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Pancreatic cancer is one of the most lethal cancers worldwide, with a 5-year

survival rate of less than 5%, the lowest of all cancer types. Pancreatic ductal

adenocarcinoma (PDAC) is the most common and aggressive pancreatic cancer

and has been classified as a health emergency in the past few decades. The

histopathological diagnosis and prognosis evaluation of PDAC is time-

consuming, laborious, and challenging in current clinical practice conditions.

Pathological artificial intelligence (AI) research has been actively conducted

lately. However, accessing medical data is challenging; the amount of open

pathology data is small, and the absence of open-annotation data drawn by

medical staff makes it difficult to conduct pathology AI research. Here, we

provide easily accessible high-quality annotation data to address the

abovementioned obstacles. Data evaluation is performed by supervised

learning using a deep convolutional neural network structure to segment 11

annotated PDAC histopathological whole slide images (WSIs) drawn by medical

staff directly from an open WSI dataset. We visualized the segmentation results of

the histopathological images with a Dice score of 73% on the WSIs, including

PDAC areas, thus identifying areas important for PDAC diagnosis and

demonstrating high data quality. Additionally, pathologists assisted by AI can

significantly increase their work efficiency. The pathological AI guidelines we

propose are effective in developing histopathological AI for PDAC and are

significant in the clinical field.
KEYWORDS

pancreatic ductal adenocarcinoma, deep convolutional neural network, whole slide
image, histopathology, supervised learning, dice score, high quality
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1 Introduction

Pancreatic cancer is one of the most lethal malignancies, with a

five-year survival rate of approximately 5%–9%, which has

remained virtually unchanged since the 1960s (1, 2). More than

85% of pancreatic cancers are adenocarcinomas (PDACs), which

arise from the pancreatic duct epithelium in the head, body, and tail

of the pancreas (2). The head of the pancreas is the most common

site of PDAC. PDAC is not effectively preventable or screened for

and is associated with 98% of expected lifetime loss and 30% of

disability-adjusted life years (3, 4). In addition, recent studies have

suggested that a molecular subgroup of PDAC characterized by

bone metastases may have an unfavorable outcome, suggesting that

this subgroup of patients may have distinctive prognostic features

and may be potential candidates for specific targeted therapies (5).

Further molecular-level research is needed to explore this, which

could contribute to better PDAC treatments and AI development.

Nevertheless, research funding for PDAC remains markedly lower

than for other cancer types; the European Commission and the

United States Congress designated it as a neglected cancer (3). The

rapid progression and high frequency of pancreatic cancer distant

metastases pose a challenge in pathology, where the misdiagnosis

consequences can be severe (6–8). Multidetector computed

tomography, magnetic resonance imaging, and endoscopic

ultrasound are recommended initial imaging modalities for timely

PDAC diagnosis (9). The gold standard for clinical diagnosis is the

histopathologic imaging assessment by a pathologist (10); however,

during the diagnostic process, pathologists must repeatedly zoom in

and out of the field of view, determine areas critical for diagnosis,

and classify them according to features because of the large slide

sizes. Thus, the manual analysis of pathological slides is extremely

time-consuming and labor-intensive and may miss important

diagnostic information (11). In modern medicine, artificial

intelligence (AI) is emerging as a revolutionary technology that

can help make faster and more accurate decisions in the medical

field. This has led to its application in a wide range of medical fields,

including radiology, pathology, pharmacology, infectious diseases,

and personalized decision-making, and it has shown the potential to

improve current standards of care (12).

Digital pathology has become a rapid and convenient standard

of practice in pathology, as it allows for the management and

analysis of data from digitized specimen slides using high-

resolution digital imaging (13). With the significant advances in

artificial intelligence (AI) algorithms and data management

capabilities, combining digital pathology and AI has emerged as a

front-runner in modern clinical practice (13, 14). The number of

publications on AI for clinical decision-making in oncology has

increased exponentially in recent years (15).

