required to combat acute injury.

The bone marrow niche provides numerous soluble and stromal cell signals,

which are essential for maintaining normal homeostasis and output of the bone

marrow cells. Inflammatory signals also impact this bone marrow

microenvironment called the HSC niche to regulate the inflammatory-induced

hematopoiesis. Continuous pro-inflammatory cytokine and chemokine

activation can have detrimental effects on the hematopoietic system, which

can lead to cancer development, HSC depletion, and bone marrow failure.

Reactive oxygen species (ROS), which damage DNA and ultimately lead to the

transformation of HSCs into cancerous cells, are produced due to chronic

inflammation. The biological elements of the HSC niche produce pro-

inflammatory cytokines that cause clonal growth and the development of

leukemic stem cells (LSCs) in hematological malignancies. The processes

underlying how inflammation affects hematological malignancies are still not

fully understood. In this review, we emphasize the effects of inflammation on

normal hematopoiesis, the part it plays in the development and progression of

hematological malignancies, and potential therapeutic applications for targeting

these pathways for therapy in hematological malignancies.
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Introduction

Inflammation is one of the defensemechanisms of the body that is

utilized to fight against infections and regenerate injured tissues (1).

Sustained inflammatory stimuli for an extended period can lead to

chronic inflammation. Chronic inflammation can promote the

occurrence and development of cancer by promoting blood vessel

growth, cancer cell proliferation, and tumor invasiveness (2).

Inflammatory biomarkers have been linked to increased cancer risk

and mortality (3), and chronic systemic low-grade inflammation is a

risk factor for incident cancer (4). Inflammatory biomarkers such as

the neutrophil-to-lymphocyte ratio (NLR), systemic inflammation

response index (SIRI) and systemic immune-inflammation index

(SII) have been found to be predictive of survival for multiple types

of cancers (5).Hematopoiesis is ahighly controlledprocessmaintained

by the division of quiescent, self-renewing, multipotent hematopoietic

stem cells (HSCs) and lineage-specific downstream progenitors in the

bone marrow (BM). Cell extrinsic signals like chemokines and

cytokines activate HSCs and cells in the microenvironment that help

compensate fornormal cellular loss (6). Inflammation is known toplay

a significant role in normal hematopoiesis.

Amajorityof hematologicalmalignancies result frommutations in

the hematopoietic stem cells, leading to uncontrolled growth and

proliferation of HSCs. While inflammation is known to play a

beneficial role in immune system activation and tissue regeneration,

chronic inflammation can lead to HSC damage, resulting in bone

marrow failure or the development of leukemia (7).

Usually, stress or infection causes the activation of numerous

signaling pathways, which increases the production of inflammatory

cytokines and chemokines, which activate immune cells like B and T

lymphocytes, helping to eradicate the infection. Inflammation

regulates homeostasis and maintains the hematopoietic system.

However, uncontrolled inflammation can also play pathogenic roles
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by disrupting homeostasis, which can potentially contribute to tumor

development. A variety of cells of the immune response release pro-

inflammatory cytokines, including IL-1b, IL-1a, TNFa, IL-6, IL-12,
IFN-g, and chemokines such as CCL2 and CXCL12, which participate

in the initiation, growth, andprogressionof tumor anddevelopmentof

drug resistance (8, 9). Transcription factors involved in inflammation,

such asNFkBandSTAT3, are known topromote thedevelopmentand

progressionof cancerbycontrolling the expressionofgenes involved in

apoptosis, cell proliferation regulation of angiogenesis, tumor

metastasis and invasion (8, 10, 11). Thus, the inflammatory

elements, including cytokines, chemokines, and their receptors, play

a significant role in tumorigenesis and promote the survival of tumor

cells with metastatic and invasive properties (9, 12). In addition,

chronic inflammation often leads to the overproduction of

hematopoietic stem cells, which subsequently undergo DNA

mutations, thereby leading to the development of hematological

malignancies (13) (Figure 1).

The recent advances in molecular biology and the development

of genetically modified mouse models helped unravel the various

aspects of inflammation during tumorigenesis (14, 15). Therefore, it

is crucial to understand the molecular mechanisms that connect

inflammatory processes to tumorigenesis and metastasis, which can

be targeted for therapeutic and diagnostic purposes. This review

highlights the role of inflammation in normal hematopoiesis and

the relevance and requirement of the inflammation process to be

tightly controlled at both initiation and termination, which when

lost, can lead to the development and progression of cancer.

Effect of inflammation in
normal hematopoiesis

Hematopoiesis is the formation of all blood cells and

components of blood plasma hierarchically controlled by HSCs.
FIGURE 1

Effect of inflammation in normal hematopoiesis and malignant transformation.
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The multipotent HSCs can give rise to all types of blood cells

residing in the bone marrow (16). HSCs possess self-renewal ability,

which helps maintain the stem cell pool. Although quiescent, HSCs

undergo division in response to external stimuli like infections and

irradiation (17). Stress conditions like inflammation can cause

HSCs to undergo proliferation. During inflammation, HSCs

express receptors for cytokines and chemokines that help HSCs

recognize signals from immune cells to adapt their cycling and

differentiation potential (18, 19). However, mutations in HSCs can

lead to uncontrolled proliferation, which can cause bone marrow

damage or result in hematological malignancies (17). These

mutations primarily affect the self-renewal ability of HSCs,

activating their proliferation and inhibiting the production of

mature cells.

Somatic mutations in genes such as NPM1, which is involved in

the maintenance of HSCs’ quiescence and self-renewal, and TET2,

DNMT3A, involved in mediating HSCs’ differentiation, results in

the transformation of HSCs thereby leading to the development of

Acute Myeloid Leukemia (AML) (20). Mixed lineage leukemia

(MLL) is known to be commonly rearranged in leukemia.

Knockout of the MLL gene led to a reduction in HSC numbers in

mice, and HSCs deficient in the MLL gene are unable to reconstitute

the bone marrow of the recipient mice, signifying that the MLL gene

is important for the maintenance of self-renewal ability of HSCs.

Since the JAK-STAT signaling pathway activates HSCs to

proliferate in response to the release of inflammatory cytokines,

gain of function mutations in JAK2 non-receptor tyrosine kinase

can often result in long-term activation of HSCs, sustained

differentiation to the erythroid and myeloid lineages and results

in AML development (21).
The HSC niche and inflammation

HSCs reside in the bone marrow within a specific

microenvironment termed the HSC niche. The HSC niche

comprises the extracellular matrix along with distinct cell types like

mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, osteolineage

progenitor cells, endothelial cells (ECs) and specialized CXCL12-

abundant reticular (CAR) cells and leptin receptor (LEPR) positive

cells (22–28). HSCs reside in the perivascular region of sinusoids and

arterioles near MSCs and ECs which are essential for maintenance of

quiescence and differentiation of HSCs (29). MSCs regulate HSCs via

the expression of CXCL12, angiopoietin-1 and vascular cell adhesion

molecule-1 (VCAM-1) (30–33). HSCs exist in two distinct niches -

endosteal and vascular niche. The endosteal niche, which contains

osteoblasts, regulates the quiescence associated with HSCs and their

migration to the vascular niche (34). Inside the vascular niche, that

contains endothelial cells, HSCs undergo differentiation (27, 28,

35, 36). TGF-b is secreted by non-myelinating Schwann cells

around the blood vessels in the bone marrow (37). Additionally,

megakaryocytes around sinusoids are responsible for maintaining

HSCs quiescence, through release of factors such as TGF-b along with
Platelet factor (PF-4/CXCL4) and thrombopoietin (38–41). Studies

with conditional deletion of CXCL12 in endosteal and vascular niche

of HSCs have highlighted role of CXCL12 in the maintenance and
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self-renewal of HSCs. This is controlled by CXCL12 released by

immature mesenchymal stem and progenitor cells, with a smaller

contribution from endothelial cells (42, 43).

Hematopoietic stress conditions like systemic inflammation or

infections cause HSCs to exit their quiescence and undergo

proliferation and differentiation to compensate for cellular loss.

The production of mature myeloid cells, including neutrophils and

monocytes from HSCs, as a result of inflammation, is termed

emergency myelopoiesis (25, 26, 44). The HSC niche plays a

significant role in mediating the hematopoietic response to

peripheral or systemic inflammation. The HSC niche secretes

certain factors such as granulocyte colony-stimulating factor (G-

CSF) that promote myelopoiesis during inflammation (45–47). G-

CSF is the central regulator of inflammation induced emergency

myelopoiesis. It is the endothelial cells which have been

characterized as the main source of production of G-CSF during

inflammation. During LPS-induced systemic inflammation, TLR4

signaling in endothelial cells led to elevated G-CSF synthesis,

resulting in emergency granulopoiesis (7, 19, 45–47).

