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Vessel density within tumor tissues strongly correlates with tumor proliferation

and serves as a critical marker for tumor grading. Recognition of vessel density by

pathologists is subject to a strong inter-rater bias, thus limiting its prognostic

value. There are many challenges in the task of object detection in pathological

images, including complex image backgrounds, dense distribution of small

targets, and insignificant differences between the features of the target to be

detected and the image background. To address these problems and thus help

physicians quantify blood vessels in pathology images, we propose Pathological

Images-YOLO (PI-YOLO), an enhanced detection network based on YOLOv7. PI-

YOLO incorporates the BiFormer attentionmechanism, enhancing global feature

extraction and accelerating processing for regions with subtle differences.

Additionally, it introduces the CARAFE upsampling module, which optimizes

feature utilization and information retention for small targets. Furthermore, the

GSConv module improves the ELAN module, reducing model parameters and

enhancing inference speed while preserving detection accuracy. Experimental

results show that our proposed PI-YOLO network has higher detection accuracy

compared to Faster-RCNN, SSD, RetinaNet, YOLOv5 network, and the latest

YOLOv7 network, with a mAP value of 87.48%, which is 2.83% higher than the

original model. We also validated the performance of this network on the ICPR

2012 mitotic dataset with an F1 value of 0.8678, outperforming other methods,

demonstrating the advantages of our network in the task of target detection in

complex pathology images.
KEYWORDS
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1 Introduction

The growth of most tumors is highly correlated with new blood

vessels (1). Rapid tumor cell proliferation often results in hypoxia

and malnutrition, prompting the formation of new blood vessels to

fulfill the increased metabolic demands of tumors (2). According to

the tumor angiogenesis switch hypothesis, when tumors grow to a

diameter of 1-2 mm, they frequently trigger the expression of

angiogenesis-related factors, initiating the formation of a new

vascular network that promotes tumor growth and development.

Blocking angiogenesis and tumor growth is an effective approach to

treating tumors, such as colorectal cancer, lung cancer, and breast

cancer (3). Further studies have revealed that quantitative analysis

of blood vessels in tumors can help physicians determine tumor

grade and predict patient prognosis (4). This, in turn, supports the

development of more rational and effective treatment strategies.

Therefore, there is a pressing need for a rapid and precise method to

detect blood vessels within tumors.

In the past, there were three main methods for detecting blood

vessels within tumors. However, none of these methods employed

computer-based automatic detection due to issues such as limitations

in imaging equipment. The first method involves the utilization of

immunohistochemistry technology to selectively label specific

antibodies targeting vascular endothelial cells, such as F8-RA,

CD31, CD34, CD105 (5). Researchers then count the positive cells

per unit area under a microscope. This method is one of the earliest

approaches used for quantitative analysis of tumor vasculature and

currently stands as the gold standard for such analysis (6). However,

it requires manual selection of the area with the highest vessel density

for counting, making it susceptible to subjective influences. The

second method entails the use of target-enhanced ultrasound

imaging of molecular markers that are overexpressed during

angiogenesis (7), enabling indirect quantitative analysis of blood

vessels. This approach has advantages such as low detection costs

and real-time imaging capabilities but is limited by low detection

sensitivity and limited penetration. The third method involves the

targeted introduction of magnetic contrast agents into the tumor

region, followed by high-resolution imaging of blood vessels within

the tumor using MRI technology (8). This method, while capable of

producing detailed images, demands sophisticated equipment and

longer imaging times, thus limiting its clinical applicability.

In recent years, the field of histopathology has achieved

significant advances through electron microscopic imaging,

enabling pathologists to perform high-resolution tumor

vascularization through digitized whole slide images (WSIs) (9). In

addition, rapid advances in artificial intelligence technologies,

particularly deep learning, have provided powerful tools for

automated tissue section analysis, promising to provide more

accurate and consistent results than traditional manual evaluations

and to reduce the workload of pathologists. Artificial intelligence

algorithms have been developed to identify and quantify vascular

features such as density, morphology, and spatial distribution, which

are often challenging for human observers (10). Studies have

demonstrated the feasibility and efficacy of AI for vascular

detection in histological sections of a wide range of malignancies,

helping to improve the accuracy of lymphovascular invasion
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detection, predict lymph node metastasis, and identify new

morphological features with prognostic value (11). However,

implementing AI-based vascular testing in clinical practice still

faces a number of challenges, including the need for larger and

more diverse datasets, and optimizing algorithms for better and faster

testing performance so that testing models can be integrated with

existing pathology workflows (12).

In response to challenges posed by small target proportions,

complex image backgrounds, and subtle feature differences in

pathology images, we propose a YOLOv7-based detection network

for object detection in pathology images (13). Our approach also

prioritizes meeting the speed requirements of clinical applications.

The model fuses the BiFormer (14) attention mechanism, the

lightweight generalized upsampling operator CARAFE (15) and a

new lightweight convolutional technique GSConv (16) into the

YOLOv7 model. The proposed model significantly enhances the

accuracy of blood vessel detection in pathology images and offers

an effective solution for target detection in pathology images.

