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Impact of radiation dose
distribution on nutritional
supplementation needs in head
and neck cancer radiotherapy:
a voxel-based machine
learning approach
Sudharsan Madhavan, Mauricio Gamez, Yolanda I. Garces,
Scott C. Lester, Daniel J. Ma, Daniel W. Mundy,
Michelle A. Neben Wittich, Jing Qian, David M. Routman,
Robert L. Foote and Satomi Shiraishi*

Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
Objectives: To investigate the relationship between nutritional supplementation

and radiation dose to the pharyngeal constrictor muscles and larynx for head and

neck (HN) cancer patients undergoing radiotherapy.

Methods:We retrospectively analyzed radiotherapy (RT) dose for 231 HN cancer

patients, focusing on the pharyngeal constrictors and larynx. We defined

nutritional supplementation as feeding tube utilization or >10% weight loss

from baseline within 90 days after radiotherapy completion. Using deformable

image registration (DIR), we mapped each patient’s anatomical structures to a

reference coordinate system, and corresponding deformations were applied to

dose matrices. Voxel doses were utilized as features for ridge logistic regression

models, optimized through 5-fold cross-validation. Model performance was

assessed with area under the curve of a receiver operating curve (AUC) and F1

score. We built and compared models using 1) pharyngeal constrictor voxels, 2)

larynx voxels, 3) clinical factors and mean regional dose metrics, and 4) clinical

factors and dose-volume histogram metrics. Test set AUCs were compared

among the models, and feature importance was evaluated.

Results: DIR of the pharyngeal constrictors and larynx yielded mean Dice

coefficients of 0.80 and 0.84, respectively. Pharyngeal constrictors voxels and

larynx voxel models had AUC of 0.88 and 0.82, respectively. Voxel-based dose

modeling identified the superior to middle regions of the pharyngeal constrictors

and the superior region of larynx as most predictive of feeding tube use/weight

loss. Univariate analysis found treatment setting, treatment laterality,

chemotherapy, baseline dysphagia, weight, and socioeconomic status predictive

of outcome. An aggregated model using mean doses of pharyngeal constrictors

and larynx subregions had an AUC of 0.87 and the model using conventional DVH

metrics had an AUC of 0.85 with p-value of 0.04. Feature importance calculations

from the regional dose model indicated that mean doses to the superior-middle
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1346797/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1346797/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1346797/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1346797/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1346797/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1346797/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1346797&domain=pdf&date_stamp=2024-02-28
mailto:shiraishi.satomi@mayo.edu
https://doi.org/10.3389/fonc.2024.1346797
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1346797
https://www.frontiersin.org/journals/oncology


Madhavan et al. 10.3389/fonc.2024.1346797

Frontiers in Oncology
pharyngeal constrictor muscles followed bymean dose to the superior larynx were

most predictive of nutritional supplementation.

Conclusions: Machine learning modeling of voxel-level doses enables

identification of subregions within organs that correlate with toxicity. For HN

radiotherapy, doses to the superior-middle pharyngeal constrictors are most

predictive of feeding tube use/weight loss followed by the doses to superior

portion of the larynx.
KEYWORDS

voxel-based analysis, head and neck cancer, outcomes modeling, feeding tube,
explainable machine learning, larynx, pharyngeal constrictor muscles, weight loss
1 Introduction

Swallowing difficulties are a prevalent side effect of radiotherapy

(RT) treatments for head and neck cancers (1–5). RT involves

targeting cancers with a three-dimensional (3D) radiation dose.

This often leads to the incidental irradiation of nearby organs that

play a role in swallowing. In contemporary practices, radiotherapy

treatment plans condense the 3D dose distributions inside

delineated organs into two-dimensional dose-volume histograms

(DVHs). Specific metrics for organs at risk (OARs) and target

volumes are scrutinized to reduce the chance of adverse side effects.

Physicians qualitatively assess the spatial distribution of radiation

doses, focusing on regions that may pose potential toxicities or

affect target coverage. This method has proven effective, with a

number of toxicities linked to DVHmetrics through various normal

tissue complication probability (NTCP) modeling, as evidenced in

QUANTEC and various clinical trials (1, 5–10). For example,

Mavroidis et al. (11), showed that generalized mean dose for

superior pharyngeal constrictors to be most predictive of

dysphagia at 6 months post-RT. Using Lyman Kutcher Burman

(LKB) model which is a popular methodology accounting for

seriality of the OAR (12, 13), their study reported D50 (dose at

which there is 50% chance of complication) of 62.0 Gy, slope

parameter m = 0.1, and dose-volume parameter n = 0.49 with

AUC of 0.74 for superior pharyngeal constrictor muscles,

suggesting moderate sensitivity to subregion damage (14).