Inflammation induces the expression of G-CSF in ECs and IL-6

from ECs and MSCs (48). CXCL12 and Kit ligand (KITL) are

required to maintain HSCs in the BM niche (27, 47). Upon

inflammation, the expression of CXCL12 and KITL is

downregulated (42). In order to mediate HSCs mobilization in

the niche, G-CSF acts on different cell types such as MSCs,

macrophages, neutrophils and osteolineage cells (49). G-CSF

affects osteoblastic activity and inhibits the expression of CXCL12

directly or through functional changes in macrophages or

granulocytes (48, 50). In the case of viral infections, Interferon-g
(IFN-g) secreted by CD8+ T cells acts on MSCs in the HSC niche

and leads to increased release of IL-6 by MSCs (51). In summary,

HSCs undergo transient division in response to stress conditions

such as inflammation to give rise to myeloid cells to compensate for

cellular loss. At the same time, these HSCs further secrete pro-

inflammatory cytokines such as IL-6, which will activate themselves

in a paracrine or autocrine manner to mediate the expansion of

HSCs in the bone marrow (52, 53).
Role of inflammation in
hematological malignancies

Inflammation in the bone marrow has been reported to

contribute to the development of hematological malignancies

(54). Myeloid malignancies like AML, myeloproliferative

neoplasms (MPN), myelodysplastic syndromes (MDS) are

thought to represent a clonal disease of HSCs (55). Point

mutations and mosaic chromosomal alterations increase the risk

of lymphoid malignancies like chronic lymphocytic leukemia

(CLL), small lymphocytic lymphoma (SLL), and diffuse large B-

cell lymphoma (DLBCL) (56).

These malignant clones are called leukemia stem cells (LSCs) or

leukemia initiating cells (LICs). LSCs were initially characterized in

AML patients. The surface immunophenotype for LSCs is usually

CD34+ CD38– CD90– along with interleukin-3 receptor (IL-3R),

and CD117 positivity. These LSCs have also been identified in CML
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and ALL cells that carry the BCR-ABL fusion gene (54). The LSCs

share surface phenotypic markers with HSCs during the evolution

of leukemia. This further leads to the production of both the

clonogenic leukemic progenitors and the non-clonogenic blast

cells that eventually leads to full-blown leukemogenesis (57). Like

HSCs, LSCs also exhibit self-renewal, quiescence, and multipotency

properties but also uncontrolled proliferation (57, 58). This

subpopulation of leukemia cells has properties of HSCs and,

along with loss of differentiation and apoptosis, leads to cancer

development. These stem cell-like features make it challenging to

target LSCs and render LSCs resistant to conventional

chemotherapy, thereby leading to the relapse of the disease (59).

HSCs, when mutated, can be the source of the generation of

LSCs. HSCs usually have a finite lifespan. However, the self-

renewing HSCs, when mutated, sustain for a long time, allowing

genetic damage and malignant transformation of HSCs to LSCs

(60). AML arises from multiple genetic mutations that lead to

increased proliferation, survival, and impaired differentiation of

hematopoietic progenitor cells (61). The most recurrent mutations

in AML occur in genes such as FLT3, NPM1, CEBPA, IDH1/IDH2,

DNMT3A, and RUNX1 (62). For example, internal tandem

duplications in the FLT3 gene (FLT3-ITD) and mutations in the

nucleophosmin (NPM1) gene are detected in approximately 30%

and 50% of AML cases, respectively (63). Other common mutations

include those in the DNA methyltransferase 3A (DNMT3A) gene,

present in 20-30% of cases (64). The order in which these mutations

are acquired can influence leukemia development. A frequent

sequence is an initial DNMT3A mutation, followed by an NPM1

mutation and then FLT3-ITD mutation (60). DNMT3A mutations

showed higher levels of pre-leukemic stem cells that are resistant to

chemotherapy and thus further lead to leukemia development.

Injection of DNMT3A mutant pre-leukemic HSCs in NSG mice

demonstrated a competitive repopulation advantage over non-

mutated HSCs (60). Like HSCs, the maintenance of LSCs also

relies on their tumor microenvironment, termed the LSC niche. The

chemokine CXCL12 binds to its receptor, CXCR4 and plays a

prominent role in the homing of HSCs and LSCs in the bone

marrow by mediating adherence of AML cells to stromal cells,

leading to proliferation and resistance from chemotherapeutic

drugs. It has been known that CXCR4 is highly expressed in

AML and ALL patients and results in poor prognosis (65–67).

Transforming growth factor b (TGF-b) acts as a critical regulator of
quiescent G0 state in the AML and CML cells, thereby maintaining

LSCs (68). Besides soluble factors, LSCs also interact with niche cells

via cell-cell interactions. For example, CD44, a transmembrane

glycoprotein, mediates the adhesion of LSCs to the niche and

transduces intracellular signals involved in proliferation and

differentiation. CD44 targeting led to the loss of migration of

human and murine LSCs to the niche, leading to the eradication

of LSCs (68–71).

Inflammation can trigger oncogenesis either by cell extrinsic or

intrinsic mechanisms. The extrinsic mechanism is driven by

external factors, including inflammatory conditions and micro-

environmental factors, where a constant inflammatory state

contributes to tumor initiation and progression. For instance,

patients with inflammatory bowel disease have shown increased
Frontiers in Oncology 04
susceptibility to lymphomas, leukemias, and hepatocarcinoma.

However, the cell-intrinsic pathway involves genetic alterations

affecting oncogenes, tumor suppressors, and genome stability

genes, which activate inflammatory pathways (such as the NFkB
pathway), thereby generating an inflammatory microenvironment

in tumors (72) (Figure 2).

In both malignant and inflammatory cells, NFkB is activated

downstream to the TLR-MyD88 pathway (sensing microbes or

tissue damage) or the inflammatory cytokines, including TNF and

IL-1b (Figure 3). It has been known that NFkB is one of the primary

inflammatory pathways associated with myeloid and lymphoid

malignancies (73, 74). Alternatively, NFkB activation can result

from genetic alterations (amplification, mutations, or deletions) in

cancer cells. NFkB enhances the expression of antiapoptotic genes

like BCL2, CLIP, and cIAP and increases the survival of tumor

cells (75).

Inflammatory mediators like S100A8/A9 or inflammatory

cytokines such as TNF-b, IL-1b, IL-6 and IFN-g, chemokines like

CCL2 and CXCL8 are seen to be upregulated in malignancies like

myelodysplastic syndrome (76). These molecules contribute to

carcinogenesis via the NFkB pathway and STAT3 signaling

pathway. MSCs are a population of stem cells that are important

in maintaining bone marrow microenvironment. MSCs also have

immunoregulatory functions and maintain the immune BM

microenvironment by saving the HSCs from stress stimuli. The

dysregulated development of MSCs has been shown to lead to MDS

induction and further AML development (77). The NFkB pathway

is also upregulated in MSCs of patients with MDS. Along with

NFkB, STAT3 has also been associated with cancer-related

inflammation. NFkB is activated in two ways: a) IKK activity

dependent (pro-inflammatory stimulus-dependent) and b)

constitutive activity, which is proinflammatory stimulus-

independent (73). STAT3 is a transcriptional factor which

maintains constitutive expression of NFkB by acetylation of RelA.

STAT3 also has a feedback inhibition on IKK activity. B16 mouse

melanoma tumor cells and DU145 prostate cancer cells, showed

high STAT3 activity by increasing phosphorylation of RelA protein

in the presence of TNF-a. B16 melanoma cells showed a reduction

in RelA phosphorylation and, thus, in NFkB activity after STAT3

knockdown (73, 78). Tumor cells have high expression of VEGF,

IL-10, and IL-6; these tumor cells also highly express STAT3. High

expression of STAT3 is shown to inhibit DC maturation, which in

turn leads to immature DC accumulation and subsequent

immunosuppression, leading to tumor cell escape. Stat3 deletion

in HSCs improved DC maturation and function which induced

antitumor activity in mice. Targeting STAT3 in cancer cell lines and

in-vivo studies has also reduced tumor growth (79, 80).

STAT proteins are also involved in hematopoietic growth factor

signal transduction. Signaling molecules activate different STATs:

thrombopoietin (TPO) activates STAT3, whereas granulocyte-

macrophage (GM)–CSF, TPO, and IL-3 activate STAT5. It is

known that STAT1, 3 and 5 have all been overexpressed in acute

and chronic leukemia (81).