The contributions of this paper are as follows:

1. This article proposes an improved object detection network

model for pathological images based on YOLOv7. We fused the

BiFormer attention mechanism, the CARAFE upsampling operator,

and GSConv into the YOLOv7 model. This fusion concept

effectively enhances detection accuracy and accelerates the blood

vessel detection process in pathology images, offering an efficient

solution for the task of target detection in pathology images.

2. On the Blood vessel detection dataset, PI-YOLO achieves a

mean Average Precision (mAP) value of 87.48%, which is 2.83%

higher than the original model. On the ICPR2012 Mitosis detection

dataset, the F1 score reaches 0.8678. PI-YOLO outperforms other

methods on both datasets, demonstrating superior detection

accuracy and faster inference speed (17).

3. Extensive comparative and ablation experiments have

provided both quantitative and qualitative verification of this

model’s superiority in vascular detection tasks within pathological

images from various perspectives. The outcomes of this study are

anticipated to be valuable for researchers in the fields of anti-

angiogenic therapy for tumors and tumor prognosis prediction.
2 Related work

At present, classical object detection networks can be broadly

categorized into two groups: anchor-based and anchor-free. The key

distinction lies in the fact that anchor-based methods require the

prior definition of anchor boxes, whereas anchor-free methods do not

necessitate this step. One-stage anchor-based approaches,

exemplified by YOLOv3 (18) and RetinaNet (19), are capable of

directly performing regression and classification tasks for bounding

boxes. These methods produce outputs in the form of regression

parameters (anchor offsets) and category confidences. On the other

hand, the mainstream two-stage anchor-based methods, such as

Faster RCNN (20) and Mask RCNN (21), initially generate

proposals and subsequently conduct regression and classification

tasks for the bounding boxes. Similarly, a variety of anchor-free

techniques have been developed, including CornerNet (22) and FSAF
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https://doi.org/10.3389/fonc.2024.1347123
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2024.1347123
(23). Among these, CornerNet is a classic example of the keypoint

detection network, while FSAF incorporates a feature selection

anchor-free module to achieve anchor-free object detection. While

these conventional networks have delivered promising results in the

context of natural images, their performance will be constrained

when applied to the unique characteristics of pathological images

during the detection process.

Pathological diagnosis, as the gold standard for cancer diagnosis,

provides comprehensive information about tumors. In recent years,

deep learning methods have been widely applied in the detection and

segmentation of micro vessels in pathological images. Traditional

methods rely on immunohistochemistry (IHC) staining and manual

counting, which are not only time-consuming and labor-intensive

but also highly subjective. To address these issues, Yi et al. (24)

developed an automated detection method based on fully

convolutional networks (FCNs). This method leverages deep

learning to achieve end-to-end image training and pixel-level

prediction, significantly improving detection efficiency. However,

limitations such as small dataset sizes and high false-positive rates

remain significant drawbacks. To further enhance detection accuracy

and reliability, Fraz et al. (25) proposed a method for micro vessel

segmentation in H&E-stained histological images. This method

incorporates an uncertainty prediction mechanism that generates

uncertainty maps by introducing random transformations during

testing, highlighting areas where the network’s predictions are

uncertain, thus improving segmentation confidence. Additionally,

they developed a novel Feature Attention-Based Network (FABnet)

(26) for the simultaneous segmentation of micro vessels and nerves.

FABnet combines feature attention modules and uncertainty

prediction mechanisms to focus on salient features and perform

multi-scale feature extraction, achieving more precise segmentation.

Despite significant progress in accuracy and reliability, the

complexity of the network architecture and the need for multiple

random transformations increase computational costs. Furthermore,

the study primarily focuses on oral squamous cell carcinoma datasets,

lacking extensive validation across other cancer types. Additionally,

Generative Adversarial Networks (GANs) have been introduced into

vascular detection. Atzori et al. (27) employed GANs to generate

synthetic ERG-stained images, reducing dependency on IHC

staining. Although GANs have shown impressive results in

improving image quality and accuracy, issues such as variability in

staining quality and limited training dataset sizes persist. All these

methods are based on segmentation approaches, which involve pixel-

level classification to distinguish blood vessel boundaries from the

background. While accuracy has been continuously improving, the

complexity of these models often results in slower processing speeds,

limiting their clinical practicality.
3 Materials and methods

3.1 Datasets

In this paper, two datasets are used for experiments. The

experiments on blood vessel detection in pathology images were
Frontiers in Oncology 03
performed on the blood vessel detection dataset we created, and the

comparison experiments on other detection tasks were performed

on the ICPR 2012 mitosis detection dataset (17).

3.1.1 Blood vessel detection dataset
Blood vessels exist in different tumor tissues. To make the

detection model applicable to various tumor tissues, we collect 36

WSIs from two institutions: TCGA (28) and the Guangzhou

Kingmed Center for Clinical Laboratory. The dataset comprises

twenty WSIs of breast cancer, eight WSIs of lung cancer, and eight

WSIs of colon cancer. Due to the typically large size of WSIs, we

divide them into patches measuring 512 � 512 pixels to facilitate

physician annotation and model training. Next, we use a pre-

trained classification model to screen out patches with blood

vessels. We select a total of 2000 patches containing blood vessels.

These patches are annotated by two experienced pathologists (with

more than five years of experience in pathology), and then reviewed

by expert pathologists (with more than ten years of experience in

pathology) after the annotation is completed.

