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Objective: To develop a contrast-enhanced computed tomography (CECT)

based radiomics model using machine learning method and assess its ability of

preoperative prediction for the early recurrence of hepatocellular

carcinoma (HCC).

Methods: A total of 297 patients confirmed with HCC were assigned to the

training dataset and test dataset based on the 8:2 ratio, and the follow-up period

of the patients was from May 2012 to July 2017. The lesion sites were manually

segmented using ITK-SNAP, and the pyradiomics platform was applied to extract

radiomic features. We established the machine learning model to predict the

early recurrence of HCC. The accuracy, AUC, standard deviation, specificity, and

sensitivity were applied to evaluate the model performance.

Results: 1,688 features were extracted from the arterial phase and venous phase

images, respectively. When arterial phase and venous phase images were

employed correlated with clinical factors to train a prediction model, it

achieved the best performance (AUC with 95% CI 0.8300(0.7560-0.9040),

sensitivity 89.45%, specificity 79.07%, accuracy 82.67%, p value 0.0064).

Conclusion: The CECT-based radiomics may be helpful to non-invasively reveal

the potential connection between CECT images and early recurrence of HCC.

The combinat ion of radiomics and cl in ical factors could boost

model performance.
KEYWORDS

hepatocellular carcinoma, machine learning, radiomics, early recurrence, multidetector
computed tomography
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Introduction

HCC is the most common type of liver malignant tumor and

ranked third among all cancer-related death worldwide (1, 2). The

global prevalence rate of HCC has an upward trend, especially in

eastern Asia and sub-Saharan Africa where approximately 80% of

HCC cases are located (3). Hepatic resection is considered as the

mainstay curative treatment options of HCC with early stage and

preserved liver function (2). However, HCC is still a major medical

problem worldwide because of its complex pathogenesis and poor

prognosis (4). The definition of early recurrence of HCC is the first

appearance of new liver tumor lesions or metastasis, or

histopathologically confirmed recurrence within 1 year after

resection, and early recurrence of HCC accounts for over 70% of

HCC recurrence cases (5–7). The 5-year survival rate of HCC is only

12%, and the main reason of its poor prognosis is the high risk of

postoperative early recurrence (8). Therefore, the accurate prediction

of early recurrence is critical to patient risk stratification, clinical

decision-making, optimal surveillance, and survival of HCC.

Traditionally, HCC staging systems such as TNM system and

Barcelona Clinic Liver Cancer play a main role in the treatment and

prognosis of HCC (9). However, most of the factors used in these

systems can only be obtained after surgery, so the current staging

systems are inadequate for predicting early recurrence of HCC

preoperatively. Medical images of HCC play a key role in the

screening, diagnosis, and treatment of HCC. However, the full

potential of these medical images has not been harvested because

of the subjective visual analysis carried out by radiologists (10, 11).

How can we predict the early recurrence of HCC with quantitative

image analysis? The solution has important clinical value, as well as

precision medicine.

Compared to traditional imaging evaluation, radiomics is an

emerging technology with the ability to transform medical images

into mineable quantitative features (12, 13). Deep learning has shown

promising, powerful, and reliable capabilities to tackle large and

highly complex machine learning tasks related to medical images

(14–16). Several studies have reported the prediction of early

postoperative recurrence of HCC by using MRI (7, 17–19) and CT

(6, 20, 21). However, no studies have ever employed a deep learning

method to construct the prediction model of early recurrence.

Thus, the main purpose of this study is to develop radiomic

models using a deep learning method and assess its efficacy in the

preoperative prediction of early HCC recurrence. Meanwhile, the

performance of these models was also compared in terms of

radiomic features and clinical factors.
Materials and methods

Subjects and clinicopathological
characteristics

Between February 2012 and August 2016, a consecutive series of

patients pathologically confirmed with HCC were retrospectively

recruited in our study. The inclusion criteria were listed below:
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(1) patients who underwent liver resection and pathologically

diagnosed as HCC, (2) the liver CECT was done within one week

before surgery, (3) CECT images were available and the quality

could satisfy the analysis requirement, (4) patients with no other

cancers, (5) patients have not received other treatment, such as local

ablation and transarterial chemoembolization, before surgery,

(6) patients with available follow-up data.