A study conducted on Tet2-deficient mice showed increased IL-

6 production in response to microbial infection, resulting in

preleukemic myeloproliferation, signifying the critical role of
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inflammation in the progression of leukemia (82). A study using the

MLL-AF9-induced AML mouse model showed that the leukemia

cells expressed factors like TNF and CXCL12. These led to the

remodeling of endosteal vessels, generating a niche that supports
Frontiers in Oncology 05
the overall proliferation of malignant hematopoietic clones- LSCs

and a decrease in the number of normal HSCs (83).

Taken together, these studies implied the need to focus on a

better understanding of the mechanisms of crosstalk between
FIGURE 2

Chronic inflammation leads to leukemogenesis by various mechanisms.
FIGURE 3

Mechanism of regulation of the NFkB pathway.
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inflammation and its effect on interactions of HSCs with their niche

during normal hematopoiesis and emergency myelopoiesis which

may subsequently lead to the development of leukemias (Table 1).
Inflammation in myeloid malignancies

Myeloid malignancies result from genetic and epigenetic

alterations in the myeloid progenitor cells involved in self-renewal

and differentiation. Epigenetic modifications and changes in the

microenvironment are known to be significant causes of these

diseases. There are different types of myeloid malignancies,

namely AML, Chronic Myeloid Leukemia (CML), MPNs,

myelodysplastic syndrome (MDS) and chronic myelomonocytic

leukemia (CMML).

AML is the most diverse hematological malignancy frequently

seen inadults (94).The leukemicblasts producedbyabnormalmyeloid

stem cells accumulate in the bonemarrow, peripheral blood and other

tissues, which reduces the population of normal blood cells and

increases the risk of secondary infections (95, 96). Myeloproliferative

neoplasmsare causedby thedysfunctionofmultipotenthematopoietic

stem cells and clonal myeloproliferation. In addition, genetic

rearrangements like BCR-ABL and ETV6-RUNX1 and mutations in

the tyrosine kinases like JAK kinases, Abelson (Abl) kinase, activated

cdc42 (ACK) Kinases lead to abnormal proliferation (97, 98). Chronic

Myeloid leukemia (CML) is usually associated with the BCR-ABL

fusion gene (9;22 translocations), also known as the Philadelphia

(Ph) chromosome.

Recent studies showed that alterations in the inactive HSCs and

reduced interaction with BM niches could lead to their leukemic

transformation and myeloid leukemia development (68, 99).
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Many signaling pathways are involved in the regulation and

development of normal HSCs. Proteins associated with Wnt

signaling pathways help in maintaining the stemness of HSCs by

regulating their quiescence and self-renewal properties (100). The

regulation of HSCs' proliferation, self-renewal, and differentiation

depend on various intermediates like cell cycle regulators, cyclin-

dependent kinase inhibitors (CKIs), D-cyclins, p18/INK4, PTEN

and many other transcription factors like HoxB4 and HoxA9 (101–

103). Extrinsic regulatory pathways like Notch, TGF, Sonic

Hedgehog, Smad, and Wnt also regulate HSCs' proliferation and

self-renewal (103).

JunB is an essential protein responsible for regulating the

proliferation and differentiation of long-term HSCs via TGF-b
and Notch-Signaling pathways (101) and plays a vital role in

maintaining HSCs. Its inactivation by epigenetic modifications

has also been reported with the development of myeloid

malignancies (104). The niche osteoblasts in CML secrete IL-1b
and TNF-a pro-inflammatory cytokines, further enhancing

myeloid cell proliferation and, thus, disease progression (30).

The STAT proteins are shown to be essential for myeloid

differentiation. Chronic myeloid leukemia, commonly with BCR-

ABL translocation, showed continuous expression of STAT3 and

STAT5, leading to enhanced expression of BCL-XL, which is an

anti-apoptotic BCL2 family protein (81, 105). Erythropoietin is also

known to elicit phosphorylation and activate STAT5, which further

helps in HSC differentiation (81, 106, 107). STAT5 inhibition led to

reduced proliferation of the leukemic cells by enhancing apoptosis

and inducing cell cycle arrest (108).

Tumor-associated macrophages (TAMs) are the resident

macrophages in the tumor microenvironment, which promote

tumorigenesis and angiogenesis, provide an immunosuppressive
TABLE 1 Common targets and inhibitors in clinical trials/approved for targeting hematological and inflammatory disorders.

Targets Approved inhibitors Inflammatory
disorders

Hematological
disorders

References

Bruton
tyrosine kinase

Ibrutinib
(first generation)

Graft-versus-host disease (GvHD),
COVID-19, RS

CLL, MCL, ALL
Marginal zone lymphoma (MZL),
Phase 3: AML Phase 2: DLBCL,

HCL, MM

(84–86)

Acalabrutinib
(second generation)

COVID-19,
wAIHA, RS, RA

Approved for: CLL and R/R MCL Phase
3: DLBCL,

Phase 1: MZL, MM, and AML

(84–86)

Zanubrutinib Immune thrombocytopenic purpura
(ITP), Phase 2: NMOSD, RS,

COVID-19

Approved for: R/R MCL; WM, and R/R
MZL Phase 3: hemophagocytic lymph

histiocytosis, CLL, and DLBCL

(86, 87)

PI3K D CAL-101 Allergic rhinitis B-cell lymphoma (88)

c-Kit,
PDGFRA, PDGFRB,

FLT3,
PKC, CDK1, SYK,

VEGFR-2

Midostaurin Cutaneous Mastocytosis Acute Myeloid Leukemia, (89)

SF3b Complex H3B-8800 Acute Myeloid leukemia (90)

COX-II, VEG-F,
HIF1-a, NFkB,

Cereblon (CRBN)

Pomalidomide Asthma Multiple Myeloma (91–93)
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environment, and contribute to the poor prognosis of the disease

(109). TAMs are functionally compromised. Phagocytosis

inhibition happens due to the overexpression of a transmembrane

protein, CD47, which interacts with the protein, signals regulatory

protein alpha (SIRPa), and leads to inhibition of phagocytosis. This

protein is highly expressed in LSCs, and its inhibition by anti-CD47

antibody led to an increase in phagocytosis by macrophages and

increased the survival rate of myeloid mouse models (110, 111).

The cytokine TRAIL (tumor necrosis factor a-related apoptosis-

inducing ligand) mediates apoptosis by caspase -8 mediated

pathway. TRAIL can bind to four distinct receptors : TRAIL-R1

and TRAIL-R2 (also known as DR4 and DR5) are functional

receptors which contain cytoplasmic death domains and can

transduce cell death signals (112). In contrast, TRAIL-R3 and

TRAIL-R4 (DcR1 and DcR2), are the truncated receptors and can

block TRAIL induced apoptosis (112). It is also known that the

binding of TRAIL with TRAIL-R4 leads to NFkB activation and

further inflammation (113, 114). The expression of TRAIL-R1 and

TRAIL-R2 is reported to be high in AML patients, and there has

been evidence which shows high co-TRAIL-R3 expression linked to

poor overall survival of the patients (111). TRAIL-R3 is a decoy

protein which can be bypassed by targeting TRAIL-R1 and TRAIL-

R2 by antibodies and thus can be used as a treatment for AML

patients (112). Recombinant soluble TRAIL (rsTRAIL) has shown

induction of apoptosis in cancer cell lines (115) including myeloid-

leukemia cell lines (58). In addition, the activator of p53, Nutlin-3,

and TRAIL enhances apoptosis in AML primary cells when wild-

type p53 is present as it enhances apoptosis (115–117).

NFkB is highly expressed in AML patients and LSCs as

compared to HSCs. IKKb is a catalytic subunit of the IKb
complex, which activates the NFkB pathway. IKKb deletion in

the myeloid lineage using a LysM-Cre mouse model reduced tumor

growth as well as proinflammatory cytokines without affecting

apoptosis (118). IKKb has been associated with inflammation and

carcinogenesis as IKKb activates factors like COX-2, MMP-9, MIP-

2, and KC in myeloid cells, which are pro-inflammatory and linked

to tumor development (118, 119).