In surgical pathology, AI can be used to evaluate lymph nodes

(LNs) for the presence of metastatic disease by automatically

identifying metastatic cancer cells in whole slide images (WSI),

which can help in the staging of cancer patients and the prediction

of prognosis (16). Other examples include the use of pathology AI

for microbial identification to supplement manual microscopy,

which is a time-consuming process for the efficient identification

of many microbes (17). Digital pathology has shown promising
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results with regard to the digital evaluation of cytological samples,

with the development of portable mobile devices such as

smartphones that allow pathologists to examine both surgical and

cytological samples (18). The development of digital pathology and

AI in various pathology fields has the potential to improve the

quality of healthcare in resource-limited settings, where there is a

shortage of specialized healthcare professionals. Digital pathology

systems can enable remote patient samples to be easily sent to

experts, and AI-based automated analysis can be used. Whole slide

imaging (WSI) is a major innovation in pathology, which digitizes

glass slides to improve pathology workflow, reproducibility,

availability of educational materials, outreach to underserved

populations, and inter-institutional collaboration (19). However,

due to the limited computing resources available currently,

performing image analysis using whole slide images (WSIs) as

input to convolutional neural network (CNN) classification

models (20), which are currently widely used in image-based AI,

remains challenging. Here, we adopted a novel scheme to realize

whole slide analysis while preserving the high resolution and

accuracy of pathological slide analysis. Deep learning approaches

to WSI analysis have major limitations: labeled data for

histopathology images are particularly scarce; WSIs are large;

experienced pathologists must invest significant time and cost to

annotate them using specialized labeling tools; and pathological

images have rich background regions (e.g., vessels or lymphocytes)

that can affect the analysis (21). Here, we provide high-quality data

hand-drawn by Hepatobiliary-pancreatic pathologists in an open-

access manner—so that anyone can easily use it—to address the

abovementioned issues. We applied basic supervised learning (SL),

already open to the public, as a data quality assessment and

application method. SL algorithms rely on a training dataset that

depends on ground truth labels provided by human annotations for

input variables (i.e., features) to predict the corresponding output,

allowing SL models to mimic expert annotators in predicting

features of unknown inputs (22). This study suggests an effective

application method for the quality assessment of open-annotation

data provided by Hepatobiliary-pancreatic pathologists and the

development of pathology AI (Figure 1).
2 Materials and methods

2.1 Data collection

2.1.1 Dataset
The primary data set comprises pathology images of Clinical

Proteomic Tumor Analysis Consortium (CPTAC) patients

collected and publicly released by The Cancer Imaging Archive to

enable researchers to investigate cancer phenotypes that may be

correlated with the corresponding proteomic, genomic, and

clinical data. Pathology images are collected as part of the

CPTAC qualification workflow (23, 24). The data collection

includes hospitals from three institutions (Beaumont Health

System, Royal Oak, MI; Boston Medical Center, Boston, MA; St.

Joseph’s Hospital and Medical Center, Phoenix, AZ) and medical

research institutes from three institutions (International Institute
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for Molecular Oncology, Poznań, Poland; University of Calgary,

Alberta, Canada; Cureline, Inc. team and clinical network, Brisbane,

CA) and includes subjects from the National Cancer Institute’s

CPTAC Pancreatic Adenocarcinoma (CPTAC-PDA) cohort. All

CPTAC cohorts are released as single-cohort data sets or, where

appropriate, are split into discovery and validation. For this study,

we selected 11 high-resolution WSIs of cancerous pancreatic tissue

samples as the dataset. Each sample was collected via surgical

resection and stained with hematoxylin and eosin (H&E) and

stored as high-resolution WSIs (Figure 2A). The inclusion criteria

for patient samples were as follows: organ: pancreas; tumor site:

head, body, tail; disease: PDAC; patient age: 40–80 years old; and

staining type: H&E. WSIs are typically about 100 MB, with a

resolution of about 10,000 × 10,000 pixels, but the size can vary

between WSIs. The data utilization method we present

leverages our provided labeled data to generate tiles to train

segmentation models.

