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Objective: To evaluate the value of a nomogram combined MRI Diffusion

Weighted Imaging (DWI) and clinical features to predict the treatment

response of Neoadjuvant Chemotherapy (NAC) in patients with osteosarcoma.

Methods: A retrospective analysis was conducted on 209 osteosarcoma patients

admitted into two bone cancer treatment centers (133 males, 76females; mean

age 16.31 ± 11.42 years) from January 2016 to January 2022. Patients were

classified as pathological good responders (pGRs) if postoperative

histopathological examination revealed ≥90% tumor necrosis, and non-pGRs if

<90%. Their clinical features were subjected to univariate and multivariate

analysis, and features with statistically significance were utilized to construct a

clinical signature using machine learning algorithms. Apparent diffusion

coefficient (ADC) values pre-NAC (ADC 0) and post two chemotherapy cycles

(ADC 1) were recorded. Regions of interest (ROIs) were delineated from pre-

treatment DWI images (b=1000 s/mm²) for radiomic features extraction.

Variance thresholding, SelectKBest, and LASSO regression were used to select

features with strong relevance, and three machine learning models (Logistic

Regression, RandomForest and XGBoost) were used to construct radiomics

signatures for predicting treatment response. Finally, the clinical and radiomics

signatures were integrated to establish a comprehensive nomogram model.

Predictive performance was assessed using ROC curve analysis, with model

clinical utility appraised through AUC and decision curve analysis (DCA).

Results: Of the 209patients, 51 (24.4%) were pGRs, while 158 (75.6%) were non-

pGRs. No significant ADC1 difference was observed between groups (P>0.05),

but pGRs had a higher ADC 0 (P<0.01). ROC analysis indicated an AUC of 0.681

(95% CI: 0.482-0.862) for ADC 0 at the threshold of ≥1.37×10-3 mm²/s, achieving

74.7% sensitivity and 75.7% specificity. The clinical and radiomics models reached

AUCs of 0.669 (95% CI: 0.401-0.826) and 0.768 (95% CI: 0.681-0.922)

respectively in the test set. The combined nomogram displayed superior
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discrimination with an AUC of 0.848 (95% CI: 0.668-0.951) and 75.8% accuracy.

The DCA suggested the clinical utility of the nomogram.

Conclusion: The nomogram based on combined radiomics and clinical features

outperformed standalone clinical or radiomics model, offering enhanced

accuracy in evaluating NAC response in osteosarcoma. It held significant

promise for clinical applications.
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1 Introduction

Osteosarcoma is the most common primary bone malignancy,

representing 20% of all primary bone cancers (1). This cancer

mainly impacts children and adolescents, especially those aged 12 to

18. It is the third most common cancer in this age group, following

leukemia and lymphoma, significantly threatening the health and

well-being of young individuals (2). Since the 1970s, with the advent

and application of neoadjuvant chemotherapy (NAC), the five-year

survival rate for patients has risen from 20% to 70%, markedly

extending life expectancy (3). The rate of post-chemotherapy tissue

necrosis in osteosarcoma is considered the “gold standard” for

prognostic evaluation and determines the feasibility of limb-sparing

surgery. However, this “gold standard” can only be obtained post-

surgery and is not applicable for pre-surgical decisions on limb-

sparing operations.

Currently, preoperative assessment of NAC efficacy primarily

relies on clinical evaluations, including changes in tumor size, pain

scores, and other symptoms or signs, as well as traditional

radiological assessments focusing on morphological changes like

tumor boundaries and size. Although these methods are somewhat

informative, they lack measurable and standardized criteria and fail

to precisely gauge chemotherapy effectiveness. Radiological

evaluations, including dynamic contrast-enhanced (DCE)-MRI

and 18F-FDG PET/CT, offer valuable morphological and

functional insights (4, 5). These studies typically employ mean

values to represent the entire tumor, potentially overlooking the

heterogeneity of the tumor. Yet, these imaging modalities are

currently deficient in highly specific standardized parameters.