The demographics, laboratory examination data, and

imageological examination data (e.g., age, gender, alpha-fetoprotein

(AFP), aspartate aminotransferase (AST), lymph node enlargement,

hepatocirrhosis, etc.) of the patients were retrieved from electronic

health record (EHR). The pathological grades of the patients were

obtained from the Pathology Information Management System.

The Shapiro-Wilk test were applied to analyze the continuous

variable to determine whether they followed normal distribution.

Non-normal distribution Variables were expressed as median (25th,

75th percentile). Categorical variables were expressed as frequency

and percentage. The chi-squared test and t-test were applied to

evaluate the difference in categorical variables and continuous

variables, respectively. P-value less than 0.05 indicates a

significant statistical difference in patients’ indicators between the

training dataset and the test dataset. Statistical analyses were

performed via IBM SPSS Statistics 22.0.
Follow-up surveillance

The follow-up surveillance in this study consisted of laboratory

examinations and physical examinations, including AFP levels, liver

function tests, and abdominal ultrasonography. The surveillance

was performed within 1 month after resection and then every 3-6

months. The endpoint of this study was early recurrence. Follow-up

time ranged from 32 days to 1,907 days, the mean and standard

deviation of follow-up time were 456.35 and 404.99, respectively.
Image acquisition

The overall workflow is shown in Figure 1. All patients underwent

CECT of the liver using one of the multidetector row CT units

(Brilliance 16, Philips or LightSpeed VCT, GE Healthcare, or

Discovery CT750 HD, GE Healthcare, or SOMATOM Definition

Flash, Siemens) in two modalities, which were called arterial phase

(AP) and venous phase (VP). AP and VP were performed after 25 and

60s of delay after intravenous injection of the contrast agent (1.5 ml/kg;

Ultravist 370, Bayer HealthCare Pharmaceuticals Inc.), respectively.

Sensitive information of the patients was removed, so the images of all

patients were anonymized and stored in the DICOM format.
Tumor segmentation

The lesion sites were manually segmented by ITK-SNAP

Version 3.0. ITK-SNAP is an open-source software that provides

the capabilities of semi-automatic segmentation as well as image

navigation (22). The process of lesion segmentation was described
frontiersin.org
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as follows. First, the AP- and VP-CECT images were imported into

the software, respectively. Second, each slice of the images was

viewed to get an overview impression of the lesions. Third, under

the supervision of a imaging specialist with twenty years of

experience, a radiologist with eight years of experience in

abdominal imaging manually draw each slice along the boundary

of each lesion. The radiologists were blinded to the diagnosis of the

patients. The segmentation results are shown in Figure 2.
Feature extraction

The open-source Pyradiomics package Ver. 2.0, which is a

reference standard for radiomic analysis, was used to extract
Frontiers in Oncology 03
features of AP- and VP-CECT images (23). To eliminate the

variation caused by different scanners and to improve

reproducibility, image preprocessing was implemented utilizing

normalization, resampling, and gray-level discretization. More

details of image preprocessing were shown in a previous study (24).

Seven categories of features were extracted, and the various

features were listed as follows (25). I. First-order features. II. Shape

features (3D). III. Gray level co-occurrence matrix (GLCM). IV.