2.1.2 Data annotation
In this study, model training is conducted using an SL

approach. Training, test, and validation sets were prepared to

train and validate the PDAC detection algorithm on labeled

WSIs. All annotations for the annotation dataset were validated

by a common golden standard of at least two double board-certified

cytopathologists & Hepatobiliary-pancreatic pathologists who

agreed on the annotation placement (Figure 3). The WSI

information for all annotation datasets is listed in Table 1. To

generate ground truth SL labels, human encoders hand-drew
Frontiers in Oncology 03
annotations using the open-source pathology and bioimage

analysis software QuPath (v0.1.3.5). For each WSI, the PDAC

regions were annotated by Hepatobiliary-pancreatic pathologists

with a red line (Figure 2B).
2.2 Data preprocessing

2.2.1 WSIs to patch images
In pathology diagnosis, high-resolution images are necessary for

accurate diagnosis. Most WSIs are 10,000 × 10,000 pixels or larger

and are typically stored as SVS files. However, directly using such

high-resolution images in a deep learning model is not feasible due

to the GPUmemory limitations, which prevents implementing WSI

convolutional operations. Therefore, it is necessary to reduce the

images’ size. However, directly downsizing high-resolution images

to low-resolution ones can result in losing important features.

To address this problem, a patch-based approach was adopted,

allowing us to maintain the original resolution while dividing the

image into smaller patches. The patch dataset comprised three

types. First, each image was divided into partially overlapping

patches for the training dataset to enhance the model’s learning

capability. Second, the validation and test datasets used in the

model’s quantitative evaluation did not require overlapping patch

images; each image was divided into non-overlapping patches.

These patch data types required the original and mask images to

be divided into patches in the same manner, which was achieved

using the scripting function provided by QuPath also used for
B C

D

E

A

FIGURE 1

Approaches to pathology research (A) WSI images of PDAC patients without labels. (B) WSI images annotated in PDAC regions. (C) Patch images
with masked annotated PDAC regions. (D) PDAC region predicted by AI model. (E) Pathologists review the areas predicted as PDAC by the AI model
and annotate them.
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annotation. Last, the test dataset used in clinical evaluation required

merging the patch images back into a single large image during the

postprocessing stage when the WSI was divided into patch images.

The PyHIST library was utilized, which outputs the x and y

coordinates of each patch image during the patch division process

(25), allowing tracking of each patch’s spatial information and

reconstructing the original image by aligning the patches based

on their respective coordinates. These patches were saved as PNG

files of 512 × 512 pixels and maintained the highest resolution of the

WSI, which is 20X [0.5 microns per pixel (MPP)], to prevent
Frontiers in Oncology 04
resolution degradation. The MPP value was calculated as shown

in Equation 1.

MPP   =  
1  mm
pixel

(1)

2.2.2 Augmentation
Data augmentation techniques are essential in data

preprocessing to prevent overfitting and improve the AI models’

performance during training. Various data augmentation methods
BA

FIGURE 2

Example pathology slide images of PDAC patients (A) Open H&E-stained WSI image. (B) WSI image after hand-drawn annotation.
FIGURE 3

This study was conducted on a total of 11 Whole Slide Images (WSIs) where two pathologists agreed on a common annotation range for Pancreatic
Ductal Adenocarcinoma (PDAC), also referred to as the gold standard, from each of 6 and 5 WSIs respectively. The annotation for PDAC was carried
out in two steps. In the first step, the two pathologists individually annotated the images. In the second step, the pathologist who annotated in the
first step had their work reviewed by the other pathologist. This second pathologist added any missed PDAC areas to the annotation, thus
completing the annotation process. Yellow region: Annotation by Pathologist 1, Blue region: Annotation by Pathologist 2, Red region: Final
completed annotation.
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are available, and using appropriate augmentation techniques for

each task is essential. For our task, which involved segmentation,

applying the same augmentation techniques to the original and

mask images was crucial as they were matched. Therefore, we

implemented effective image transformations using the

Albumentations library, which provides most of the commonly

used augmentation techniques in deep learning while

simultaneously transforming the original and mask images (26).