However, when relying exclusively on DVHs for analysis,

delineation of the OARs is necessary, and it is presupposed that

every section of an organ has an equal sensitivity to radiation and

contributes identically to the overall risk of toxicity. Additionally,

Samant et al. reported that machine learning (ML) models can often

quantify NTCP better than LKB models, motivating explorations of

ML approaches for toxicity analysis (15).

Furthermore, recent studies have shown that the toxicity

observed can depend on which subregion of a segmented organ

was irradiated (2–4, 16–37). Functionally distinct subregions within

a single OAR contour may not be accounted for in current
02
treatment planning. For example, Jiang et al. used ML to identify

subregions within the parotid and submandibular glands that

correlated with xerostomia (22). Another study by Eisbruch et al.

found the pharyngeal constrictor muscles and glottic/supraglottic

larynx subsites were most dysphagia-related using videofluoroscopy

(38). In clinical practice, it is common for glottic, supraglottic, and

subglottic larynx subregions to be grouped under a single larynx

segmentation. Likewise, the superior, middle, and inferior

pharyngeal constrictor muscles are collectively evaluated as one

entity during treatment planning. In addition to the potential

presence of distinct subregions, there is a growing number of

studies on voxel-based optimization of radiation treatment plans

(39–41). These studies have used voxel-based objectives for

optimization and opens an opportunity to reflect spatial dose

constraints during treatment planning.

Conventionally, investigation of sub-regions of an OAR

required radiomics texture extraction based on images and/or

time-consuming and resource-intensive manual contouring of

each region (42). Manual contouring is also subject to inter-

observer variations and inconsistent implementation of

contouring guidelines (43–45). In this study, we employed a

machine-learning approach to determine the radiation dose’s

voxel-wise correlation with malnutrition, pinpointing distinctive

features in the pharyngeal constrictors and larynx sub-regions

without preliminary contouring. We focused on interpretable

feature importance to analyze the spatial dose dependency within

an organ. This may eventually inform dose sparing of a subregion

during treatment planning to reduce malnutrition risk. While

methodologies akin to ours have been used in head and neck RT

studies focusing on toxicities such as xerostomia and acute

dysphagia (28, 29), to the best of our knowledge, there has not

been an investigation into the 3D dose distribution’s impact on

malnutrition, measured by feeding tube (FT) utilization and weight

loss. Furthermore, predicting the need for a feeding tube early in

radiotherapy can also enhance patient care. Although prophylactic

FT placement is occasionally advised (46), its blanket application

can be unnecessary or harmful. About half of the preemptively
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inserted FTs prove marginally beneficial (47), with complications

such as infections being prevalent (48). Moreover, FT placement

postpones the transition back to regular diets (49), adversely

affecting long-term well-being (18, 50, 51). Therefore, identifying

patients in true need of FT can improve quality of care.
2 Materials and methods

2.1 Cohort selection

After Institutional Review Board approval, we conducted a

retrospective analysis of 352 patients treated for head and neck

cancer at our institution from January 2016 to November 2020, all

of whom had granted consent for their medical records to be used in

research. We accessed our department’s patient outcomes database

(52) and filtered for patients based on International Classification of

Diseases (ICD)-9 and 10 codes (53, 54) specific to cancers in the

salivary glands, oropharynx, oral cavity, nasopharynx, nasal cavity,

sinuses, larynx, and hypopharynx. We excluded patients based on the

following criteria: absence of baseline dysphagia assessment before

radiotherapy (60 patients), FT insertion before RT (34 patients),

radiation doses outside the range of 1.2-2.2 Gy/fraction, discernible

disfigurement of the pharyngeal constrictors and larynx due to

disease or surgery, and prior RT in an area with potential overlap

(27 patients). Ultimately, 231 patients, treated with either photon or

proton radiotherapy with prescription dose in the range of 30-81.6

Gy delivered in 15-68 fractions, were deemed suitable for this study.
2.2 Data collection