The pro-survival protein myeloid cell leukemia (MCL-1) is an

anti-apoptotic protein that regulates cell cycle progression and

mitochondrial homeostasis. MCL-1 has been reported to be

overexpressed in multiple myeloid malignancies like multiple

myeloma and acute myeloid leukemia (120). Inflammation can

contribute to overexpression of MCL-1 with inflammatory

cytokines such as IL-6 and IL-8 enhancing MCL-1 transcription

(121). Small molecules like AZD5991 which specifically inhibits

MCL-1 showed a significant reduction in tumor growth in an OCI-

AML3 mouse xenograft model. Further reduction in tumor growth

was observed when the drug was administered with Venetoclax, a

Bcl-2 inhibitor. Clinical trials for AZD5991 were also approved

(120). Other MCL-1 inhibitors like AMG 176 (Amgen) S64315

(MIK66) are also under clinical trial for AML (120). Indisulam is a

sulfonamide, targets several components of the cell cycle. It is

known to target the G1 phase of the cell cycle and causes a

blockade in the G1/S transition through the inhibition of the

activation of both CDK2 and cyclin E (122). A phase 2 trial for

Indisulam along with Idarubicin and Cytarabine was conducted
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which showed improved prognosis and increased survival rate in

AML and high-risk MDS patients (123). E7820, another

sulfonamide, is in phase II clinical trials for solid cancers (124). It

acts as an inhibitor of Integrin a2 (ITGA2), which plays a key role

in methotrexate-induced epithelial-mesenchymal transition (EMT)

in alveolar epithelial cells (125). E7820 also selectively targets RNA

splicing factor RBM39 for proteasomal degradation via DCAF15-

E3-ubiquitin ligase. This action of E7820 has been observed to

induce rapid loss of RBM39, accumulation of splicing errors, and

growth inhibition in a DCAF15-dependent manner (125, 126).

Interestingly, DCAF15 is found to be more highly expressed in

Acute Myeloid Leukemia (AML) patient samples compared to

normal hematopoietic progenitors. Therefore, the effects of E7820

in hematological malignancies (such as AML) are also being

investigated (127).Targeting the inflammatory pathways that lead

to MCL-1 overexpression may provide an alternative approach to

inhibiting this anti-apoptotic protein in myeloid malignancies.

The phase I trials using anti-PD1 or anti-CTLA4 (ipilimumab)

drugs as a monotherapy failed in both AML and MDS (128–130).

Nivolumab, an immune checkpoint inhibitor in combination with

azacitidine, a DNA methyltransferase inhibitor is under phase II

trial (NCT02397720) for Refractory/Relapsed (R/R) and newly

diagnosed AML patients (131).

Chimeric Antigen Receptor -T (CAR-T) cells against ligands

which are expressed only on malignant cells is a new approach

towards eliminating cancer. Overexpression of NKG2D ligands is

seen in solid as well as hematological malignancies. However, the

expression of NKG2D is seen to be absent/low in healthy tissues.

CAR-T cells with a single infusion of human NKG2D were used in

the phase I trial of AML, MDS and multiple myeloma patients

which showed limited expansion and persistence of CAR-T

cells (132).

It is known that BCR-ABL kinase leads to upregulation of

activation-induced cytidine deaminase (AID) that leads to

increased genetic instability. AID expression has been associated

with blast crisis progression in CML and increases leukemogenesis

in BCR-ABL+ B-ALL (133). It has been recently investigated that

inflammation contributes enhanced expression AID through NFkB
pathway and further increases malignancy in BCR-ABL+ B-ALL

(134). BCR-ABL tyrosine kinase inhibitors like imatinib mesylate

was the first drug approved for CML. Nilotinib (second generation

inhibitor) and ponatinib (third generation inhibitor) are effective

against BCR-ABL mutations like T315I, Y253H, and F317L (135–

137). Omacetaxine is an inhibitor of protein translation which has

been approved for CML therapy. It hinders the process of protein

translation by blocking the initial elongation phase of protein

synthesis. It interacts with the ribosomal A-site and impedes the

precise arrangement of the side chains of amino acids in incoming

aminoacyl-tRNAs. This drug degrades BCR-ABL proteins by

inhibiting heat shock protein 70 in a dose dependent manner in

imatinib resistant K562 cells (138). Many clinical trials with a

combination of such therapies are being carried out in CML and

AML patients (135).

RNA-binding proteins (RBPs) play a pivotal role in co and post

transcriptional modifications. These RBPs are responsible for

genetic alterations and diseases including cancers. TCGA data
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shows around 484 RNA-binding proteins which have been

associated with myeloid malignancies . Out of these ,

approximately 50 percent are dysregulated in AML. There have

been evidences which show dysregulation of RBPs associated with

splicing in AML and hence is a potential therapeutic target. The

clinical trials for H3B-8800 which targets SF3b splicing complex is

one of the studies supporting development of therapeutic agents for

myeloid malignancies (90, 127).
Role of inflammation in
lymphoid malignancies

ALL is a groupofmalignancies of immatureBorT cells that occurs

predominantly in children. B-ALL constitutes 80-85%, while T-ALL

accounts for 15% of pediatric to 25% of adult ALL cases (139).
B-ALL

B-cell acute lymphoblastic Leukemia is characterized by

uncontrolled production of hematopoietic B-precursor cells. The

chromosomal translocations that give rise to fusion proteins with

oncogenic function and alteration in the role of B-lymphoid

transcription factors such as Ikaros, E2A, EBF1 and PAX5 are

known to be the causes of B-ALL. Pre-B-ALL cells have been shown

to produce high levels of TNFa and IL-6, representing the

inflammatory microenvironment's role in this disorder (140). The

pro-inflammatory factors IL-1a, IL-1b, and TNFa were highly

overproduced in supernatants derived from mononuclear cells of

B-ALL patients when compared to their standard counterparts.

Cytokines such as G-CSF, GM-CSF, IFNa, IL-12 and IL-7 were

substantially elevated in B-ALL patients mediated by the activation

of NFkB and STAT3 pathways (141). CCL2 and IL-8, chemokines

that suppress normal hematopoiesis, are increased in the BM

microenvironment and tend to promote the capacity of BM

stromal cells to support the adhesion of ALL cells, indicating that

elevated levels of CCL2 and IL8 could indirectly confer survival

advantage to ALL cells (142).

Treatment of primary B-ALL patient samples with TRAIL

(Apo2 ligand), an anti-cancer cytokine, showed modest apoptotic

activity which was heterogeneous (143). However, TRAIL treatment

of pre-B-ALL leukemia xenografts induced apoptosis in LICs and

LSCs (144).

TRAIL-R1 monoclonal antibody (Mapatumumab) is in phase-

II clinical trials for relapsed or refractory Non-Hodgkin's

Lymphoma (NHL) as monotherapy and for multiple myeloma as

combination therapy with Bortezomib. Dulanermin is recombinant

TRAIL which triggers apoptosis via activation of DR4 and DR5 and

is in phase III clinical trial for B-NHL patients who have progressed

following rituximab therapy. Circularly permuted TRAIL (CPT)

based combination therapy with Thalidomide is in phase III trials

for R/R MM (145).

Furthermore, in B-ALL patients, increased peripheral levels of

CXCL12 and high expression of CXCR4 on leukemic pre-B cells

contribute to their proliferation, survival and homing to the BM
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microenvironment, which is mediated by STAT5, Rac-1 GTPase

and a unique p38MAPK signaling pathway (67, 146–148). In

childhood ALL, it is found that overexpression of the chemokine

receptor CXCR4 on malignant acute leukemia cells is associated

with extramedullary organ infiltration (149). In-vivo imaging

studies of fluorescently labelled leukemic cells identified that

homing of these cells to the bone marrow is dependent on the

interaction of SDF-1 and its receptor CXCR4 (150). AMD3100

blocks CXCL12 binding and signaling through CXCR4 and is in

phase I clinical trial for ALL (Table 2).

Mutation in IL7R on pre-B-cells is known to cause B-cell

oncogenesis. In addition, several shreds of evidence indicate that

the IL-7/IL-7R axis may promote lymphoid-related leukemogenesis

and modulate leukemic cell responses to some antineoplastic

therapies (151–154).

The ETV6-RUNX1 (TEL-AML1) fusion gene that results from t

(12, 21) (p12; q21) translocation is the most frequent genetic

aberration reported in childhood ALL and known to have a

putative prenatal first lesion (155, 156). ETV6-RUNX1 fusion

protein binds to a principal TGF-b signaling target, Smad3, and

blocks the ability of TGF-b to suppress the proliferation of pre-pro-

B cells, which leads to leukemogenesis (157). Activation of STAT3

in ETV6-RUNX1 positive ALL via RAC1 is responsible for the

survival, proliferation, and self-renewal of leukemic cells by

upregulating MYC gene (158).