We normalized the images for image transformations and then

added noise through ColorJitter. Additionally, we applied various

data augmentation techniques by randomly choosing one of three

methods: HorizontalFlip, RandomRotate, and VerticalFlip. This

approach allowed us to augment the data diversely. By

implementing these image transformations, we created a training

environment for the AI model to effectively learn the features of the

target region, even in extreme conditions.
2.3 AI model architecture

Accurate segmentation of histopathological images is increasingly

recognized as a key challenge in diagnosis and treatment. An

appropriate deep learning model is essential for accurately

segmenting histopathological features with various sizes and

characteristics. Therefore, we adopted the DeepLabV3+ model and

used ResNet18 as its backbone. Additionally, we employed transfer

learning by applying pretrained weights from ImageNet to ResNet18,
Frontiers in Oncology 05
enabling the model to learn the general features of the images.

Subsequently, we trained the model using histopathological images

relevant to the main task and performed fine-tuning for the

histopathological features. ResNet18 is a well-known model for

image feature extraction and effectively overcomes the gradient

vanishing problem when training deep neural networks through

residual connections (27). This characteristic contributes to effectively

extracting histopathological features with various sizes and

complexities. Moreover, in DeepLabV3+, the features extracted from

ResNet18 are utilized using the Atrous Spatial Pyramid Pooling (ASPP)

method. ASPP employs parallel convolution layers with different dilate

rates to capture receptive fields of various sizes (28), allowing accurate

target classification at different scales without losing spatial

information. In particular, for model training using histopathological

images where features of various sizes are important, ASPP can

comprehensively recognize features of various sizes, enabling more

accurate training of the model. Therefore, we adopted DeepLabV3+

with ASPP as the base model and upsampled the features through the

decoder part of DeepLabV3+. This process involved restoring the low-

resolution feature maps to their original input size, thus obtaining the

segmentation results as the final step of the model.
2.4 Data postprocessing

Unlike typical deep learning segmentation tasks, deep learning

on WSIs requires a data preprocessing step to convert WSIs into
TABLE 1 Clinical information and characteristics of patients with pathology slides.

Slide ID Tumor
Topographic
Site

Tumor
Site

THT PTN PTC PN Gender Age

C3L-
00017–22

PDA Pancreas Head
Ductal

adenocarcinoma
20 100 0 Male 60–70

C3L-
00017–23

PDA Pancreas Head
Ductal

adenocarcinoma
20 100 0 Male 60–70

C3L-
00102–21

PDA Pancreas Head
Ductal

adenocarcinoma
20 98 0 Male 40–50

C3L-
00102–22

PDA Pancreas Head
Ductal

adenocarcinoma
10 100 0 Male 40–50

C3L-
01637–21

PDA Pancreas Body
Ductal

adenocarcinoma
20 90 5 Female 70–80

C3L-
00277–21

PDA Pancreas Tail
Ductal

adenocarcinoma
70 90 10 Male 60–70

C3L-
00277–22

PDA Pancreas Tail
Ductal

adenocarcinoma
70 90 0 Male 60–70

C3L-
00277–23

PDA Pancreas Tail
Ductal

adenocarcinoma
70 90 0 Male 60–70

C3L-
01453–22

PDA Pancreas Tail
Ductal

adenocarcinoma
60 90 0 Male 60–70

C3L-
01662–23

PDA Pancreas Head
Ductal

adenocarcinoma
70 100 0 Female 60–70

C3L-
00819–22

PDA Pancreas Head
Ductal

adenocarcinoma
60 100 0 Male 70–80
f

THT, Tumor Histological Type; PTN, Percent Tumor Nuclei; PTC, Percent Total Cellularity; PN, Percent Necrosis.
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patch images. Additionally, during model training, unnecessary