Gray level size zone matrix (GLSZM). V. Gray level run length

matrix (GLRLM). VI. Neighboring gray tone difference matrix

(NGTDM). V. Gray level dependence matrix (GLDM). Besides,

17 filters were employed on the original images to yield derived

images. In addition to shape features, other features were calculated

on both the derived and the original images.
A

B

FIGURE 2

The representative results of ROI segmentation. (A) The original AP-CECT, slice segmentation, and 3D effects of the ROI of a 75-year-old male
patient with early recurrence. (B) The original VP-CECT, slice segmentation, and 3D effects of the ROI of a 65-year-old female patient with non-
early recurrence.
A B C D

FIGURE 1

The overall workflow of the present study. (A) Contrast-enhanced CT acquisition of all subjects. (B) ROI segmentation of each slice. (C) ROI feature
extraction. (D) Statistical analysis.
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Feature preprocessing and data cleaning

In general, machine learning classifiers cannot achieve high

performance when the features are on very different scales (26).

Feature scaling is one of the most important transformations

carried out to provide all features with the same scale. In the

present study, normalization was applied and the process was

described as below. First, the min value was subtracted. Second,

the results of the first step were divided by the max minus the min.

Otherwise, the median value and mode of the variables were used to

fi l l the missing data of the continuous and discrete

variables, respectively.
Model establishment and evaluation

To extract high-level semantic features, a deep neural network

(DNN) containing input layers, output layers, and several deep

stacks of hidden layers was employed. Batch normalization,

dropout layer, and exponential linear unit (ELU) were also

applied in the present study. ELU can significantly reduce the risk

of vanishing gradients at the beginning of training and can map

linear features to non-linear features (27). Batch normalization can

accelerate the convergence of the model and prevent overfitting

(28). Dropout is a regularization technique used to drop out some

neurons with a certain probability (29). Keras version 2.1, a simple

high-level API for constructing, training and evaluating models,

was employed to establish the model. All subjects were randomly

allocated to a training set and a test set applying stratified sampling

method based on their labels.

The structure and training process of the model are illustrated

in Figure 3 and Figure 4, with Figure 3 showing the training flow for
Frontiers in Oncology 04
single-modality data and Figure 4 demonstrating the integration of

multi-modality data to enhance the training outcome. For the AP

model, we designed a deep network structure to extract high-

frequency features from the images, which are crucial for

distinguishing different types of early HCC recurrence. These

high-frequency features represent subtle variations in the images

that may indicate early signs of cancer recurrence. The VP model

employs a shallower network to capture local and detailed

information, thereby increasing the model’s sensitivity to

classification. For the clinical data model, given the lower

dimensionality of the information provided, we opted for a

simplified network structure focused on extracting clinical

indicators critical for disease classification.

Each model’s input layer utilizes a fully connected layer, serving

as a hub to collate and preprocess data for subsequent layers.

Subsequent nonlinear modules transform the raw data into forms

more meaningful for model learning. Batch normalization layers are

used to stabilize the training process, while Dropout layers prevent

overfitting to specific patterns in the training data, enhancing the

model’s ability to generalize.

The process of integrating multi-modality data can be likened to

the collective intelligence of an interdisciplinary team collaboration.

In the VP-AP model, image data from each modality is processed

separately to extract high-frequency features, which are then

combined in the feature space, promoting the sharing of

knowledge between different modalities. Through this fusion

strategy, our model can integrate feature knowledge across

modalities and assess the importance of these features for

classification, focusing on those that contribute most to the

decision-making process. All these efforts are directed towards

improving the accuracy of predicting early HCC recurrence,

thereby providing stronger support for clinical decision-making
A

B

C

D

FIGURE 3

The training flow for single-modality data. (A) The training process and detailed parameters of AP model. (B) The training process and detailed
parameters of VP model. (C) The training process and detailed parameters of clinical model. (D) The explantion of operators in (A-C).
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and assisting physicians in more accurately assessing patient risk

before surgery. The code and data were uploaded to github (https://

github.com/luojiadream/Early-Recurrence-of-HCC).