Translocations in the mixed lineage leukemia (MLL) gene

account for >50 fusions that may participate in transforming BM

cells through the regulation of HOX genes. MLL translocations are

predominantly seen in infant B-ALL (<1 year of age) and 15% of

adult ALL patients (159–161). LAMP5 (a member of the lysosome-

associated membrane protein (LAMP) family) is known to regulate

type 1 interferon (IFN-1) and pro-inflammatory signaling

downstream of TLR9 activation (162). In mixed lineage leukemia-

rearranged (MLL-r) leukemia, downregulation of LAMP5 led to

inhibition of NFkB signaling and increased activation of type-1

interferon signaling downstream of Toll-like receptor/interleukin 1

receptor activation in-vivo and in-vitro (163).

The expression of the BCR/ ABL1 fusion gene due to

translocation t (9, 22) (q34; q11) causes 5% of pediatric and 25%

of adult ALL cases (164). STAT5, the regulator of immune function

is responsible for leukemic cell proliferation and survival, and its

deletion results in cell cycle arrest followed by apoptosis of BCR-

ABL1 positive malignant B cells (165). Patients with JAK1/2

mutations and patients with the BCR-ABL1 fusion have both

been found to share similar gene expression profiles and are

associated with a poor prognosis (166). IL-7R causes activation of

STAT5 by activating JAK1 and JAK2; mutation in IL-Ra identified

in 2-3% of B-ALL cases cause constitutive activation of JAK-STAT

signaling. In addition, all B-ALL cases with JAK2 mutations

overexpress CRLF2 (type I cytokine receptor subunit, also known

as thymic stromal lymphopoietin receptor) (167, 168). CRLF2

directly interacts with the tyrosine kinase JAK2 and helps

promote the proliferation of normal and leukemic B cells. E2A-

PBX1, another fusion protein commonly seen in B-ALL expression

of the WNT-16 gene, which ultimately promotes the aberrant

proliferation and survival of B-lineage cells (169).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1347402
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Saluja et al. 10.3389/fonc.2024.1347402
T-ALL

T-cell acute lymphoblastic leukemia is an aggressive blood

cancer that comprises 10–15% of pediatric and ~25% of adult

ALL cases, develops from the neoplastic transformation of T-cell

precursors and their infiltration into BM and peripheral blood

(PB) (170, 171). Aberrant Notch1 signaling plays a pivotal role

in T-ALL leukemogenesis (170, 171). CNS infiltration risk is

high in T-ALL patients and contributes to poor prognosis. A study

on T-ALL patients and cell lines revealed that oncogenic Notch-1-

induced chemokine CCR7 expression induced CNS infiltration and

directional metastasis (172).

The role of IL-7 in the expansion and acceleration of leukemia

progression has been revealed by engrafting T-ALL cell lines and

primary T-ALL samples in immunocompromised mouse models
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after IL7 KO. It was shown that the IL-7/IL-7R axis causes

activation of the PI3K/PKB/AKT signaling pathway resulting in

downregulation of p27kip1 CDK inhibitors and upregulation of

Bcl-2, promoting cell cycle progression and viability of T-ALL cells

(173–175). Venetoclax (ABT-199) that targets higher BCL-2

expression is in phase-I clinical trials as monotherapy for R/R

malignancies including T-ALL (NCT03236857) and in

combination with Low-Intensity Chemotherapy and Venetoclax

in phase I/II for R/R B or T-ALL (NCT03808610). Oligonucleotide

microarray technology and pathway analysis in a study confirmed

the pivotal role of IL-7 and CXCL12 in B and T-ALL (176).

Activating mutations in the interleukin 7 receptor alpha chain

(IL7R), Janus kinases, JAK1 or JAK3, or the Signal transducer

and activator of transcription 5B (STAT5B) cause constitutive

activation of JAK-STAT signaling observed in one-third of T-ALL
TABLE 2 Clinical trials investigating therapies for hematological malignancies based on targets involved in inflammation.

Therapeutic agent Target Tumor type Clinicaltrials.gov
ID

Phase

Plerixafor (AMD3100) Blocks CXCL-12 binding to and
signaling through CXCR4

R/R AML, R/R ALL, secondary AML/
MDS, AML, ALL

NCT01319864 Phase I

BL-8040 in Combination with Nelarabine Targeting CXCR4 signaling R/R T-ALL/LBL NCT02763384 Phase I

Ruxolitinib JAK1/JAK2 inhibitor R/R ETP-ALL in combination
with chemotherapy

NCT03613428 Phase
I/II

Buparlisib (BMK120) PI3Ki R/R acute leukemia
Hematological malignancies

NCT01396499
NCT01833169

Phase I
Phase II

Ibrutinib in combination with venetoclax
and obinutuzumab

BTK signaling R/R CLL NCT03701282
NCT03737981

Phase
III

Phase
III

Ibrutinib in combination with fludarabine
and umbralisib

BTK Signaling R/R CLL
mantle cell lymphoma

NCT02268
NCT02514083

Phase II
Phase II

Ibrutinib in combination with
pembrolizumab and fludarabine

BTK Signaling R/R CLL NCT03204188 Phase II

Brontictuzumab (OMP-52M51) Targets NOTCH-1 R/R lymphoid malignancies NCT01703572 Phase I

LY3039478 Oral notch signaling inhibitor T-ALL/T-LBL
in combination with dexamethasone

NCT02518113 Phase
I/II

Everolimus (rapamycin, RAD001) mTOR inhibitor pediatric ALL with chemotherapy NCT01523977 Phase I

Temsirolimus (CCI-799) mTOR inhibitor relapsed ALL or NHL NCT01403415 Phase I

Venetoclax (ABT-199) targets BCL2 Naive AML with chemotherapy NCT02203773 Phase Ib

R/R ALL with chemotherapy NCT03808610 Phase
I/II

Glasdegib
(PF-04449913)

oral inhibitor of the hedgehog pathway AML or high risk MDS
with chemotherapy

NCT01546038 Phase
Ib/II

Quizartinib oral FLT3-inhibitor R/R AML NCT02039726 Phase
III

AG-120
(Ivosidenib)

AG-221 (Enasidenib)

IDH1 inhibitor
IDH2 inhibitor

R/R AML or R/R MDS
FDA approved for AML

R/R AML with an IDH2 mutation.

NCT02074839
NCT01915498

Phase I
Phase
I/II

Idelalisib
(CAL-101)

PI3Kd inhibitor R/R ALL NCT03742323 Phase
I/II

Dactolisib (NVP-BEZ235) Dual PI3K/mTOR inhibitors R/R acute leukemia NCT01756118 Phase I
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patients (177–179).There are several ongoing clinical trials targeting

the JAK/STAT pathway in T cell malignancies, which include

NCT03613428, a phase I/II study combining ruxolitinib with the

combination of vincristine, prednisone, and asparaginase in

relapsed and refractory T-ALL (180). In T-ALL, soluble r-TRAIL

failed to mediate apoptosis due to its low surface expression of death

receptors DR4/DR5 in primary samples and cell lines (181).

PTEN-deficiency together with NRTK2 overexpression in T-

ALL, caused activation of JAK/STAT3 and PI3K pathways, leading

to aggressive disease, poor prognosis, and chemoresistance. The

combined inhibition of phosphoinositide 3-kinase and STAT3

significantly suppressed the proliferation of PTEN-mutant T-ALL

in culture and mouse xenografts (182). Also, array comparative

genomic hybridization and sequence analysis from 44 pediatric

DNA samples confirmed mutations in PI3K, PTEN or AKT ~48%

T-ALL cases (183). PI3K, mTOR and PI3K/mTOR dual inhibitors

including Buparlisib, Temsirolimus and Dactolisib are in clinical

trials (Table 2).

CXCL12-binding receptor, commonly known as CXCR7 (CXC

chemokine receptor 7), is highly expressed in T-ALL patient

samples and cell lines and is responsible for T-ALL cell migration

in response to CXCL12 induction (184). HTLV1-Tax (human T-

cell leukemia virus, type-1 induced Tax) protein mediates HTLV1

viral-induced tumorigenesis in T-ALL by activating NFkB signaling

(185). In addition, it was found that in tax-transformed cell line PX-

1 is a T-ALL cell line which is transformed by the HTLV1-Tax

protein. Inhibition of RelA (NFkB p65) using anti-sense

oligonucleotides retarded the tumor growth of PX1 xenografts,

suggest the importance of NFkB in HTLV1 associated

tumors (186).
CLL

B-cell chronic lymphocytic leukemia (CLL) is characterized by

aberrant accretion of mature clonal CD5+ B lymphocytes in the

blood, bone marrow and lymphoid tissues. These differentiated B

cells display characteristic immunophenotypes expressing CD23,

CD19 and low surface membrane immunoglobulin levels. CLL is of

two subtypes: unmutated-CLL which arises from a naive B cell that

has encountered antigen but with insufficient stimulus to form a

germinal center (GC), and IGHV mutated-CLL (M–CLL) which

arises from a memory cell that, following antigen encounter, has

undergone somatic hypermutation (187).