background images need to be removed. As a result, the mask

images predicted from the model are output as patch images

without including background images, similar to the input

images. In typical quantitative AI model evaluation processes, the

generated patch images and the corresponding label patch images

can be compared using evaluation metrics to evaluate the model’s

performance. However, in our study, we conducted quantitative and

qualitative evaluations to assess the effectiveness of AI assistance in

histopathological diagnosis scenarios. Therefore, visualizing the

mask patch images generated by the model to assist pathologists

is essential. It requires a postprocessing step that comprises two

main processes. First, the binary mask patch images obtained from

the model’s predictions are overlayed onto the original image

patches. Second, the overlayed patch images are combined into a

single large-sized image. The 1-channel grayscale mask images are

converted into 3-channel RGB images while using distinctive colors

to make them visually stand out. Then, utilizing the x and y

coordinates, which represent the location information of each

patch obtained during the image segmentation, the mask patch

images are accurately overlayed onto the corresponding positions of

the original WSIs. By merging the patch images into an image of the

same size as the original image, we prevent a decrease in resolution.

The images obtained through the postprocessing step are used for

clinical evaluation.
3 Experiments and results

3.1 Dataset description

The patch dataset comprised three types. For the training

dataset used in model training, each patch image had partial

overlap and was generated by dividing 23,239 images from 8

WSIs. The mask patch images, corresponding to the patch

images, were also created, resulting in 23,239 mask patch images.

The validation and test datasets used in the model’s quantitative

evaluation were generated using the same method as the training

dataset but without overlapping patch images. Therefore, they were

composed of fewer patch images. The validation dataset comprised

630 patch images (with corresponding mask patch images)

generated from 1 WSI, and the test dataset included 1,202 patch

images (with corresponding mask patch images) generated from 2

WSIs. In total, the validation and test datasets were composed of

25,071 patch images (with corresponding mask patch images)

generated from 11 WSIs. The detailed distribution of this dataset

is listed in Table 2.

Additionally, the test dataset used in the model’s qualitative

evaluation was generated from the same WSIs as the test dataset

used in the quantitative evaluation. It comprised 1,214 patch

images, and a data table containing coordinate information for

each patch image was also created for postprocessing purposes. All
Frontiers in Oncology 06
patch datasets comprised 512 × 512-pixel images with the

background removed.
3.2 Training and evaluation metrics

In this study, we conducted experiments using two GPUs,

namely NVIDIA QUADRO RTX 6000 and NVIDIA TITAN

RTX, in parallel, with CUDA 11.6 and cuDNN 8. A total of 48GB

of GPU memory, with each GPU having 24GB, was utilized for the

experiments. The deep learning framework used was PyTorch

1.13.1. During the AI model training process, small batch training

iterations were used with a batch size set to 128, and the total

number of training epochs was set to 50. The training was

configured to terminate early if the validation Dice score did not

improve for 30 consecutive epochs. The training time took about 3

hours. We utilized the Adam optimization algorithm with a

learning rate set to 1e−4 and used the Dice score as an evaluation

metric. Dice score is one of the most common methods for

evaluating image segmentation performance in medical imaging

(29); it measures the similarity between the predicted mask by the

model and the ground truth label mask. The Dice score value was

calculated as shown in Equation 2. Dice loss was employed,

commonly used as a loss function in image segmentation tasks,

was used for the loss function, aiming to train the model to

maximize the Dice score. The Dice loss value was calculated as

shown in Equation 3.