Diffusion-weighted imaging (DWI) is a straightforward, non-

invasive functional imaging technique that has been identified as

promising in recent studies. The apparent diffusion coefficient

(ADC) value, in particular, has shown significant potential in

indicating NAC efficacy in cancers such as osteosarcoma (6–9).

However, the considerable heterogeneity of tumors may

compromise the reliability of these findings, not meeting the

rigorous standards required by precision medicine. Radiomics,

combining quantitative image analysis with machine learning,

identifies diagnostic features and constructs models that provide
02
more precise clinical diagnosis and treatment information. This

study investigates the potential of a nomogram model, based on

MRI DWI radiomics and clinical features, to assess the effectiveness

of NAC in osteosarcoma patients.
2 Materials and methods

2.1 Patients and dataset

Our retrospective study received approval from the Institutional

Review Board of Henan provincial People’s hospital, and the

requirement for patient informed consent was waived. This was a

multicenter retrospective study of osteosarcoma patients from two

Chinese hospitals. From January 2016 to January 2022, the

information of patients with osteosarcoma in the Henan

provincial People’s hospital and Henan Provincial Cancer

Hospital was collected based on the following inclusion criteria:

jprimary osteosarcoma confirmed by histopathological analysis of

tissue samples obtained through biopsy or surgery; k administration

of preoperative neoadjuvant chemotherapy (NAC) with

accompanying standard MRI and DWI imaging performed before

chemotherapy. Exclusion criteria: jabsence of surgical intervention,
which precluded assessment of tumor necrosis rates; kMRI images

compromised by severe artifacts that affected diagnostic clarity.

Following surgery, the Huvos grading system was utilized (10).

Patients exhibiting a necrosis rate of 90% or higher were categorized

as pathologically good responders (pGRs), while those with less

than 90% were considered non-pGRs. A total of 209 patients were

ultimately included in this study (Figure 1).

The diagnostic and therapeutic protocols for all participants

conformed to the expert consensus on the Clinical Diagnosis and

Treatment of Typical Osteosarcoma (11). The administered NAC

regimen included doxorubicin (ADM) at 60 mg/m2, cisplatin

(DDP) at 100 mg/m2, methotrexate (MTX) at 10-12 g/m2, and

ifosfamide (IFO) at 10 g/m2. The chemotherapy protocol entailed

four rounds, commencing with ADM (D1-D3), followed by DDP

(D4), two successive doses of MTX (D1), and concluding with IFO

(D1-D5). Patient progress was closely monitored after each
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treatment cycle, with NAC response typically evaluated after

completing a cycle.
2.2 Clinical and pathological data

Clinical data were meticulously gathered from medical records,

including age, tumor size, tumor anatomical location, presence of

pathological fractures, and surgical stage as defined by Enneking’s

criteria for osteosarcoma (12).
2.3 MRI examination

All MRI images were acquired from two 3.0 T MRI scanners,

one model being the GE Discovery 750w (GE Healthcare, USA) and

the other the Magnetom Trio (Siemens, Germany), with consistent

scanning parameters across both machines. Appropriate surface

coils were chosen based on the scanning area, such as an eight-

channel knee coil or an eight-channel body soft tissue coil. Routine

scans included T1-weighted axial imaging (TR 700 ms, TE 12 ms),

proton density-weighted imaging with fat suppression (PDWI-FS)

in transverse, sagittal, and coronal planes (TR 4000 ms, TE 83 ms),

and diffusion-weighted imaging (DWI) using a single-shot spin-

echo planar echo sequence (SE-EPI) with parameters of TR 6000

ms, TE 70 ms, FOV 400 mm × 300 mm, slice thickness of 5 mm,

interslice gap of 1 mm. The diffusion sensitivity coefficient b-values

were set to 0 and 1000 s/mm2, with diffusion-sensitive gradient

fields applied along the X, Y, and Z axes.
2.4 Imaging findings and radiomics analysis

Radiomics analysis was conducted on MRI-DWI sequences,

which involved image acquisition and segmentation, feature

extraction, feature selection, model construction, and model

prediction evaluation (Figure 2). Raw image data from the
Frontiers in Oncology 03
enrolled patients were imported into the Siemens Verio

Workstation 3.0 for post-processing. Two radiologists with 9 and

10 years of experience, blinded to clinical and histopathological

details, delineated the region of interest (ROI) along tumor margins

on DWI images at a b-value of 1000 s/mm². ADC values of the

lesions were measured on ADC maps, avoiding areas of

intratumoral hemorrhage, calcification, and liquefactive necrosis.