Pro-inflammatory cytokines and chemokines like IFN-g,
interleukin 6 (IL-6), IL-10, IL-8, and TNF-a are found to be

significantly high in untreated CLL patients (188–190). IL-4

receptor levels are constitutively high in CLL cells (191), which

stimulates the JAK/STAT pathway that protects CLL cells from

chemotherapy-induced apoptosis (192). The serum of CLL patients

was found to have high amounts of TNF superfamily member BAFF

(B-cell activation factor of the TNF family). It is known to rescue B-

CLL cells from apoptosis (193). In normal B-Cells, the binding of

antigen causes signalosome activation by kinases that lead to the

regulated activation of downstream NFkB, PI3K/AKT and MAP

kinase pathways, which are necessary for B-cell proliferation and
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survival (194). In contrast, in CLL, stimulation of the BCR induces

expansion of the malignant clone (187, 195). In CLL, NFkB is

constitutively stimulated by various extrinsic and intrinsic stimuli,

and NFkB is the critical regulator for survival and differentiation in

B-cells. Antigens from the microenvironment and intra-BCR self-

antigens trigger BCR signaling, leading to the recruitment of

tyrosine kinases that phosphorylate the immunoreceptor tyrosine-

based activation motifs (ITAMs) of Ig-a/Ig-b (196). This induces

activation of Bruton's tyrosine kinase (BTK), phosphoinositide 3-

kinase (PI3K), and Ras- dependent extracellular signal-regulated

kinase (ERK) (197), which ultimately leads to the upregulation of

NFkB which promotes CLL-B cell survival (198).

BCR signaling in CLL is heterogeneous. CLL cells from some

patients do not respond to antigen engagement when IgM is used for

BCR stimulation, whereas cells from other patients retain their

signaling capacity (199). Unlike normal B cells that undergo

apoptosis, unless they differentiate into plasma or memory cells, CLL

cells represent constitutive BCR activation, which causes activation of

NFkB and NFkB-regulated genes (200), induction of pro-survival

signals, and production of pro-inflammatory cytokines.

CLL cells require stimulus from the microenvironment for their

survival. Macrophage migration inhibitory factor (MIF), a pro-

inflammatory cytokine, is overexpressed and supports tumor growth

in CLL patients (201) by stimulating signaling pathways, such as

MAPK, NFkB, and AKT, on binding to receptors CD74 and

CXCR2/CXCR4 (202–204). In B-cells, activation of the AKT and

NFkB pathways viaMIF leads to the production of IL-8, leading to the

up-regulation of BCL-2, which provides apoptotic resistance to blasts

(205, 206). CLL disease is known for its clinical and prognostic

heterogeneity, which is found to be associated with BCR encoding

genes and RNA binding protein-zeta-associated protein of 70 kDa

(ZAP70) (187, 195). Patients with BCR encoded by unmutated

immunoglobulin variable heavy-chain genes (IGHV) (206, 207)

along with ZAP70 expression (207–209) represent aggressive disease

phenotype as compared to normal B cells or most CLL cases with

mutated IgVH that lacksZAP70 expression. ZAP-70 induction inCLL

B cells causes activation of specific BCR-signalingmolecules, including

SYK, BLNK, ERK, JNK, PLCg, and AKT kinases (210, 211), indicating

ZAP-70 promotes the growth and survival of the tumor cells by

stimulating BCR signaling. It is found that ZAP70 contributes to the

more aggressive clinical behavior in CLL by enhancing BCR-mediated

signaling through the NFkB pathway (212).

There are many drugs which target tyrosine kinases like

Ibrutinib, acalabrutinib and Zanubrutinib which irreversibly

inhibit Bruton’s Tyrosine kinase (BTK) by binding to the cysteine

residue in its active site. BTK is a kinase that is involved in multiple

signaling pathways and plays a role in B-cell and myeloid cell

progression and survival and therefore becomes a therapeutic target

for hematological malignancies. Ibrutinib was approved in a

randomized clinical trial CLL patients including R/R CLL

patients. In the phase 3 trials ibrutinib was administered in

combination with obinutuzumab (anti-CD20 monoclonal

antibody) which increased overall survival rate of CLL patients

(213–215). Many clinical trials have taken place in using a triple

combination (Ibrutinib, obinutuzumab and venetoclax) to treat high-

riskCLL andR/RCLL (216–218). The cells from ibrutinib treated CLL
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patients showed increased expansion of CD-19 targeted CAR-T Cells

(CTL019) and had also reduced the expression of PD-1 on T cells and

CD200 onB cells (219). Randomized clinical trials are also takingplace

in CLL and SLL patients to check the efficacy of CAR-T cells targeting

CD19 (autologous CART-19 cells) (NCT01747486).

Acalabrutinib has also been used in the treatment of CLL and

SLL patients. It was approved as a monotherapy in 2019 even after

limited efficacy (220). Phase III clinical trials are undergoing with

triple combination (Acalabrutinib, obinutuzumab and venetoclax)

in CLL and SLL patients (NCT03836261). It has been reported that

long -term administration of acalabrutinib leads to ventricular

arrhythmias and sudden deaths whereas the combined therapy

decreases these incidences (221).
Role of RNA-binding proteins
in inflammation

The effective activation and resolution of immune responses

rely on the production and posttranscriptional regulation of

mRNAs encoding inflammatory effector proteins. The association

of RNA-binding proteins (RBPs) with mRNAs is essential in

regulating their splicing, maturation, stability, and translation. In

addition, several RBPs are reported to have a role in the modulation

of the inflammatory response by controlling the expression of these

inflammatory mRNAs and their decay.

RBPs mediate the regulation of inflammatory cytokine mRNAs

like TNF-a, IL-10, and IL-6 by binding to their AU-rich elements

near 3’-UTR and regulating mRNA stability, translation, and

mRNA decay, thereby playing a role in inflammation-induced

cancer development and progression (Figure 4).
ZFP36

Cytokine mRNAs such as TNF-a have shorter half-lives and

undergo decay through RBPs mediated regulation of AU-rich
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elements (ARE) (222). The ZFP36 family of RBPs consists of

three family members namely TTP, ZFNB6L1 and ZFNB6L2.

Tristetraprolin (TTP) encoded by the ZFP36 gene is a well-

characterized member of the TTP family of RBPs, with its role

specifically involved in the regulation of the immune system. These

RBPs bind to the ARE in the 3’-UTR of target mRNAs and regulate

the mRNA half-lives and decay (223, 224). The ZFP36 family plays

a significant role in attenuating inflammatory responses by

inhibiting the production of cytokines such as TNF-a, IL-6 and

IL-10 in macrophages (225).

TTP is considered amajormRNAdestabilizingprotein involved in

the regulation of immune cells. TTP inhibits mRNA translation and

mediates decayby recruitment ofmRNAdestabilizingproteins suchas

CCR4-NOT deadenylation and decapping complexes to the TTP-

bound target mRNAs. TTP functions to resolve inflammation by

controlling the mRNA translation and decay of pro-inflammatory

cytokines mRNAs such as TNF-a and NFkB- pathway-related

signaling molecules like TNF, CSCL2, and CXCL3. Conversely, it

also induces inflammation by binding to mRNAs of inflammatory

inhibitors like IER3 and DUSP1, thereby mediating accurate

regulation of LPS-induced inflammatory response and resolution of

inflammation (226, 227).

ZFNB6L1 and ZFNB6L2 proteins act similarly to TTP and

attenuate the expression of their target mRNAs. ZFP36L1 and

ZFP36L2 play a crucial role in the development of B-lymphocytes

by regulating quiescence. Quiescence is crucial for facilitating

variable-diversity-joining (VDJ) recombination in developing B-

cells and the ZFP36L1 and ZFP36L2 proteins are responsible for

maintaining quiescence before the expression of the precursor B cell

receptor (pre-BCR). ZFP36L1 and ZFP36L2 also restore quiescence

following pre-BCR induced expansion by suppressing the

expression of mRNAs such as Cyclin D3, Cyclin E2 (228, 229).