Dice   =  
2  �  Area   of  Overlap

Total   Sum   of   Pixels   in  All  Areas
(2)

Dice   Loss   =   1 −  
2  �  Area   of  Overlap

Total   Sum   of   Pixels   in  All  Areas
(3)
3.3 AI model results

In a quantitative evaluation of the AI model based on

DeepLabV3+, we achieved a specificity of 96.37%, an accuracy of

93.77%, and a Dice score of 73% (Table 3). For qualitative

evaluation, we visualized the predicted segmentation for each

patch image in the test dataset (Figure 4). The AI model has

achieved high performance and demonstrated the ability to

predict and segment the lesion areas (Figure 5A). Compared to
TABLE 2 Dataset used for model training and quantitative evaluation.

WSIs
Image
patches

Mask
patches

Train 8 23,239 23,239

Validation 1 630 630

test 2 1,202 1,202
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the ground truth, it excelled in representing PDAC regions of

various shapes, especially in the main pancreatic and interlobular

ducts. However, the accuracy was lower due to the false positive

rate, as the predicted region recognized an area larger than the

actual PDAC annotation or recognized some non-PDAC areas.

Visualizing the whole image through postprocessing, converting

patch images to WSIs, confirmed the consistency with the

Hepatobiliary-pancreatic pathologist’s annotation (Figure 5B)

level. In addition, our test results were confirmed at low and high
Frontiers in Oncology 07
magnifications (Figure 5). The AI model trained with the annotated

WSIs data we provided displayed high sensitivity to PDAC, the

cancerous area of the pancreas.
3.4 Technical application

3.4.1 Progress assessment
To compare the annotation rates of PDAC regions in WSIs, a

pathologist hand-annotated PDAC regions in two different WSIs

under two experimental conditions. We performed repeated

experiments in which the pathologist annotated two WSI images

in four consecutive cycles, one for each image, in the absence and

presence of AI model assistance. Each cycle lasted 15 min, with a 3-

min break, timed using the iPhone 13 stopwatch. We used an

evaluation metric called the sensitivity to evaluate the area

annotated by the pathologist within a limited time compared to

the ground truth area in each cycle. The sensitivity value is

calculated as shown in Equation 4). When the pathologist

annotated the PDAC regions in WSIs without AI assistance, the

rate of the overall annotation achieved a relatively low sensitivity
TABLE 3 Metrics for the DeepLabV3+ model’s various scores for PDAC
on WSIs.

Metrics Score (%)

DICE 73.20

Specificity 96.37

Accuracy 93.77

Sensitivity 75.22

Precision 73.04
FIGURE 4

Comparison between the AI-predicted segmented patch images in the test dataset and the ground truth.
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average of 44.64% in the final four cycles (Table 4). In contrast,

when the pathologist confirmed and annotated the PDAC regions

identified by the AI model using WSI-level segmentation, the

annotation rate was overwhelmingly higher than without AI

model assistance from the first cycle, and the overall PDAC

annotation rate also achieved a significantly high sensitivity

average of 85.54% (Table 4). As a result, AI assistance helped

achieve a significantly higher annotation rate than the human

without AI assistance. We can also expect the annotation

accuracy to be significantly higher when the human is assisted by

the AI model. We also visualized the images to increase the

understanding of these clinical trial results (Figure 6).
Frontiers in Oncology 08
  Sensitivity   =  
2  �  Area   of  Overlap

Total   Sum   of   Pixels   in  Ground  Truth  Area

(4)
4 Discussion

In this study, we demonstrated the AI potential to aid the

diagnosis and prognostic assessment of PDAC, a deadly cancer

classified as a public health emergency. Although the majority of

PDACs occur in the head of the pancreas, the WSI dataset used in

this study contains WSIs with patterns of various PDAC regions that
BA

FIGURE 5

Human-annotated and AI-predicted PDAC regions. The WSIs of ground truth and AI predictions are displayed at different magnifications, from low
to high, allowing for the inspection of PDAC regions at different scales.
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occur in the body and tail, which are less common than PDACs in the