Table 1 summarizes the clinical variables studied in our

analysis. We sourced data from our institution’s electronic health

record reporting database, focusing on parameters such as gender,

feeding tube usage, weight, birth date, and the primary address’s 9-

digit zip code. Feeding tube utilization data was gathered by looking

for procedure codes corresponding to the insertion of stomach,

gastrostomy, or jejunostomy tubes. Patients who had a feeding tube

before starting RT were excluded based on the procedure date, as

such utilization is likely attributable to surgery, disease, or both as

opposed to RT. Socioeconomic status was inferred using the Area

Deprivation Index by Kind and Buckingham (55), derived from the

zip code associated with the patient’s primary address. This index,

ranging from 1 to 100, gauges the socioeconomic disadvantage of a

neighborhood, with higher scores denoting greater disadvantage.

We also collected baseline dysphagia grades assessed by the care

team following the Common Terminology Criteria for Adverse

Events (CTCAE v4.03) within ±2 weeks of radiotherapy initiation

(56, 57). Additionally, data on smoking habits, concurrent

chemotherapy, and treatment context (either primary or post-

operative RT) was obtained via chart reviews. Table 1 provides

information on clinical variables and on treatment sites of the

patients included in the study.

All radiotherapy treatments were planned in the Eclipse

treatment planning system (Siemens Healthineers company,
Frontiers in Oncology 03
Erlangen, Germany). Physical radiation doses in proton plans

were scaled by 1.1 (58–60) to account for relative biological effect

compared to photon plans. Photon treatments were generally

planned to use two to four volumetric modulated arcs. Proton

treatments were planned with a pencil beam scanning method

utilizing two to five static fields. From our planning system, we

exported DICOM files corresponding to radiation doses, CT scans,

and structural sets. Of note, the head and neck anatomy of these

data sets were retrospectively segmented consistently by a specially

trained team of physicians and medical dosimetry assistant as part

of a separate project (61). The contouring followed the consensus

guidelines in Brouwer et al. (62).
2.3 Endpoint definition

The endpoint used to characterize malnutrition was feeding

tube (FT) utilization or >10% weight loss from baseline within 90

days after radiotherapy completion. Though FT usage typically

arises when a patient sheds over 10% of their initial weight, some
TABLE 1 List of clinical parameters investigated, and treatment site of
the patient cohort considered in this study.

Clinical variables Value

Baseline dysphagia grade Grades 0-1 208

Grades 2-3 23

Age at RT start Mean 60.85 years

Range [23, 89] years

ADI Mean 45.01

Range [1, 98]

Treatment setting Surgery before RT 146

No surgery before RT 85

Smoker status Smoker 120

Never smoker 111

Gender Male 189

Female 42

Radiation type Photon 131

Proton 100

Concurrent chemotherapy Yes 156

No 75

Treatment site
(% of FT/WL)

Salivary glands 6 (50%)

Oropharynx 155 (54%)

Oral cavity 23 (61%)

Nasopharynx 12 (75%)

Nasal cavity and sinuses 15 (33%)

Larynx 17 (35%)

Hypopharynx 3 (67%)
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clinicians and/or patients opt against it on a case-by-case basis. Our

practice is to only recommend a FT if it is clinically indicated

(typically >10% weight loss from baseline). We do not use FT

prophylactically. Regardless, such patients remain malnourished,

indicating a toxicity affecting their quality of life. We chose to merge

these observations and study them as one endpoint; for the

remainder of the paper, this endpoint will be referred to as FT/

WL for simplicity. The baseline weight was defined as the weight

recorded closest to the RT commencement, ensuring it was within

a ±2-week window of that date.
2.4 Analysis

2.4.1 Overview
As illustrated in Figure 1, this analysis had two different

methodologies after data processing. In the first methodology, 3D

voxel-based dose models were trained to identify regions within the

pharyngeal constrictors and larynx that better differentiated toxicity

endpoints. Because the voxel-based model utilized a large number

of input voxels (22,020 for pharyngeal constrictors and 20,814 for

larynx), it was prone to overfitting. To validate and confirm the

subregion findings, the second methodology investigated models

with reduced features where mean doses from segmented sub-

regions of the pharyngeal constrictor muscles and larynx along with

clinical variables (14 input features). Similarly, another model that

combined DVH metrics used in our clinic with the identical clinical

parameters (13 input features) was studied as a comparison.
Frontiers in Oncology 04
2.4.2 Data preprocessing
All patients’ pharyngeal constrictors and larynx were