ZFNB6L1 and ZFNB6L2 regulate T-cell development by

inhibiting the expression of Notch1. Double knockout of

ZFNB6L1 and ZFNB6L2 in mice led to an abnormal increase in

the NOTCH signaling pathway in double negative thymocytes and

led to the development of T-ALL (230).
FIGURE 4

Role of RNA Binding Proteins in hematological malignancies by regulating inflammatory signaling.
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TTP primarily functions as a tumor suppressor gene in MYC-

induced tumors. In a Myc-induced lymphoma model, TTP was

found to be downregulated and restoration of TTP in these tumors

led to the decay of mRNAs of Fst1, a pro-inflammatory cytokine

and CCND1 thereby impairing the development and maintenance

of lymphomas (231).
HuR

Human Antigen R, also known as ELAVL1, is one of the widely

studied RBPs involved in tumorigenesis. HuR and ZFP36 share

many 3’-UTR ARE binding target mRNAs. HuR, like the ZFP36

family of RBPs, binds to ARE in 3’-UTR of target mRNAs.

In contrast to the ZFP36 family, HuR increases the stability of

its target mRNAs (164). HuR binds to pro-inflammatory cytokine

mRNAs like COX-2, IL-2, IL-6, IL-8, IL-17, TNF-a, TGFb and

CXCL8 and increases their stability (232–236). HuR plays an

indirect role in promoting Barrett’s esophagus associated

carcinogenesis which is associated with chronic inflammation

caused due to gastric acid reflux. HuR binds to iNOS mRNA

through ARE elements at the 3’-UTR and stabilizes its mRNA

thereby increasing the expression of iNOS. Inflammation induced

over production of NO at the gastro-esophageal junction (GEJ)

activates Caudal type homeobox (CDX2), a biomarker for

Barrett’disease (237, 238).

Since HuR mainly functions to stabilize the target mRNAs,

increased cytoplasmic expression of HuR has been found to be

associated with various cancers such as oral, gastric, lung, breast,

ovarian and renal cancers (239–244). Studies have shown that HuR

expression clinically correlates with increased tumor size and higher

tumor grade in breast cancer (245). Association between tumor

stage and HuR expression was also seen in uterine cervical

carcinoma along with non-small cell lung carcinoma (246, 247).

Apart from cancers, HuR also regulates B-cell and T-cell

development in the immune system. Conditional knockout of

HuR in mice models revealed that the population of pre-B-cells

was reduced in bone marrow and follicular B-cells in the spleen and

had significantly lower titers of serum immunoglobulins after

knockout of HuR. HuR regulates splicing of mRNAs such as

dihydrolipoamide S-succinyl transferase (DLST), a subunit of the 2-

oxoglutaratedehydrogenase (a-KGDH)complex.DeletionofHuR led

to disruption of mitochondrial metabolism and production of

increased level of reactive oxygen species attributing to B-cell death

(248).Thymocyte specific deletionofHuR inmicemodels showed that

HuR is critical forT-cell development.MicewithdeletionofHuR led to

enlargement of thymus and loss of peripheral T- cells leading to

lymphopenia (249).

HuR also has a role of polarizing macrophages to the M1

phenotype in the presence of LPS which is a systemic

inflammatory stimulus. Interestingly, in a mouse model of LPS

induced colitis and colorectal cancer, activated inflammatory

tumor-activated macrophages from HuR-deficient mice showed

increased expression of RNAs like TNF, TGF-b, IL10, Ccr2 and

Ccl2 . Overexpression of HuR in myeloid cells induced

posttranscriptional silencing of these inflammatory cytokine
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mRNAs, thereby protecting mice from colon cancer development

(177, 178). This demonstrates a heterogenous response of HuR to

bound mRNA targets which may be tissue specific translational

silencing Another myeloid specific HuR overexpression model also

demonstrated a downregulation of TIA-1 and cytokines such as

TNF, IL-1b, and TGFb1 (250).
RNA-binding motif protein 39

This gene is also known as CAPER/RNPC2. It plays an

important role in pre-mRNA splicing and regulates steroid

hormone receptor mediated transcription (251). Its higher

expression is associated with several malignancies such as TNBC,

non-small cell lung cancer, colorectal adenocarcinomas and AML

(252). RBM39 also acts as the activator of NFkB through its

interaction with transcriptional activation domain of v-rel

protein. Deletion of RBM39 has been found to suppress the

oncogenic activity of NFkB in lymphocytes (253), proliferation of

breast cancer cells and abrogates phosphorylation of c-Jun (254). Its

role has been established in multiple myeloma along the HIF1a/
DARS-AS1/RBM39 axis that could be a useful target in multiple

myeloma (255).
IGF2BPs

Insulin-like growth factor binding protein (IGF2BPs) are

oncofetal proteins seen to be upregulated in various cancers,

including different subtypes of B-ALL (256, 257). The IGF2BP

family consists of three proteins that share sequence and functional

homology, namely IGF2BP1, IGF2BP2, and IGF2BP3. These

proteins are overexpressed during embryonic development, and

re-expression is seen during the malignant transformation of cells.

Overexpression of IGF2BP1 is seen in multiple epithelial tumors

such as breast, pancreatic, and colon cancers (256). IGF2BP3

overexpression is also linked to numerous cervical, hepatocellular,

breast and glial tumors (258). IGF2BP3 is overexpressed in the MLL

translocated subtype of B- ALL, and IGF2BP1 is seen to be

overexpressed in the ETV6-RUNX1 subtype of B-ALL (259, 260).

This RBP family is known to influence the cytoplasmic fate of target

mRNAs by regulating the translation, stabilization, location, and

decay. IGF2BPs are also known to recruit mRNA stabilizers like

ELAVL-1 (HuR) proteins (261).

IGF2BPs overexpression is well demonstrated in various

epithelial cancers and leukemia, but the role of IGF2BPs in the

induction of immune response has been recently elucidated.

One of the mechanisms of IGF2BPs mediated tumor

progression is the regulation of tumor-associated inflammation.

IGF2BP3 was found to bind and stabilize genes involved in the pro-

inflammatory JAK/STAT signaling pathway and the ErbB signaling

pathways in RS4;11 and Reh (B-ALL) cell lines. Overexpression of

IGF2BP3 in the mouse bone marrow led to an expansion of

progenitors belonging to all lineages (258, 262).

Similarly, IGF2BP1 targets were also identified in Reh cell line

using RIP-seq and RNA-seq after IGF2BP1 knockout. The TNF-a
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induced NFkB pathway was one of the top targets of IGF2BP1

which was also reflected in the ETV6-RUNX1 positive B-ALL

tumors (263). IGF2BP1 overexpression led to the stabilization of

ubiquitin ligase receptor b-TrCP1 mRNA, which in turn caused

activation of the NFkB pathway through enhanced degradation of

IKBs (264). IGF2BP1 also regulates the glial cells' inflammatory

responses by stabilizing the target mRNAs Gbp11 and Cp (265).

However, in mouse models of melanoma, it was observed that

knockdown of IGF2BP1-3 led to an increase in the expression of

pro-inflammatory interferon signaling genes like IFI44 and OAS1

reiterating the fact that RBP modulation of target mRNA half-lives

is tissue or context specific (264). Similarly, in a colon cancer mouse

model, it was observed that stromal expression of IGF2BP1 was

critical for the inhibition of the growth of colon cancer. IGF2BP1

KO led to a global increase in pro-inflammatory cytokines and

chemokines like IL-6, IL1b and MCP1 (261).

Mechanistically, target mRNA stabilization of IGF2BPs has

been revealed to be dependent on an N-6-methyladenosine

(m6A) RNA modification on mRNAs- IGF2BPs function as

readers of m6A RNA modification present near 3’-UTRs and

promote mRNA stability and translation of target mRNAs (266).

IGF2BP2 functions as a regulator of macrophage phenotype.

IGF2BP2 mediates the switch from M1 to M2 phenotype by

binding to TSC1 and PPARa directly to regulate their expression

in an m6A-dependent manner (267).
Small molecule inhibitors designed for
targeting RNA binding proteins

RBPs are essential for controlling post-transcriptional gene

expression, which is involved in multiple aspects of RNA

metabolism. RBPs play a significant role in enhancing the

translation and stability of mRNAs, which in turn contributes to
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revealed crucial small compounds to specifically target the

interactions between RBPs and RNA. These inhibitors mainly

target the RNA Binding domains of RBPs which are crucial for

RBP-RNA interactions such as the RNA-recognition motif (RRM),

hnRNP K homology (KH), and the zinc-finger domain (268–270).

These molecules serve as valuable tools for the development of

innovative therapies aimed at inhibiting the function of RBPs. The

key inhibitors developed for targeting RBPs demonstrating the

anticancer activity and potent promising therapeutics are

summarized in Table 3.
Human antigen R

MS-444 was characterized as a small molecule by a competitive

binding assay involving HuR and the ARE-RNA complex. This

assay demonstrated that MS-444 inhibits the interaction between

HuR and the AU rich element of the target mRNA (278). This

inhibitor has been extensively studied as a potent inhibitor for

in vitro and in vivo research linked to cancer, specifically in

melanoma, glioma, and pancreatic carcinoma (279–281).