The performance of the deep learning model was evaluated

using both the training dataset and the test dataset based on AUC

and its 95% confidence intervals (CIs), sensitivity, specificity,

and accuracy. Delong’s test was employed to calculate the p-

value, which was then used to evaluate the degree of fitting of

the models.
Results

Clinicopathological characteristics of
the patients

According to the inclusion criteria, 297 patients were included

in this study, and they were assigned to a training set (n = 237) and a

test set (n = 60). This bifurcation was meticulously conducted to

furnish the model with a comprehensive learning set (training set)

and a discrete validation cohort (test set) to objectively evaluate the

predictive prowess of the model. The training set, the primary

educational substrate for the model, includes 213 male patients,

representing 89.9% of the assemblage. The median and standard
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deviation of age in the training set and the test set were 53.3 ± 10.2

and 53.2 ± 9.1, respectively. There were 219 and 6 patients with

Hepatitis B and Hepatitis C in the training set, respectively. There

were 157 and 38 patients in the training set and test set, respectively,

whose AFP was out of limits. 23, 201, 15, 186, and 200 patients in

the training dataset showed CT features of lymph node

enlargement, single tumor, absent liver cirrhosis, incomplete

capsule appearance, and smooth tumor margin, respectively.

The distribution of these patients into training and test sets was

executed with precision, ensuring the model is calibrated on a

substantive dataset, while validation is performed on a distinct set to

affirm the model’s accuracy and reliability in novel clinical

scenarios. There was no significant difference in the clinical

indicators between the training set and the test set (all p > 0.05).

The detailed clinical indicators of the patients are listed in Table 1.
Feature extraction

1,688 radiomic features were extracted from AP- and VP-

CECT, respectively. The number of extracted features of first-

order statistics, shape-based, GLCM, GLDM, GLRLM, GLSZM,

and NGTDM was 18, 14, 24, 14, 16, 16, and 5, respectively. The

extracted features are listed in Supplementary Appendix.
A

B

C

D

FIGURE 4

The integration of multi-modality data to enhance the training outcome. (A) The training process and detailed parameters of AP-VP model. (B) The
training process and detailed parameters of AP-Clinical model. (C) The training process and detailed parameters of VP-Clinical model. (D) The
training process and detailed parameters of AP-VP-Clinical model.
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The performance of the prediction model

The radiomic signatures of AP-CECT images and clinical

factors showed high-performance in differentiating early

recurrence HCC from non-early recurrence HCC, and the AUC

was 0.7215 (95% CI, 0.6490-0.7940) and 0.7793 (95% CI, 0.7030–

0.8560), respectively. The VP-CECT images performed worst, and

the AUC was 0.6238 (95% CI, 0.5900-0.6580). When arterial phase

and venous phase images were employed correlated with clinical

factors, the model performed best with an AUC of 0.8300(95% CI,

0.7560-0.9040). All p-values were less than 0.0125, indicating a

significant difference in the classification of early recurrence. The

ROC of the seven established models is displayed in Figure 5, and

the detailed results are listed in Table 2.
Discussion

Radiomics is the application of new technology which aims to

reveal the potential relationship between medical images and

phenotypic characteristics of tumor cells (24). It has been

provided new perspectives in HCC related to prediction of

histology, response to treatment, genetic signature, recurrence,

and survival. Early recurrence of HCC accounts for over 70% of

HCC recurrence cases, it is the main reason for the poor prognosis

of HCC. Clinically, preoperative prediction of early recurrence of

HCC is critical to patient risk stratification, optimal clinical

decision-making, and subsequent follow-up. Current staging

systems are inadequate for predicting early recurrence of HCC

preoperatively. On the contrary, CECT imaging could

systematically explore cell proliferation, liver function, and

prognosis of hepatopathy (30).

Our study aimed to develop a CECT-based radiomics model by

using a deep learning method to improve the accuracy of prediction.

In this study, 1,688 radiomic features were extracted from AP- and

VP-CECT images, respectively. Then, seven models were

constructed based on various combinations of radiomic features

and clinical factors. The study showed that AP, VP and clinical

factors could be used to successfully predict early recurrence of

HCC separately, all achieving p-values were less than 0.0125 in the

training set and the test set. The combination of radiomic features

and clinical factors could boost model performance, and this

conclusion was consistent with that of previous studies (6, 7, 21).