deformably registered to a reference patient’s corresponding

organs to align them in the same coordinate system. The

reference patient shown in Figure 2, was chosen based on having

a larynx structure size close to the population average, as well as the

absence of any disfigurement due to prior surgery or disease

involving the pharyngeal constrictors and/or larynx. Deformable

registration was performed using the open-source package, Elastix

(63–65). The planning images of most patients included in the study

had a native resolution of 1.27 x 1.27 mm2 in the axial direction,

with slice thicknesses of either 1 or 2 mm. To maintain uniformity,

all images were interpolated to a resolution of 1.27 mm x 1.27 mm x

1 mm in the coronal, sagittal, and axial directions, respectively. The

DICOM images (66) were then cropped around organ +4 mm using

the open-source packages DicomRTTool and ANTs (67, 68). Rigid,

affine, and deformable transformations were subsequently applied.

The quality of image registrations was evaluated using the Dice

coefficient. For the 3D models, we also augmented the training

dataset by flipping the OAR contours and dose left-right to create

mirrored dose distributions. This is based on the premise that both

the pharyngeal constrictors and larynx are midline structures and

there are no laterality preferences for one versus the other. The

flipped contour and doses were registered to the reference

coordinate system in the same manner as the original data. After

the deformable image registrations, the same deformation was

applied to each patient’s dose matrix to obtain dose within the

reference coordinate system. Dose to each voxel was extracted, and
FIGURE 1

Flow diagram of the analysis.
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each numerical input feature was standardized. This

standardization process involved adjusting each feature such that

it had a mean of zero and a standard deviation of one among the

training set. Standardization ensures that our model’s performance

is not biased by variations in the absolute dose levels, but rather

focuses on the relative differences in dose distribution. All

categorical features were one-hot encoded and expressed in terms

of zeros and ones.

2.4.3 Modeling and statistical analysis
We initially evaluated ridge logistic regression, eXtreme

Gradient Boosting (XGBoost), and Light Gradient Boosting

Machine (LightGBM) algorithms for modeling. Ridge logistic

regression was implemented using the open-source package cuML

(69) and scikit-learn (70), while XGBoost (71) and LightGBM (72)

models were utilized from their respective repositories. We

performed voxel-based analysis using these algorithms with a

subset of cohort, and areas under the curves (AUCs) for receiver

operating curves (ROCs) were compared. The feature importance

maps from XGBoost and lightGBM were sparse and their

performance were comparable, so we opted to utilize ridge

logistic regression for the remainder of the study.

In Methodology 1, voxel doses were the only input features for

the models, with the pharyngeal constrictors and larynx analyzed in

separate models. The data set was randomly split into training and

test sets in an 80-20% ratio, and the same training patients were

used for both pharyngeal constrictors and larynx models. The

hyperparameter was tuned using the Optuna package (73) over

the 5-fold cross-validation, with ROC AUC as the performance

metric. Accuracy and F1 scores evaluated at the threshold of 0.5

were also utilized to compare the general performance of the

models. Full training data was used to perform the final fit with

the optimized hyperparameter to create the model. For the 3D

models, the standardized input features allowed the coefficients
Frontiers in Oncology 05
from the ridge logistic regression to directly signify feature

importance. Specifically, each coefficient from the regression

showcases the change in log odds of the outcome for a unit

increase in its respective feature. These feature importance

coefficients were qualitatively reviewed in a scatter plot for any

sub-regions that differentiated FT/WL better than others. In

addition to ridge logistic regression, other regularized methods

such as LASSO and elastic net were also attempted. However,

these L1-based regularization, promoting sparsity combined with

highly correlated input parameters yielded spatially fragmented and

variable feature importance maps. Therefore, ridge regression was

preferred to retain spatial coherence for subregion identification.