The annotated dataset contains a total of 2000 images, including

4526 blood vessels. They were divided into training set, validation

set and test set according to the ratio of 7:2:1. The training set

contains 1400 images, including 3445 blood vessels. The validation

set consists of 400 images, which include 681 blood vessels. The test

set comprises the remaining 200 images, containing 400 blood

vessels. All datasets are stored in PNG format. Table 1 shows the

division of the datasets.

3.1.2 ICPR 2012 mitosis detection dataset
The ICPR 2012 mitosis detection dataset was introduced in the

ICPR 2012 competition, making it the first publicly available

mitosis detection dataset. This dataset consists of five H&E-

stained breast cancer biopsy slides. In each slide, a pathologist

selects 10 high-power fields (HPF) at 40x magnification, resulting in

a total of 50 HPFs in the dataset, which collectively contain more

than 300 cells undergoing mitosis. The slides were scanned using

various equipment, including an Aperio XT scanner (A scanner), a

Hamamatsu Nano Zoomer scanner (H scanner), and a 10-band

multispectral microscope. Each HPF’s mitotic cells were annotated

by a pathologist. For our experiments, we focused on data obtained

from the A scanner, which includes 50 RGB images. Out of these, 35

were allocated for training, and the remaining 15 were designated
TABLE 1 The partitioning of the dataset.

Name Proportion Number
of

Pictures

Number
of

Blood
vessels

training set 70% 1400 3445

dataset validation
set

20% 400 681

test set 10% 200 400

total 100% 2000 4526
f
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for testing. Since the image size of 2084 × 2084 pixels isn’t suitable

for direct model training, we subdivided it into patches measuring

521 × 521 pixels, resulting in 243 images that contain a total of 323

mitotic cells. Of these, 195 were used for the training set, and the

remaining 48 were assigned to the test set.
3.2 The proposed PI-YOLO model

Since the background in pathology images typically occupies

the majority of the image area, and the target to be detected is often

small, it is essential to employ a network structure with global

modeling capabilities as the backbone. YOLOv7’s backbone

network consists of convolutional stacks. The feature maps in the

shallow layers of the network have a limited receptive field, allowing

them to capture only local features of the original image.

Conversely, the convolutional layers in the deeper network

possess a larger receptive field but require more complex

computations. BiFormer, a multi-head self-attention mechanism,

provides a broader field of view in the shallow layers of the network,

enabling it to capture global features. Its key idea lies in filtering out

most of the irrelevant key-value pairs at the coarse region level,

retaining only a small portion of the routing region. This

significantly reduces computational demands while maintaining

accuracy. In this paper, we propose a target detection method for

pathological images by incorporating the BiFormer attention

mechanism, CARAFE upsampling module, GSConv module, and

the YOLOv7 network. We have enhanced, optimized, and

reconstructed the method. The overall network framework,

shown in Figure 1, consists of four main components: Input,

Backbone, Neck, and Prediction.
Frontiers in Oncology 04
3.2.1 Input layer
In the input layer, each training sample undergoes an initial

Mosaic data augmentation process. This process involves the

following steps: First, four different images are randomly selected

from the dataset. Each selected image is then individually flipped,

and its color gamut is adjusted. After these adjustments, the images

are randomly cropped. Next, these four augmented images are

combined into a single new image, forming a new training sample.

This Mosaic augmentation technique enriches the background

variations and generalizes the features used for detection.

Furthermore, the locations of the detection targets in these new

composite images are adaptively adjusted according to their original

positions in the selected images. By incorporating diverse

backgrounds, the model’s ability to detect targets in complex

environments is enhanced through training with these

augmented samples.

3.2.2 Backbone
The backbone network is a critical component for feature

extraction in our model. The original YOLOv7 backbone consists

of 50 modules, which include CBS modules, ELAN modules, and

MP1 modules. Specifically, there are four ELAN modules in the

network, as shown in Figure 2. Each ELAN module is composed of

six CBS modules. To enhance the feature extraction capability of the

backbone network, we have introduced the BiFormer attention

mechanism after the last CBS module of the last two ELAN

modules. The BiFormer attention mechanism is characterized by

dynamic sparse attention with a two-layer routing process. Its core

concept involves filtering out the least relevant key-value pairs at the

coarse area level. This process is carried out by constructing and

pruning an area-level directed graph. Subsequently, fine-grained
FIGURE 1

PI-YOLO Network architecture, including Input, Backbone, Neck, and Prediction. C in the Prediction module is the number of categories in
the dataset.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1347123
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2024.1347123
token-to-token attention is applied within the union of the routed

areas. The incorporation of the BiFormer attention mechanism

enables dynamic query-aware sparsity, allowing for more flexible

computational allocation and content awareness. This mechanism

not only preserves dependencies and location information across

different spatial regions but also significantly reduces computational

costs. The workflow of the enhanced backbone network can be

summarized as follows: Initially, input images pass through a series

of CBS modules for basic feature extraction. These features are then

fed into the ELAN modules, where the BiFormer attention

mechanism is applied to enhance the relevant feature maps.

Finally, the refined features proceed to subsequent network layers

for further processing and prediction tasks. This structured

approach ensures that the backbone network effectively captures

and utilizes critical spatial information, ultimately improving the

model’s overall performance in object detection tasks.