The performance of AP was better than VP because the arterial

blood supply of HCC was abundant, and the intensity of AP signals

was higher than that of VP in the tumor parenchyma (31).

The prediction of early recurrence of HCC has become a hot

research field, however, deep learning method has never been

employed in those studies. Previous studies have reported that

radiomics may be helpful to the preoperative prediction of early

recurrence of HCC, we selected 15 representative papers and

compared them with our study in terms of imaging modality,

number of included patients, modeling methods, etc. From the

perspective of image modality, CT(n=6) (6, 20, 21, 32–34) has

higher specificity than MRI (n=9) (7, 35–42). In our study, we used
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TABLE 1 The detailed clinicopathological characteristics of the subjects
in the training dataset and the test dataset.

Characteristic
Training
dataset (n=237)

Test
dataset (n=60)

P-value

Patient demographics

Gender ǂ 0.727

Male 89.9 (213) 88.3 (53)

Female 10.1 (24) 11.7 (7)

Age (y)* 53.3±10.2 53.2±9.1 0.942

Liver disease ǂ 0.925

Hepatitis B
virus infection

92.4 (219) 93.3 (56)

Hepatitis C
virus infection

2.5 (6) 1.7 (1)

Others 5.1 (12) 5.0 (3)

Laboratory examination

AFP ǂ 66.2 (157) 63.3 (38) 0.671

GGT (U/L)* 67.0 (35.3, 119.0) 58.5 (34.5, 117.8) 0.854

AST (U/L)* 40.5 (28.0, 57.0) 41.0 (29.5, 65.3) 0.593

ALT(U/L)* 42.5 (29.0, 64.8) 44.0 (29.3, 73.5) 0.463

CT features

Tumor diameter
(mm)*

53.3 (33.7, 82.8) 46.8 (34.9, 76.1) 0.520

Lymph node
enlargement ǂ

9.7 (23) 8.30 (5) 0.745

Tumor number ǂ 0.551

Solitary 84.8 (201) 81.7 (49)

Multiple 15.2 (36) 18.3 (11)

Liver cirrhosis ǂ 0.999

Absent 6.3 (15) 6.7 (4)

Present 93.7 (222) 93.3 (56)

Capsule appearance ǂ 0.394

Incomplete 78.5 (186) 73.3 (44)

Complete 21.5 (51) 26.7 (16)

Tumor margin ǂ 0.907

Smooth 84.4 (200) 85.0 (51)

Nonsmooth 15.6 (37) 15.0 (9)

Histologic characteristics ǂ

Edmondson grade 0.434

I-II 61.2 (145) 66.7 (40)

III-IV 38.8 (92) 33.3 (20)

Number of
early recurrence

66.2 (157) 76.7 (46) 0.121
front
P-value < 0.05 indicates a significant difference in patients’ characteristics between the training
dataset and test dataset.
*Continuous variables , data are medians with interquartile range in parentheses.
ǂCategorical variables, data are percentages with numbers of patients.
AFP, Alpha-fetoprotein; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase;
GGT, Gamma-glutamyl transpeptidase.
iersin.org
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CECT which hold fixed and uniform parameters than MRI to

predict early recurrence. In addition, compared with CT, MRI

image acquisition technology is more complex and more sensitive

to alpha shadow and image quality inhomogeneity in diagnosing

HCC. Therefore, this may lead to better prediction results of CT

radiomics than MRI radiomics. From the perspective of the number

of included patients, only four studies had more patients than our

study (6, 35, 36, 38). In machine learning-based radiomics research,
Frontiers in Oncology 07
the number of included patients is the basis of the research. The

larger the number of patients, the better of the generalization and

the higher of the feasibility. From the perspective of the modeling

methods, among the 14 studies participating in the comparison,

modeling methods are logistic regression or lasso regression, the

number is 6 and 8, respectively. In our study, we applied a relatively

novel deep learning method and achieved better model prediction

effects and generalization. In 2007, a paper published by Segal, E.
FIGURE 5

The ROC curves of the models.
TABLE 2 The detailed prediction performance of the radiomic signature, the clinical factors, and the combined model.