2.4.1 Image normalization and segmentation
To minimize MRI intensity variations, normalization

techniques were applied, setting the image intensity relative to the

mean and standard deviation. Volumes of interest (VOIs) were

precisely traced using ITK-SNAP software (version 3.8.0; http://

www.itksnap.org) by an experienced musculoskeletal radiologist,

blind to clinical information. These delineations were reviewed by a

senior radiologist to resolve any discrepancies in tumor margin

identification. VOIs were designed to include the entire lesion,

encompassing osseous and soft tissue involvement, and cystic

necrosis, while avoiding perilesional edema and vascular

structures. In total, 209 VOIs were marked for analysis from the

MRI-DWI scans.
2.4.2 Radiomic feature extraction
Using the Radcloud platform (http://radcloud.cn/), 1409

quantitative imaging features were extracted from the MR images.

These features were categorized into first-order statistical features (126

descriptors of voxel intensity distributions), spatial geometric features

(14 three-dimensional shape and size descriptors), texture features (525

metrics quantifying regional heterogeneity), and transform features

(including various transformations). These features were randomly

divided into training and testing sets in a 7:3 ratio.

2.4.3 Feature reduction and selection
Features underwent intraclass correlation coefficient (ICC)

analysis, with those exceeding an ICC of 0.75 selected for further

analysis. Preliminary feature selection was performed using Analysis of
FIGURE 1

The flow chart showing the inclusion and exclusion criteria of this retrospective study.
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Variance (ANOVA) for features with P < 0.05, followed by

dimensionality reduction using variance threshold, SelectKBest, and

the Least Absolute Shrinkage and Selection Operator (LASSO)method.

LASSO was used to balance bias and variance, eliminating redundant

or irrelevant features. The final step was to select the most valuable

features to construct a radiomics model using logistic regression.
2.4.4 Construction of Clinical, Radiomics
and Combined Nomogram Models

For the clinical characteristics, we conducted univariate and

multivariate analyses sequentially. Features with statistically

significant differences in the multivariate analysis were selected

for constructing nomograms. Clinical features with significant

differences in the univariate analysis were used to develop a

machine learning model using logistic regression (LR),

RandomForest (RF) and XGBoost. In the process of clinical

model building, we used five-fold cross-validation over the

training data for model selection and hyperparameter tuning. For

Radiomics modelling, we used the same approach as those used in

clinical modelling. The combined clinical-radiomics nomogram

model was built with the radiomics score and clinical variables

used in the clinical model.
2.5 Statistical analysis

The Radcloud platform (provided by Huiying Medical

Technology Co., Ltd) was used for imaging and clinical data

management and radiomics statistical analysis. Additional

analyses were conducted using SPSS version 20.0 and MedCalc

software version 15.2.2. Independent samples t-tests (two-tailed, p <

0.05) were applied to compare age, tumor dimensions, and ADC

values between pGRs and non-pGRs. The Mann-Whitney U test

was used in tumor surgical staging, anatomical sites, and

pathological fractures. Plot receiver operating characteristic

(ROC) curves for traditional imaging (ADC value), clinical

model, radiomic model, and clinical-radiomic nomogram model,

calculating area under the curve (AUC), sensitivity, and specificity

to assess the predictive performance of each model for the
Frontiers in Oncology 04
effectiveness of neoadjuvant chemotherapy in osteosarcoma.