3.2.3 Neck and prediction layer
The neck network serves to disperse the multi-scale output

learned from the backbone network into multiple feature mappings,

and then integrates the learned multi-scale information. This is to

enhance the model’s ability to capture diverse information and

improve target detection performance. As shown in Figure 1, the

neck network adopts a PAFPN structure, which combines enhanced

components from FPN (29) and PANet (30) for feature extraction
Frontiers in Oncology 05
and fusion. In place of the original upsampling module, we

introduce a lightweight generalized upsampling operator called

CARAFE within the neck network. This operator expands the

receptive field without significantly increasing computational

demands or introducing excess parameters. It efficiently leverages

semantically relevant content from the feature map for upsampling.

Additionally, we employ the lightweight convolutional block

GSConv to enhance the ELAN module, reducing model

parameters, computational complexity, and size while preserving

rich features. Finally, after the input image undergoes two rounds of

feature extraction via the backbone and neck networks, the feature

information is amalgamated using repconv and transformed into

the final prediction information to generate the model’s

prediction results.
3.3 Attention for PI-YOLO

Due to the intricate backgrounds and a high prevalence of small

objects in pathological images, numerous detection models struggle

to effectively filter out background information. To shift the focus of

the detection model towards the essential information within the

input features while minimizing the influence of background data,

we incorporate a dynamic sparse attention mechanism known as

BiFormer into the backbone network of the model. This BiFormer
B

C

D

EA

FIGURE 2

Structure diagram of the model part of the module. In this diagram, (A) illustrates the combination of different convolution modules, where “k”
represents the convolution kernel size, and “s” signifies the convolution step size. (B) outlines the essential configuration of the MP module, while
(C) provides an overview of the core structure of the ELAN module, (D) presents the layout of the SPPCSPC module, and (E) describes the
architecture of the REP module.
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attention mechanism, as utilized in this study, can be delineated

into two distinct phases.

The first phase initiates with coarse-grained attention,

emphasizing sparsity control, while the second phase performs

fine-grained attention based on the outcomes of the sparse

attention from the first phase. In the initial phase, the image is

partitioned into multiple coarse-grained blocks, upon which self-

attention is applied. This process computes correlations between

every two coarse-grained blocks using Q and K , resulting in a

relational matrix. Subsequently, this matrix is sparsified, retaining

only the top- k elements with the highest values, signifying pairs of

blocks that require further attention. In the subsequent phase,

building upon the sparse coarse-grained matrix from the first

stage, additional fine-grained self-attention is conducted. Each

patch exclusively engages in attention computations with patches

residing within other coarse-grained blocks that are associated with

the coarse-grained block it occupies in the first stage. The

implementation details are as follows:

BiFormer is built using Bi-Level Routing Attention (BRA) as the

basic building block. The implementation details of BRA are as

follows: given a 2D input feature map X ∈ RH*W*C , it is first

divided into S� S non-overlapping regions to obtain Q,K ,V , the

related equation is as in (1):

Q = XrWq,  K = XrWk ,  V = XrWv (1)

where Wq,  Wk,  Wv ∈ Rc*c   are projection weights for the

query, key, value, respectively.

Then the mean of Q and K is calculated to obtain the

corresponding  Qr , Kr ∈ RS2�C , and then the affinity adjacency

matrix Ar ∈ RS2�S2 between regions is obtained using transpose

multiplication, the related equation is as in (2):

Ar = Qr(Kr)T (2)
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Then use the topk operator to keep the k regions with the closest

relationships to obtain the region routing index matrix Ir , the

related equation is as in (3):

Ir = topkIndex(Ar) (3)

After obtaining Ir , fine-grained Token-to-token attention can

be applied, as shown in the Figure 3.

First, collect all the routing regions indexed by all elements in Ir

and collect all their K and V to obtain Kɡ, Vɡ ∈ RS2�kHW
S2

�C , the

related equation is as in (4):

Kɡ = ɡather(K , Ir),  Vɡ = gather(V , Ir) (4)

Then apply Kɡ and Vɡ, which are the gathered key and value

tensor. Next, apply attention to the gathered key-value pairs as

follows (5):

O = Attention(Q,Kɡ,Vɡ) + LCE(V) (5)

Here, a local context enhancement term LCE(V) is introduced,

as described in (31). The function LCE( · ) is parameterized using

deep separable convolution, and set the convolution kernel size to 5.

It follows the design of most vision transformer architectures, which

also use a four-stage pyramid structure, i.e., downsampling by a

factor of 32, as shown in Figure 4.
3.4 CARAFE for PI-YOLO

The up-sampling method adopted by YOLOv7 in the feature

fusion part is nearest neighbor interpolation up-sampling, which

determines the up-sampling kernel only by the spatial location of

pixel points, and does not utilize the semantic information of the

feature map, ignores the possible influence of surrounding feature

points, and the perceptual field is small, and the quality of the image
FIGURE 3

The structure diagram of the BiFormer dynamic attention mechanism.
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after up-sampling is not high. In this paper, the CARAFE

lightweight up-sampling operator with a large perceptual field is

used to improve the neck, which can make good use of the semantic

information of the feature map.