Methods Training dataset(n=237) Test dataset(n=60)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

AUC
(95%
CI)

P
Value

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

AUC
(95%
CI)

P
Value

AP 68.00 84.30 77.74
0.7623
(0.7270-
0.7980)

0.0028 71.05 75.00 73.33
0.7215
(0.6490-
0.7940)

0.0059

VP 80.67 57.89 61.13
0.6238
(0.5900-
0.6580)

0.0045 80.67 57.63 61.13
0.6238
(0.5900-
0.6580)

0.0069

Clinical 79.33 80.41 80.01
0.7902
(0.7560-
0.8250)

0.0075 86.84 73.33 77.33
0.7793
(0.7030-
0.8560)

0.0098

AP+VP 57.33 75.44 69.44
0.6592
(0.6240-
0.6940)

0.0037 65.79 75.76 72.00
0.7100
(0.6360-
0.7840)

0.0064

AP+Clinical 84.67 67.20 71.76
0.7050
(0.6720-
0.7390)

0.0030 92.10 72.91 78.67
0.8125
(0.7390-
0.8860)

0.0060

VP+Clinical 73.33 83.33 79.40
0.7693
(0.7350-
0.8040)

0.0046 76.32 76.32 76.00
0.7333
(0.6560-
0.8150)

0.0069

AP+VP
+Clinical

85.33 80.00 82.06
0.7871
(0.7530-
0.8210)

0.0037 89.45 79.07 82.67
0.8300
(0.7560-
0.9040)

0.0064
front
P-value was adjusted to 0.0125 according to Bonferroni correction. P-value < 0.125 indicates a significant difference in the discrimination of early recurrence HCC and non-early recurrence HCC.
AP, Arterial phase; VP, Venous phase.
iersin.org
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et al. in Nature Biotechnology showed that medical image could

reconstructed 78% of the global gene expression profiles, revealing

cell proliferation, liver synthetic function, and patient prognosis

(30). Subsequently, more and more scholars have affirmed the

importance of medical imaging in cancer research. We also

believe that clinical characteristics play an important role in

predicting early recurrence of HCC (43). However, as the amount

of data increases significantly, simply utilizing clinical features

cannot bring the same level of performance improvement in deep

learning-based models. In this study, although the performance of

the combination model is not much better than that of the clinical

feature model, the performance of our combination model based on

deep learning will become more and more prominent as the amount

of data increases. In view of the important role of multimodal

medical imaging in radiomics research and the excellent

performance of deep learning models in terms of model

generalization and data fitting performance, etc. Therefore, it is

valuable to develop a multi-modal combination model based on

deep learning to predict early recurrence of HCC.

In summary, compared with other studies, our contributions

are mainly reflected in two aspects. First, from the methodological

perspective, we applied deep learning-based radiomics methods to

reveal the potential relationship between tumor imaging features

and early recurrence, improving the prediction performance.

Second, the features extracted from AP images were more reliable

for predicting early recurrence of HCC, the findings are consistent

with the blood supply characteristics of HCC.

Although our study has many innovations, it also has certain

limitations. First, the study is a single center research. Thus, the

reproducibility of the study needs to be verified. Second, the sample

size of this study was relatively small. Third, only operable cases

were included, excluding unresectable disease likely representing

later-stage cancers, so the patient cohort exhibits selection bias.

In summary, the deep learning-based CECT radiomic analysis

could improve the prediction accuracy, and the combination of

radiomic and clinical factors could boost the prediction performance.
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