A novel inhibitor against HuR was discovered by confocal nano

scanning screening approach, named H1N. It inhibits the adenosyl

transferase activity at the 3'-terminal of the RRM3 motif in HuR,

therefore blocking its contact with the target mRNA (282).

Studies have revealed that the bioactive flavonoid quercetin targets

the binding of cytokine mRNAs such as TNFa and IL-6 identified

through electrophoretic mobility shift assay (EMSA) (283, 284).

Another compound mitoxantrone was also screened and it

prevented the formation of a stable complex between HuR and

ARE of TNFa mRNA (285). Mesenchymal stem cells-based study

revealed mitoxantrone also led to disruption of complex between

HuR and SOX2 mRNA (286).
TABLE 3 RBPs and their role in inflammation and hematological malignancies.

RBP Function Role
in

Inflammation

Role in
Hematological
Malignancies

Clinical Implications Drugs/Inhibitors References

ZFP36
(TTP)

mRNA
destabilization

Inhibits cytokine
production

(TNF-a, IL-6)

Implicated in
inflammation-induced
cancer development
and progression

Potential tumor suppressor;
Restoration may impair
lymphoma development

None specified (271, 272)

HuR
(ELAVL1)

mRNA
stabilization

Increases stability of
pro-inflammatory
cytokine mRNAs

Associated with various
cancers (e.g., breast,

lung, ovarian)

Cytoplasmic expression
correlates with tumor size

and grade; Potential
therapeutic target

HuR inhibitors (e.g., MS-444,
H1N, Mitoxantrone, CMLD-2,

Quercetin,
dihydrotanshinone-I)

(223, 273)

IGF2BPs
(1–3)

Regulate
mRNA
stability,

translation,
decay

Stabilize pro-
inflammatory genes

in JAK/STAT,
ErbB pathways

Implicated in multiple
cancers (e.g., B-ALL,

breast, colon)

Overexpression linked to
tumor-associated

inflammation; Potential
therapeutic targets

BTYNB,
C20H18BrN5OS,

Compound 7773, JX5, CWI
1-2

(274, 275)

RBM39
(CAPER)

Pre-mRNA
splicing;
NFkB

activation

Regulates steroid
hormone receptor-

mediated
transcription

Associated with multiple
malignancies (e.g.,
TNBC, AML)

Higher expression in various
cancers; Implication in

NFkB activation

E7820 (127, 276, 277)
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Using the same screening approach, DHTS (15, 16-

dihydrotanshinone-I), another inhibitor of HuR was identified to

target interaction with TNFa mRNA and exerted its effect in

nanomolar range (287). Treatment of cells with DHTS exerted

anti-cancer effects through decrease in cell growth and proliferation

along with increase in cytotoxicity as seen in colon cancer cells and

glioma cells (288, 289).

Fluorescence polarization assay was optimized for high

throughput screening of identification of molecules that disrupts

interaction of HuR to AREs of target mRNAs (290). This screening

led to identification of six coumarin derivatives. CMLD-2 was the

most potent HuR-ARE disruptor identified and showed anti tumor

activity in breast, lung, colon and thyroid cancers (291–293).

Suramin an FD1-approved anti-trypanosomal drug, was shown

to competitively bind to HuR to show anti-tumor effect in oral

cancer cells (294). Trichostatin (TSA) and 5-Aza 2’deoxycytidine

(AZA), known inhibitors of histone deacetylation and DNA

methylation have shown to affect the nuclear-cytoplasmic

translocation of HuR in order to modulate the estrogen receptor

(ER) mRNA dependent on HuR leading to reduction of tumor

burden in ER negative breast cancer cell lines (295) (Table 3).
Future perspectives and discussion

Understanding the intricate interplay between inflammation,

hematopoietic stem cells (HSCs), and the development of

hematological malignancies is fundamental for advancing cancer

immunology. This comprehension paves the way for targeted

therapeutic interventions, emphasizing the importance of

unravelling complexities within the tumor microenvironment.

Efforts to modulate inflammatory pathways, especially those

involving NFkB and STAT3, hold promise for therapeutic

advancements. Inhibiting these pathways may disrupt the pro-

survival signals in cancer cells, potentially sensitizing them to

conventional treatments. A strategy aimed at suppressing chronic

inflammation, possibly through anti-inflammatory agents, could be

explored to prevent the initiation and progression of

hematological malignancies.

The advancements in precision medicine and genetic profiling

make it possible to treat cancer in a more personalized manner.

Identifying specific genetic alterations associated with the activation

of inflammatory pathways in individual patients could lead to

targeted therapies. For instance, patients with mutations in NFkB
or STAT3 pathways might benefit from tailored interventions

aimed at restoring normal signaling.

Immunotherapeutic strategies could be designed to harness the

body’s immune system against leukemia stem cells (LSCs).

Targeting surface markers such as CD44, potentially in

combination with other treatments, may provide a selective

approach to enhance the eradication of LSCs. Additionally,

disrupting the leukemia stem cell niche, possibly through

interference with CXCL12/CXCR4 signaling, could be explored to

render LSCs more vulnerable to immune-mediated clearance.

Understanding the dynamics of CD47-SIRPa interactions in the

context of the tumor microenvironment may unveil novel strategies
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to overcome immunosuppression. The TRAIL pathway emerges as

a potential target for inducing apoptosis in myeloid leukemia cells.

Combining TRAIL-based therapies with other targeted agents, such

as AKT inhibitors and p53 activators, may provide synergistic

effects, leading to improved therapeutic outcomes.

Targeting the elevated pro-inflammatory cytokines (IL-1a, IL-
1b, TNFa) in the microenvironment of B-ALL patients could also

be explored as a therapeutic strategy. Modulating the cytokine

milieu may disrupt the inflammatory support for leukemic cells

and potentially enhance the efficacy of standard treatments.

Understanding the role of the tumor microenvironment in

supporting malignant hematopoietic clones emphasizes the

importance of modulating this niche. Innovative therapies could

focus on remodeling the microenvironment to create an

inhospitable terrain for LSCs while promoting the resurgence of

normal HSCs. This might involve the manipulation of signaling

molecules and cellular interactions within the niche.

The complexity of the interactions between inflammation,

HSCs, and leukemia necessitates multidisciplinary collaboration.

Integrating expertise from immunology, genetics, and oncology can

facilitate a more holistic understanding of the disease mechanisms.

Collaborative efforts could lead to the development of innovative

treatment modalities that address both the malignant cells and

their microenvironment.

The identification of specific RBPs, such as IGF2BPs, ZFP36

and HuR, as key players in modulating the inflammatory response

present an opportunity for targeted therapeutic interventions.

Developing drugs that selectively modulate the activity of these

RBPs could offer a precise way to regulate the expression of

inflammatory cytokines, potentially mitigating inflammation-

associated cancer progression.

The role of insulin-like growth factor 2 binding proteins

(IGF2BPs) in the regulation of tumor-associated inflammation has

been elucidated in recent publications. Investigating the mechanistic

aspects of how IGF2BPs influence the tumor microenvironment and

immune response could reveal novel targets and methodologies for

therapeutic intervention. Unravelling the specific pathways through

which IGF2BPs modulate inflammation may offer new strategies for

controlling cancer progression.

Investigating the potential crosstalk between RBPs and immune

checkpoint molecules could provide insights into the regulation of

immune responses in the tumor microenvironment. Understanding

how RBPs influence the expression and function of immune

checkpoint proteins, such as PD-1 and CTLA-4, may reveal

additional layers of complexity in immune modulation within the

context of cancer. Adopting systems biology approaches, including

omics technologies, can help unravel the global impact of RBPs on the

cancer transcriptome.

As research progresses, a deeper understanding of the

heterogeneity in RBP expression across different cancers and

individual patients may emerge. This knowledge could pave the

way for personalized cancer therapies, tailoring treatment strategies

based on the unique RBP profiles of patients, thus optimizing the

efficacy of immunomodulatory interventions.

Translating these discoveries from the laboratory to clinical

settings is crucial. Investigating the potential of RBPs as diagnostic
frontiersin.org

https://doi.org/10.3389/fonc.2024.1347402
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Saluja et al. 10.3389/fonc.2024.1347402
or prognostic biomarkers could aid in stratifying patients based on

their likelihood of developing inflammation-associated cancers.
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