head (30), to explore PDAC in depth. The results represent a

significant step forward in AI application to the tissue pathological

diagnosis and prognostic assessment of PDAC. The research findings

suggest that AI, especially CNN deep learning models, can be

effectively used to segment and analyze PDAC tissue pathological

WSIs, thereby simplifying and improving the accuracy of PDAC

diagnosis. One key aspect highlighted in the study is the challenge

posed by the limited access to medical data, especially public

pathology data (31). This issue has been a persistent obstacle in

pathology AI research. For this study, two pathologists collaboratively
Frontiers in Oncology 09
annotated PDAC regions in WSIs (Figure 3), and the WSI data used

in the study is publicly available for anyone to use, including high-

quality annotations. This approach increases the amount of high-

quality data available for training AI models and ensures that these

models are trained with reliable and accurate information. SL using a

deep CNN architecture to segment 11 annotated PDAC WSIs

presented promising results. It displayed high Dice scores on the

whole tissue image, including PDAC regions, indicating accurate

segmentation, and identified areas important for PDAC diagnosis

through image visualization. It also showed high specificity and

accuracy with a specificity of 96.37% and an accuracy of 93.77%

through a precise analysis. These observations demonstrate our high-

quality dataset and suggest that AI can play an essential role as an

auxiliary tool to improve the efficiency and accuracy of

histopathological analysis. In addition, when the whole image was

visualized and patch images were converted to WSIs through post-

processing, the performance was not significantly different from the

pathologist’s annotations, but some parts of the small pancreatic

ducts, intercalated ducts, and intralobular ducts showed false

positives. This is an impressive achievement considering the

complexity of pancreatic cancer in interpreting tissue pathological

images, but it is expected that increasing the number of pathologists

and adding training data will minimize false positives while

improving the reliability of the data. Visualization techniques, such
TABLE 4 Clinical trial: Sensitivity for PDAC annotation rate in WSIs of
humans using humans and AI.

Sensitivity (%)
Test1 Test2

AI (O) AI (X) AI (O) AI (X)

1 Cycle 67.26 10.54 80.29 8.16

2 Cycle 81.31 30.97 83.25 23.32

3 Cycle 84.60 35.49 86.07 24.12

4 Cycle 84.65 43.70 86.43 45.59
The bold values are highlighted to emphasize that the Sensitivity performance was
significantly higher with AI assistance than without it as cycles progressed.
FIGURE 6

Clinical experiments were conducted to visualize the PDAC areas predicted by Human and Human+AI Model in WSI after cycle 4. Human and
Human+AI Model drew similar shapes to the correct values, but the Human part made errors in recognizing TIS (carcinoma in situ) as PDAC,
probably due to decreased concentration and increased fatigue.
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as postprocessing techniques that convert patch images back toWSIs,