CARAFE is divided into a kernel prediction module and a

content-aware reassembly module. The kernel prediction module is

responsible for generating the up-sampling reassembly kernel,

which predicts the attention weights for each up-sampling

location based on the mapping relationship between the down-

sampled feature map and the up-sampled location. These weights

are crucial for maintaining spatial details and contextual

information during the feature reassembly process. The content-

aware reassembly module focuses on retaining as much spatial

information as possible during the up-sampling process to better

preserve the accuracy of object boundaries. The structure of

CARAFE is shown in Figure 5.
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The overall sampling process of CARAFE is as follows. Firstly,

for the input feature map c   of shape H �W � C, a 1� 1

convolutional layer is used to compress the input channel from C

to Cm in order to reduce the parameter and computational cost of

the model. Next, a reorganization upsampling kernel of shape H �
W � Cm is obtained based on the feature map of shape H �W �
s2 � k2up by using a convolutional layer as a content encoder for

predicting the upsampling kernel, where s is the upsampling

multiplicity and kup is the size of the receptive field region for the

feature recombination process. Then the channel is expanded in the

spatial dimension to obtain the upsampling kernel of shape sH �
sW � k2up, and finally the upsampling kernel is normalized so that

its convolutional kernel weights sum to 1. In the content-aware

reassembly module, for each position in the output feature map, it is

mapped back to the input feature map by taking the region centered

on the kup � kup region centered on it, and perform dot product
FIGURE 5

The overall framework of CARAFE. CARAFE is composed of two key components, kernel prediction module and content-aware reassembly module.
FIGURE 4

Left: The overall architecture of BiFormer. Right: Details of a BiFormer Block.
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with the predicted upsampling kernel at that point to get the output

value. Different channels at the same location share the same

upsampling kernel, and finally the sH � sW � C upsampled

feature map c  
0
is obtained.

The CARAFE upsampling module enhances the ability of the

neck network for image feature extraction and fusion, thus

effectively addressing the challenges posed by the presence of a

large number of backgrounds and densely distributed small targets

in pathology images.
3.5 GSConv for PI-YOLO

Standard Convolution (SConv) operates on all three channels

simultaneously, where the number of convolution kernels and

channels matches the number of output and input channels,

respectively. Consequently, employing an excessive number of

standard convolution kernels results in an accumulation of

parameters. Utilizing SConv for image feature extraction leads to

a proliferation of parameters and feature redundancy, particularly

in deeper layers. The Ghost Conv model module, proposed by Han

K et al. (32), efficiently extracts valuable features while reducing

parameters and computational overhead. It operates in two steps:

initially involving a limited number of convolutional and linear

transformation operations, followed by the integration of feature

maps generated from these two operations, which are then output.

Ghost Conv is predominantly employed in the realm of

lightweighting computer vision models due to its impressive

performance. However, the Ghost Conv module does encounter a

challenge in that it loses a significant amount of channel

information during its second step of operation. To address this

limitation, Li H et al. (16) introduced the GSConv module, as

illustrated in Figure 6. The GSConv module is designed to mitigate

this issue. Its final blending operation effectively disrupts channel

information uniformly, enhances semantic information extraction,

strengthens the fusion of feature data, and ultimately improves the

representation of image features.
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When the network conducts feature fusion at the Neck layer, it

continuously propagates semantic information downward.

However, this propagation can result in the loss of some semantic

information, which may affect the final prediction, especially when

the height and width of the feature map, as well as the number of

channels, undergo continuous compression and expansion. In this

paper, we introduce the GSConv module into the ELAN module of

the network’s neck layer, replacing the standard convolution. This

adjustment not only reduces the model’s parameter count and

computational load but also maximizes the sampling effect. The

structure of the GSConv module is illustrated in Figure 7.

Specifically, the four convolutions preceding the Concat layer

make use of the GSConv module. This modification reduces the

model’s parameter count while ensuring detection accuracy.
4 Experiments and results

4.1 Experimental environment and
hyperparameter settings

All experimental data in this article were measured in the same

environment. The hardware environment adopts Intel (R) Xeon (R)

Gold 5218 @ 2.30GHz CPU, 64GB RAM, and NVIDIA GeForce

RTX TITAN graphics card. The system environment is Linux

version 5.13.0-30 generic. Python version 3.10, PyTorch version

1.13.0, CUDA version 11.7.

In the experimental models presented in this paper, we explored

various hyperparameter configurations and found that the best

results were obtained when using the default hyperparameters of

the original YOLOv7. The relevant parameters used in the

experiments are listed in Table 2. The gradient descent optimizer

employed for updating the convolutional kernel parameters is

Adam, with a momentum parameter of 0.937. During the

training process, the learning rate is updated using a step-wise

method, with a maximum learning rate of 0.001 and a training

batch size of 24. The training duration spans 200 epochs, and it’s
FIGURE 6

The structure of the GSConv module. The “Conv” box consists of three layers: a convolutional-2D layer, a batch normalization-2D layer, and an
activation layer.
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worth noting that all experiments were conducted without pre-

training weights. The entire network model was trained

from scratch.
4.2 Evaluation indicators

In this study, we utilize seven evaluation metrics to assess the

model’s performance:

Precision: This metric represents the ratio of correctly predicted

positive instances (TP) to the total recognized objects and is

calculated as shown in Equation (6). Recall: Recall signifies the

ratio of correctly recognized objects to the total number of objects

and is calculated using Equation (7). F1 Score: The F1 score is the

harmonic mean of Precision and Recall, computed as indicated in

Equation (8). Average Precision (AP): AP is the average of precision

values at different recall points, quantified by the area under the

Precision-Recall (PR) curve. A higher AP value indicates greater

model precision, with the calculation formula shown in Equation

(9). Mean Average Precision (mAP): mAP represents the average

AP across all categories. A higher mAP value signifies a superior

model with increased target recognition accuracy, with the formula

outlined in Equation (10). Frames Per Second (FPS): FPS indicates

the number of images processed per second and serves as an

indicator of detection speed. A higher value implies faster model

inference. Giga Floating-point Operations Per Second (GFLOPS):

GFLOPS quantifies the computational complexity of the model,

reflecting the number of computations required. Additionally, the

term “Params” refers to the total number of trainable parameters in

the model, serving as an indicator of the model’s size and training

requirements.

Precision =
TP

TP + FP
(6)
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Recall =
TP

TP + FN
(7)

F1 = 2� Precision� Recall
Precision + Recall

(8)

AP =
Z 1

0
P(R)dR (9)

mAP =
oN

1

Z 1

0
P(R)dR

N
(10)

TP represents the count of positive samples correctly predicted

by the model, whereas FP   represents the count of negative samples

predicted as positive by the model. FN represents the count of

positive samples that the model incorrectly predicts as negative. In

this context, P represents the class accuracy, R represents the class

recall rate, and N represents the total number of classes. Given that

the dataset contains only one type of blood vessel, N = 1.
4.3 Attention mechanism
compatibility experiment

We chose to incorporate the BiFormer attention mechanism

into our model. To assess its compatibility with the model, we

conducted comparisons with models that lacked a fused attention

mechanism, as well as models that integrated the fused SENet, ECA,

CA, and CBAM attention mechanisms, respectively (33–36). In our

qualitative analysis experiments, we employed a visualization

technique commonly used in deep learning, known as Grad-CAM

(37), to illustrate differences in the regions of interest within the

model after integrating various attention mechanisms. This method
TABLE 2 Experiment-related hyperparameter settings.

Hyperparameter Epoch Batch_size Max_learning_rate Optimizer Momentum Lr decay

Value 200 24 0.001 Adam 0.937 Step
FIGURE 7

The ELAN-GS structure diagram.
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offers insights into the model’s focus on different regions and helps

explain variations in model performance. The importance of

features is depicted using a color scale, with increasing

importance denoted by a transition from blue to red hues.

As illustrated in Figure 8. Heatmap, which displays the heatmaps

generated by different attention mechanisms, we conducted

experiments using images from various sources. When compared

with the visualization results of other attention mechanisms, it

becomes evident that the heatmap produced by the BiFormer

Attention Mechanism exhibits a larger overall coverage area. This

suggests that the model focuses on a broader region of interest at the

target location, resulting in more comprehensive feature extraction

of the targets. This, in turn, facilitates the detection of small targets.

Additionally, the red area in the heatmap is also more extensive,

indicating enhanced extraction of effective target feature

information. The model allocates greater attention to the pertinent

target information. The experimental outcomes reveal that the

integration of the BiFormer attention mechanism compels the

model to prioritize the feature information of the target to be

recognized. It also suppresses the influence of target features that

may be less conspicuous due to the complexity of the background in

pathology images. In comparison with other attention mechanisms,

the BiFormer mechanism exhibits superior performance.

We performed a quantitative analysis of the experiment using

the mAP evaluation criterion. We introduced changes only to the

attention mechanism module, subsequently measuring the mAP

values for each model. This allowed us to compare the mAP values

among different models, assessing the compatibility between

various attention mechanisms and the models. The comparative

experimental data is presented in Table 3. The results indicate that
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the model equipped with the BiFormer attention mechanism

achieved higher detection accuracy compared to the model

without any attention mechanism, as well as models

incorporating the SE, ECA, CA, and CBAM attention

mechanisms. Specifically, the model incorporating the ECA

attention mechanism experienced a 0.28% reduction in detection

accuracy. On the other hand, the models incorporating the SE

attention mechanism, CA attention mechanism, and CBAM

attention mechanism demonstrated improvements in detection

accuracy by 0.56%, 1.02%, and 0.09%, respectively. Notably, the

model’s detection accuracy was enhanced by 1.48% with the

inclusion of the fused BiFormer attention mechanism. These

results indicate that, in comparison with the original YOLOv7

model, our model is better suited for handling pathology images.
4.4 Ablation experiment

This portion of the experiment investigates the impacts of the

three improvement methods on the network model. The plotted

data is presented in Table 4. We conducted eight sets of experiments

with different modules added, and compared them with the original

YOLOv7 model using metrics such as mAP, F1, Params, and FPS.

For clarity and convenience, we have designated the network with

the BiFormer attention module as “YOLOv7+BiFormer”, the

network with the CARAFE upsampling module as “YOLOv7

+CARAFE”, and the network with the GSConv convolution as

“YOLOv7+GSConv”, and so forth.