In methodology 2, a univariate logistic regression was first

performed for each clinical and demographic variable fitting to

the binary outcomes of FT/WL, and p-value and odds ratio were

calculated. We first developed a model exclusively incorporating the

non-dosimetric clinical variables listed in Table 2, which served to

establish a baseline for prediction performance. Variables identified

as predictive of FT/WL in the univariate analysis were used for

modeling with the dosimetric variables. In the final models, there

were seven to eight dosimetric variables and six clinical and

demographic variables. The clinical and demographic variables

were common between the DVH model and the regional dose

model: area deprivation index, baseline weight, treatment setting

(primary/post-operative), concurrent chemotherapy (yes/no),

bilateral treatment (yes/no), and baseline dysphagia grade 0 (yes/

no). The dosimetric variables for the DVH metrics model were

mean larynx dose, mean pharyngeal constrictor dose, larynx V50Gy

and V60Gy, and pharyngeal constrictor V50Gy, V55Gy, and

V60Gy, where VxGy represents the percent volume of the organ

covered by x Gy or more. These DVH metrics were chosen because

they are used to evaluate head and neck treatment plans in our

clinic. For the regional dose model, the pharyngeal constrictors

were divided into superior, middle and inferior pharyngeal

constrictors on the reference patient as well as midline and lateral

regions as shown in Figure 3C, grouping the regions based on the

feature importance from the voxel models. Following a similar

grouping, the larynx was divided into supraglottic larynx and

inferior regions as shown in Figure 3F. Mean doses from these

subregions were used as the dosimetric variables for the regional

dose model. Using these input features, models were trained 50

times with the 5-fold cross-validation process with varying random

data splits to confirm that the learned hyperparameters and feature

importances were not heavily dependent on a specific random

partitioning of the dataset. To assess feature importance, we

employed a permutation test (74). We randomized the data of

one input variable at a time and evaluated the resulting drop in

model performance. The magnitude of performance decline, as

measured by the change in ROC AUC from the unaltered data,

indicates the importance of that variable to the model’s predictive

capability. We conducted this permutation process 50 times for

every variable, incorporating 5-fold cross-validation on the training

dataset in each iteration. The average change in the AUC was used

to assess the difference in performance, and the two-tailed

Wilcoxon rank sum test was used to evaluate the statistical

significance of this change. To compare the general performance
FIGURE 2

Pharyngeal constrictor muscles and larynx of the reference patient.
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of the regional dose model and the DVH metrics model, test set

AUCs from the 50 trials were also compared using the two-tailed

Wilcoxon rank sum test.
Frontiers in Oncology 06
3 Results

Of the 231 patients, 64 patients were found to have utilized FT,

and 106 patients lost more than 10% of their baseline weight within

90 days after completing RT. Combining these observations, 122

patients had either FT, WL or both. All registrations in this study

yielded a Dice coefficient of greater than 0.7, with a mean and

standard deviation of 0.80 ± 0.02 for pharyngeal constrictors and

0.84 ± 0.06 for larynx. Figure 4A, B shows the mean and standard

deviation of pharyngeal constrictor dose distributions for the entire

cohort. The average mean pharyngeal constrictor dose was 52.3 ±

11.3 Gy and 31.7 ± 15.2 Gy for those who experienced FT/WL and

those who did not, respectively. Figure 4C, D show the mean and

the standard deviation of larynx dose distributions. Among those

who experienced FT/WL, the average mean larynx dose was 41.6 ±

14.4 Gy while that of patients who did not experience FT/WL was

26.5 ± 18.3 Gy.
3.1 Voxel-based dose model

Figure 3A shows the ROC curves for the 3D pharyngeal

constrictor model. The AUC for the models’ training and test

data were found to be 0.87 and 0.86, respectively, with cross-

validation yielding 0.86 ± 0.02. The accuracy and F1 scores for

the test data were 0.83 and 0.85, respectively. Figure 3B shows the

feature importance from the model, highlighting the middle to

superior pharyngeal constrictors as being more impactful when
TABLE 2 P-values and odds ratios from the univariate analysis of non-
dosimetric variables correlating with FT/WL.

Non-dosimetric variables P-
value

Odds Ratios
[95% CI]

Treatment setting (primary vs post-
operative treatment)

<0.0001 4.62 [2.55 – 8.38]

Bilateral treatment <0.0001 6.72 [3.07
– 14.73]

Concurrent chemotherapy 0.001 2.54 [1.44 – 4.49]

Baseline weight 0.01 1.014
[1.000-1.028]

Area deprivation index 0.02 1.014
[1.002-1.026]

Baseline dysphagia grade = 0 0.03 0.51 [0.28 – 0.92]

Gender 0.16 1.63 [0.83-3.20]

Treatment modality
(photon vs proton)

0.17 0.69 [0.41 – 1.17]