were crucial in validating model performance against expert

annotations. In some cases, the AI models achieved high

performance, but when visualized and compared with the

pathologist’s annotations, the AI model recognized areas other than

the annotated lesion area. This observation reinforces how essential

visualization tools are in evaluating the interpretability of AI models

in medical imaging tasks. Our study results indicated that SL deep

learning models trained on hand-drawn annotated WSIs displayed

high sensitivity for malignant pancreatic areas (i.e., PDAC areas),

One important aspect of this study was to confirm the significant

improvement in the efficiency of annotation work by pathologists

assisted by AI, as AI provides a user-friendly, intuitive interface that

minimizes complex technical content and allows pathologists to focus

on pathological findings. When pathologists were assisted by the SL

model in annotating PDAC in WSIs, the annotation accuracy of

pathologists increased while the area of PDAC regions did not differ

significantly from the ground truth, and the average annotation

progress rate increased by about 2 times compared to the same

time spent, which indicates that the annotation time was significantly

reduced. Therefore, AI-assisted pathology interpretation of PDAC

can diagnose a large number of clinical specimens quickly and

accurately, and a cohort study on the prognosis of patients after

diagnosis is needed to consider the survival of patients. In addition, if

pathological image data for Acinar Cell Carcinoma and Pancreatic

Neuroendocrine Tumors (PNETs), which are very rare pancreatic

cancers in addition to PDAC, are collected together and used for

pathological AI research, the performance of the model can be

evaluated in a more comprehensive range for pancreatic cancer,

and the applicability of pathological research is expected to increase

significantly. Moreover, previous pathological image AI studies

mainly used classification models, but due to the reduced image

resolution, it is difficult for pathologists to accurately identify the

lesion area predicted by AI, so there are limitations in using AI as an

auxiliary tool for diagnosis in the clinical pathology field. However,

there are few studies that can compensate for this using segmentation,

and in the case of PDAC, which has fewer patient cases than other

diseases, the application of segmentation is limited to patch-level

segmentation rather than whole-slide images, which limits its use

(32). To address these issues, this study provides a clear analysis result

that identifies PDAC regions with high resolution at low and high

magnifications through segmentation in the whole pathological slide

images of PDAC patients, and proves that pathologists in the actual

pathological clinical field are assisted by AI models. It has significant

value in annotation and diagnosis. In addition, it can contribute to the

development of pathology AI for pancreatic cancer by providing

high-quality pathology annotation data for free. We used open tissue

pathology data from six hospitals and medical research institutions to

ensure data diversity. As well as, by continuously uploading public

data with PDAC annotations to the https://github.com/moksu27/

PDAC_pathological_image_segmentation, we can resolve the data

imbalance for data with a small number of cases. Also, with the

increase in data, data diversity can be achieved through external

validation using data from various hospitals, preventing overfitting of

AI models and reducing bias to improve the generalization

performance of AI models and give objectivity. This will increase
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the reliability of AI performance for pathologists who will receive

direct assistance in the clinical setting, and AI will play the role of an

auxiliary tool, or co-pilot, in the pathologist’s diagnostic process.

Direct diagnosis will still be made after review by a pathologist, so

patients will be free from anxiety and prejudice about AI. This is

expected to contribute significantly to cost-effectiveness and

improved patient outcomes. If our annotated data and AI model

manual are used in pathology AI research, AI will be able to assist in

the diagnosis of the WHO classification screening reading and 8th-

edition AJCC pTNM staging (33) defined by the American Joint

Committee on Cancer (AJCC) for PDAC patient slides in clinical

practice, and pathologists will be able to quickly and accurately

diagnose many clinical specimens through digital pathology.

However, several obstacles must be overcome before the results of

this study can be applied to actual clinical practice. First, the need for

data standardization between hospitals. It is difficult to ensure the

compatibility of AI tools because the data format or structure used by

each hospital is different, making it difficult to apply AI tools to the

clinical field. It is necessary to ensure technical compatibility through

standardization of data between hospitals, and systematic integration

between medical institutions is required for this. Second, there is the

problem of increasing the understanding of medical personnel about

AI technology. For medical personnel with a low understanding of AI

technology, the use of AI tools may be difficult. To solve this, it is

important to support additional promotion and education to enable

medical personnel to effectively use AI tools. This will encourage the

use of AI tools in multiple institutions and provide a safer and more

standardized medical environment. Finally, I would like to emphasize

that in order to effectively use AI in pathology interpretation, not only

technical development but also institutional structure and education

system that support it must develop together. This will be the future

research direction of this study, and will play an important role in

further expanding the use of AI in the field of pathology.
5 Conclusion

This study provides essential insights to develop effective AI

solutions for the specific diagnosis of PDAC and significantly

contributes to the pathological AI guidelines, which may have

broader implications, even within oncology. Making high-quality

annotated datasets publicly accessible and applying advanced

machine learning techniques, such as SL, can revolutionize our

approach to annotating and diagnosing complex diseases, like

pancreatic cancer. We also reiterate the importance of public access

to high-quality datasets for AI research while encouraging active

research in pathology AI to develop more sophisticated models with

improved diagnostic capabilities.
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