As shown in Table 4, the incorporation of the BiFormer

attention module, CARAFE upsampling module, and GSConv
FIGURE 8

Heatmaps for various attention mechanisms. “Original” displays the dataset image. “Detection” presents the detection results of Baseline+BiFormer,
while “Baseline” exhibits the heatmap of YOLOv7. “Baseline+XX” showcases the heatmap of YOLOv7 integrated with the XX attention mechanism
(where XX represents SE, ECA, CA, CBAM, and BiFormer).
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convolution into YOLOv7 leads to a slight improvement in the

network’s detection accuracy. Specifically, these improvements are

1.48%, 0.56%, and 0.94% higher than the YOLOv7 model,

respectively. This suggests that the integration of the BiFormer

attention module directs the model’s attention more effectively

toward the feature information of the detection target, enhancing

the quality of feature mapping and significantly improving overall

accuracy. However, it’s worth noting that the BiFormer attention

mechanism increases the model’s complexity and reduces network

inference speed. Additionally, we observed that the model’s

inference speed can be substantially increased to 73.52 FPS after

incorporating the CARAFE upsampling module into the network,

which represents a 13.2% improvement over the original version.

Furthermore, the fusion of the GSConv convolution module results

in a reduction of the model’s parameters to 33.80M, a 7.3% decrease

compared to the original version.

Moreover, when combining these modules in pairs, it becomes

evident from the table that the combination of BiFormer + GSConv

modules exhibits the most substantial improvement in model

accuracy. The combination of CARAFE + GSConv modules

enhances the model’s inference speed to 68.49 FPS. It is

important to note that the introduction of the BiFormer attention

module increases both the number of parameters and the inference

time of the model. Nevertheless, we assert that this combination of
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three modules is well-suited. By leveraging the CARAFE module

and GSConv module for accelerated inference and lightweight

deployment, the incorporation of the BiFormer attention module

yields a qualitative improvement in detection accuracy. In

summary, our approach demonstrates improvements in both

detection accuracy and speed compared to the original model,

marking a significant enhancement.
4.5 Comparative experiments with other
mainstream algorithms

Our proposed PI-YOLO algorithm demonstrates strong feature

extraction capabilities in complex pathological image scenes and

achieves fast detection speeds, making it a high-performing solution

for pathological image object detection. To validate the superiority

of our proposed algorithm in the context of pathological images, we

conducted comparisons with mainstream object detection

algorithms, including Faster RCNN (38), SSD (39), RetinaNet

(19), YOLOv5 (40), and YOLOv7 (13). Utilizing the same

vascular dataset and training methodology, we performed both

qualitative and quantitative analyses to assess the respective

advantages of these algorithm models.

In our experiments, we conducted a qualitative analysis of the

algorithms’ performance by examining the detection result plots of

different models. Figure 9 displays the detection results of Faster-

RCNN, SSD, RetinaNet, YOLOv5, YOLOv7, and PI-YOLO. From

the visual results, it becomes evident that RetinaNet’s detection

performance is superior to that of Faster-RCNN and SSD, and it is

on par with YOLOv5. However, the number of detected targets in

RetinaNet is generally lower than that in YOLOv5, and there are

instances of target misclassifications. The PI-YOLO algorithm

introduced in this paper exhibits better target recognition

capabilities compared to Faster-RCNN, SSD, and RetinaNet. It

also demonstrates fewer misclassifications and identifies a greater

number of small vessels compared to YOLOv5.

To facilitate a comprehensive evaluation of the detection

performance of the PI-YOLO algorithm, we conducted a

comparative analysis between PI-YOLO and the leading detection

algorithm in the field, YOLOv7. Figure 10. presents the detection

results of both YOLOv7 and PI-YOLO on pathological sample

images featuring small blood vessels with unclear edges. These

vessels are highlighted with green bounding boxes. As observed, due

to the indistinct edges of the small vessels, YOLOv7 struggles to

distinguish them from the background, resulting in missed

detections and false negatives. In contrast, PI-YOLO accurately

identifies and delineates these small vessels. This improvement is

attributed to the integration of the BiFormer attention mechanism,

which enhances feature extraction, particularly for small and

inconspicuous targets.

In our experimental assessment, we quantitatively compared

and analyzed each model, employing metrics such as mAP, F1

score, Params, GFLOPS, and FPS. The outcomes of these

comparative measurements are presented in Table 5. The data

indicate that our PI-YOLO algorithm achieves an mAP of

87.48%, surpassing currently mainstream object detection
TABLE 4 The impact of the fusion of different modules of the model on
the metrics.

Methods mAP
(%)

F1(%) Params
(M)

FPS

YOLOv7 84.65 82.45 36.48 64.93

YOLOv7+BiFormer 86.13 83.36 37.01 60.67

YOLOv7+ CARAFE 85.21 82.48 36.72 73.52

YOLOv7+ GSConv 85.59 83.12 33.80 66.89

YOLOv7+ BiFormer
+ CARAFE

84.12 81.69 37.26 64.88

YOLOv7+ BiFormer
+ GSConv

86.48 83.45 34.33 61.35

YOLOv7+ CARAFE
+ GSConv

85.64 81.67 34.45 68.49

YOLOv7+BiFormer+
CARAFE+ GSConv

87.48 85.18 34.90 65.39
TABLE 3 mAP measurements for different attention mechanisms.