Never smoker 0.34 0.78 [0.46 – 1.30]

Age 0.39 0.99 [0.97-1.01]
P-values and odds ratios from the univariate analysis of nondosimetric variables correlating
with FT/WL. Variables with p-values below 0.05 (bold) showed a statistically significant
correlation with FT/WL placement.
A B

D E F

C

FIGURE 3

Evaluation of 3D models for pharyngeal constrictor and larynx. ROC for pharyngeal constrictor (A) and larynx (D) 3D models. Feature importance
patterns for pharyngeal constrictor (B) and larynx (E). Subregions of pharyngeal constrictor (C) and larynx (F) used for the aggregate models.
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compared to the inferior region. The midline voxels of the superior

and middle pharyngeal constrictors were most important for

determining FT/WL for this cohort. Figure 3D, E illustrates ROC

and the feature importance pattern from the larynx 3D model. The

AUC for the model’s training and test data was 0.80 and 0.82,

respectively, with cross-validation yielding 0.80 ± 0.06. The

accuracy and F1 scores for the test data were both 0.72. The

feature importance consistently highlights the superior part of the

larynx as a critical factor for predicting FT/WL.
3.2 Univariate analysis and aggregated
dosimetric model

The results of the univariate fits to non-dosimetric variables are

shown in Table 2. There were six variables that showed significant

correlation with FT/WL: treatment setting (primary/post-

operative), treatment laterality (bilateral/unilateral), concurrent

chemotherapy (yes/no), baseline dysphagia grade =0, baseline

weight, and ADI. These six non-dosimetric variables were used as

part of the aggregated dosimetric models. Gender, treatment

modality (photon vs proton), smoking status and age did not

show significant correlation with FT/WL. A clinical variables-only

model using the non-dosimetric variables in Table 2 achieved an

AUC of 0.76 ± 0.01 and 0.74 ± 0.06 for training and test set,

respectively. The pharyngeal constrictor and larynx subregions are

illustrated in Figure 3C, F, respectively. Test set ROCs from the
Frontiers in Oncology 07
regional dose and DVH metrics models are shown in Figure 5. The

lines indicate the average of the 50 trials, and the shaded area

indicates the standard deviations. The regional dose model, with a

mean AUC of 0.87 ± 0.05, demonstrated marginally superior

performance compared to the DVH metrics model, which had a

mean AUC of 0.85 ± 0.05 with a p-value of 0.04. The F1 scores for

both models were 0.82 ± 0.04. The incorporation of dosimetric

features in the DVH and regional dose models significantly

improved performance over the clinical variables-only model (p <

0.0001). Table 3 shows the results of a permutation test to evaluate

feature importance. Input features that significantly affected the

performance of the model when shuffled–as assessed by AUC

compared to the actual data–are listed in order of significance.

For the regional dose model, the most important features were

pharyngeal constrictor doses, particularly the superior to middle

region. While dose to the superior part of the larynx significantly

contributed to the performance of the regional dose model, none of

the larynx DVHmetrics showed significant performance gain in the

DVH metrics model.
4 Discussion

This study delves into the relationship between radiation dose

distributions to two organs at risk (OARs) and feeding tube use or

weight loss in head and neck cancer patients receiving radiotherapy.

Employing deformable image registration and ridge logistic
A B

DC

FIGURE 4

(A) and (B) are mean and standard deviation of pharyngeal constrictor doses. (C) and (D) are mean and standard deviations of larynx doses.
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regression, we mapped structures and identified key regions,

particularly the superior part of the pharyngeal constrictors and

the superior part of the larynx, as crucial determinants for FT/WL.

This finding was revealed with 3D voxel-based models and

validated using aggregated dose model with reduced input

features to minimize risk of overfitting.

Our study highlights that dose to the superior pharyngeal

constrictor muscles was most important in predicting FT/WL in

our cohort. While we did not find studies investigating the same

endpoint, our findings are in general agreement with prior clinical

(75) and outcomes studies (43) demonstrating the radiosensitivity

of sub-regions in organs and their role in post-radiation dysphagia
Frontiers in Oncology 08
and aspiration. Feng et al. (76) and Eisbruch et al. (38) also reported

that highest correlations of videofluoroscopy based aspiration and

dysphagia to the superior pharyngeal constrictor in a prospective

study. Petras et al. (77) have evaluated the relationship between dose

to larynx subregions and swallowing toxicities assessed by

aspiration at one year, and Hedstrom et al. (78) considered

dysphagia at 6-months post-treatment. Both studies identified the

epiglottis as a critical subregion, in line with our findings.

Overall, the performance of the DVH metrics and the regional

dose models were similar. This supports our current standard of

care of using DVH for treatment planning. However, we note that

feature importance analysis for the DVH metrics model revealed

that the model performance did not significantly depend on larynx

DVH metrics. On the other hand, the aggregated regional dose

model utilized mean doses from superior-middle pharyngeal

constrictor and supraglottic larynx. This study motivates further

investigation into dose sparing of these subregions. Understanding

the dose distribution effects will facilitate voxel-based optimization,

evaluation and interpretation of treatment plans that have similar

DVH metrics.

The strength of our work includes the number of cohorts,

standardized contouring of the pharyngeal constrictors and the

larynx, as well as inclusion of patients treated with proton therapy.

In contrast to the pharyngeal constrictor and larynx segmentation

created during clinical workflow, contours used in this study were

retrospectively drawn to achieve high consistency and conformance

to the contouring guideline. Consequently, the definition of the

organ was consistent across the entire patient cohort. For future

studies, automatic segmentation using artificial intelligence-driven

algorithms along with quality assurance processes could aid in

generating more consistent anatomical segmentations than those

available from clinical data. However, automatic segmentation

algorithms are typically not trained to segment substructures. As

this study demonstrated, a voxel-based approach allows us to

eliminate the need for exhaustive contouring of each substructure

a priori for the entire cohort, thereby streamlining the

analytical process.
FIGURE 5

Test set ROC for FT/WL prediction using regional dose and dose-
volume histogram (DVH) metrics models. Curves show the average
area under the ROC curve (AUC) over 50 trials, with shading
indicating standard deviation. The regional dose model (mean AUC
0.87 ± 0.05) outperformed the DVH metrics model (0.85 ± 0.05)
with p=0.04.
TABLE 3 Evaluation of feature importance based on a permutation test for the DVH metrics and regional dose models. The table lists input features in
descending order of significance, based on their impact on model performance assessed by ROC AUC. (PC: Pharyngeal constrictor muscles).

Features from DVH metrics model Mean AUC loss Features from regional dose model Mean AUC loss

1 PC: Mean dose -0.021 PC: superior lateral mean dose -0.022

2 PC: V50Gy (%) -0.016 PC: superior midline mean dose -0.020

3 PC: V55Gy (%) -0.012 PC: middle midline mean dose -0.011

4 Baseline weight -0.006 PC: middle lateral mean dose -0.009

5 PC: V65Gy (%) -0.006 Baseline weight -0.004

6 Area Deprivation Index -0.004 Larynx: superior mean dose -0.004

7 Concurrent chemotherapy (yes/no) -0.002 Area Deprivation Index -0.003

8 Treatment setting -0.001 Concurrent chemotherapy (yes/no) -0.002

9 Baseline dysphagia grade = 0 (yes/no) -0.0006 Baseline dysphagia grade = 0 (yes/no) -0.0004
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Limitations of our work include the nature of single-institution

studies and the lack of a treatment planning component to the

study, so that it remains to be seen what amount of dose reduction

to the mid to superior pharyngeal constrictor and supraglottic

larynx could be achieved without compromising treatment

quality. An additional limitation is the lack of controlled study on

treatment modality (proton/photon). The relative biological

effectiveness (RBE) of 1.1 (58–60) for protons used in this study

applies to tumor control outcomes, which may not directly translate

to functional outcomes in normal tissues. Furthermore, our study

included 21 photon patients who received lower prescription doses

of 30 Gy. Since our primary objective was to investigate effects of

various dose distributions, we opted to include those treatments to

increase diversity. However, these choices likely confounded the

analysis with respect to treatment modality. While promising, our

findings warrant validation in diverse cohorts, treatment modality,

treatment planning techniques, and treatment regimens.

Nevertheless, our study highlights the potential of interpretable

voxel-based modeling to elucidate impact of inhomogeneous dose

distributions within an organ.
5 Conclusion

In conclusion, the 3D voxel-based analysis and the aggregated

regional dose analysis highlighted the superior subregion of the

pharyngeal constrictor muscles and the supraglottic larynx as the

most important predictor of FT/WL within 90 days of RT.
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