Model Attention Input shape mAP(%)

YOLOv7 – 640×640 84.65

YOLOv7 SENet 640×640 85.21

YOLOv7 ECA 640×640 84.37

YOLOv7 CA 640×640 85.67

YOLOv7 CBAM 640×640 84.74

YOLOv7 BiFormer 640×640 86.13
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algorithms. In terms of detection speed, the integration of the

CARAFE up-sampling module and the GSConv module has

effectively reduced the model’s parameter count and increased

computational speed, thereby maintaining commendable real-

time performance. Notably, our enhanced PI-YOLO algorithm

exhibits a significant improvement in accuracy by 18.94% and
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performance by 90.97% compared to the widely used two-stage

object detection algorithm, Faster-RCNN-ResNet. In contrast,

when compared with the commonly adopted single-stage object

detection algorithm YOLOv5, our PI-YOLO algorithm shows a

4.79% increase in mAP, although the detection speed is slightly

reduced by 2.91%. Additionally, compared to the YOLOv7
FIGURE 9

Images displaying the detection results of six models. The first column, “Original,” represents the original images from the dataset. The second
column shows the detection images from Faster-RCNN, the third column from SSD, the fourth column from RetinaNet, the fifth column from
YOLOv5, the sixth column from YOLOv7, and the seventh column from PI-YOLO.
FIGURE 10

The detection effect of YOLOv7 and the detection effect of PI-YOLO.
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algorithm, our improved PI-YOLO algorithm shows an increase of

2.83% in mAP and a modest increase of 0.71% in detection speed,

while the model size has been reduced by 1.58 M.
4.6 Comparative experiments on other
detection tasks in pathological images

To demonstrate the superior performance of the PI-YOLO

algorithm in pathology image detection, we conducted

experiments using the ICPR 2012 mitotic target detection dataset.

The experimental results are presented in Figure 11. We measured

the Precision, Recall, and F1 values of the model and compared

them with the current state-of-the-art mitosis detection methods

using different metrics. The comparison results are summarized in

Table 6. While PI-YOLO falls within the middle range in terms of

Precision, it achieves the highest Recall value among all methods,

leading to the highest F1 score as well. These results indicate that the

PI-YOLO algorithm excels in feature extraction, particularly in the

context of complex pathology images from various sources

and tissues.

In summary, the proposed model achieves the highest detection

accuracy among current mainstream detection algorithms and also

maintains good detection and inference speed. The network
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demonstrates significant advantages in pathology image object

detection tasks.
5 Conclusion

In this paper, we introduce the PI-YOLO target detection model

to achieve automated blood vessel detection in pathology images

using deep learning techniques. Our research addresses the

challenges presented by pathology images, which include a high

proportion of small targets, complex image backgrounds, dense

target distribution, and subtle feature differences between the target

and the background. Our model incorporates the BiFormer

attention mechanism, which effectively reduces information loss

during feature extraction while capturing long-range contextual

dependencies. This not only saves computational resources but also

enhances the overall feature extraction capabilities of the network.

The integration of this attention mechanism into YOLOv7 results in

improved detection accuracy for pathology images. Furthermore, by

replacing the upsampling module and implementing GSConv

convolution, we maintain detection accuracy while reducing

model parameters and enhancing inference speed. These

components, when integrated into YOLOv7, yield the enhanced

PI-YOLO model. This model demonstrates superior performance

in pathology image detection tasks, achieving a remarkable mAP

value of 87.48%. It partially mitigates the challenges posed by

complex backgrounds in pathology images. Moreover, automating

blood vessel detection in pathology images significantly assists

researchers in the study of anti-tumor vascular therapy, offering

substantial medical value.

However, although our method is highly effective in vascular

detection tasks, it currently lacks the capability to differentiate

among various types of blood vessels, such as arterial, venous,

and capillary. This limitation affects its specificity in tumor studies

where such distinctions are crucial. Deploying PI-YOLO in clinical

settings presents several challenges, including the need for high

computational resources, seamless integration into existing

diagnostic workflows without disruption, and robustness against

variability in pathology image data due to differing laboratory
TABLE 5 Performance metric values of mainstream target detection
algorithms on the dataset.

Model mAP
(%)

F1(%) FPS GFLOPS
(G)

params
(M)

Faster-
RCNN-
ResNet

68.54 64.37 34.24 416.52 127.35

SSD 75.23 73.36 107.64 215.37 23.72

RetinaNet 80.34 74.47 44.69 120.43 35.56

YOLOv5 82.69 80.15 67.35 115.32 45.53

YOLOv7 84.65 82.45 64.93 103.23 36.48

PI-YOLO 87.48 85.18 65.39 119.70 34.90
B CA

FIGURE 11

Schematic diagram of mitotic assay results, (A) ground truth; (B) patch of ground truth; (C) test results.
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standards and imaging equipment. To overcome these challenges

and improve the model, our future research will focus on

developing methods to accurately distinguish between different

blood vessel types to enhance clinical relevance in tumor analysis.

We aim to optimize the detection speed of our models for real-time

clinical use and expand our dataset to include a more diverse range

of pathology images, thereby improving the model’s generalizability

and robustness. Additionally, we plan to explore deployment on

embedded devices to provide on-site assistance to medical

professionals, facilitating quicker and more accurate diagnosis

and treatment decisions. These steps will pave the way for the

successful implementation of PI-YOLO in practical medical

applications, ultimately benefiting patient care.
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