Differences between models are compared using the DeLong test,

with p < 0.05 indicating statistically significant differences. Model

precision was further examined through radiomics score plots and

calibration curves. Decision curve analysis (DCA) was performed to

determine the clinical applicability of the predictive models (13).
3 Results

3.1 Clinical and traditional imaging features

Our study included 209 osteosarcoma patients, consisting of 133

men and 76 women, with a mean age of 16.31 ± 11.42 years, spanning

from 6 to 63 years. Among them, 51/209 (24.4%) were identified as

pathological good responders (pGRs) to neoadjuvant chemotherapy

(NAC), while 158/209 (75.6%) were non-pGRs. Most clinical risk

factors, including age, tumor size, pathological fractures, and

pathological subtype, did not show a significant statistical difference

between the pGRs and non-pGRs (P > 0.05),except for surgical

staging (P = 0.0.025) and pathological fracture (P = 0.038).The

training set contained a pGR rate of 32/146 (21.9%), and the test

set had a pGR rate of 19/63 (30.1%), with no significant difference

noted between them (P = 0.484). No significant statistical difference

was observed in ADC 1 values between the two (P=0.131). However,

the ADC 0 of pGRs was significantly higher than that of non-pGRs (P

= 0.007). (Table 1) ROC curve analysis indicated that an ADC 0 value

≥ 1.37 × 10-3 mm2/s achieved a sensitivity of 74.7%, specificity of

75.7%, and AUC of 0.603 (95% CI: 0.458–0.821) in assessing NAC

efficacy for osteosarcoma (Figure 3A).
3.2 Clinical model

After conducting univariate analyses on all clinical features, we

extracted those with p < 0.05, including Surgical Stage and

Pathological Fracture, and developed multiple machine learning

models. Among these, the Logistic Regression (LR) model achieved

the highest AUC (0.669, 95% CI: 0.401-0.826). (Figure 3B) We

selected Surgical Stage (p < 0.05) from the multivariate analysis to

construct the nomogram.
FIGURE 2

The flow chart of radiomics analysis.
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3.3 Radiomics model

Initially, feature stability was assessed using each feature’s

intraclass correlation coefficient (ICC), and those with an ICC >

0.85 were retained for further analysis. Out of the total, 445 (61.2%)

stable features were selected for further screening. Subsequently,
Frontiers in Oncology 05
447 features were chosen using the variance threshold method,

which was narrowed down to 82 features by the SelectKBest

method. LASSO regression further refined the selection to

82 radiomic features, with 10-fold cross-validation identifying

the optimal -log(alpha) value of 1.53 (Figures 4A, B). The

corresponding coefficients for different features were determined
TABLE 1 Clinical and traditional imaging features of 209 patients with osteosarcoma.

Features

Training
set

Test set

pGR non-pGR P value pGR non-pGR P value

Age (mean ± SD) 14.91 ± 8.55 13.42 ± 9.26 0.315 15.99 ± 8.97 14.01 ± 8.95 0.411

Tumor size (mean ± SD) (cm) 13.25 ± 4.89 11.52 ± 5.01 0.411 11.98 ± 4.62 11.69 ± 5.02 0.321

Tumor site 0.523 0.714

thighbone 15 62 10 23

tibia 14 39 7 17

humerus 3 13 2 4

With Pathological fracture 32 114 0.031 19 44 0.038

Surgical stage 0.029 0.025

II 27 85 16 21

III 5 29 3 23

ADC 0 1.11 ± 0.03 1.41 ± 0.04 0.024 1.01 ± 0.03 1.37 ± 0.04 0.007

ADC 1 1.43 ± 0.06 1.49 ± 0.03 0.359 1.45 ± 0.07 1.50 ± 0.06 0.131
ADC, apparent diffusion coefficient values; ADC 0 represents pre-treatment ADC values, and ADC 1 represents post-treatment ADC values.
A B

DC

FIGURE 3

The receiver operating characteristic (ROC) curves of ADC values and different models (A) ADC0 represents pre-treatment ADC value (AUC=0.603),
and ADC1 represents post-treatment ADC value (AUC=0.452). (B) Clinical model performance. The clinical model reached an AUC of 0.669 in the
test set. AUC, area under the curve. (C) Radiomics model performance. The radiomics model showed an AUC of 0.768 in the test set. (D) Clinical-
radiomics nomogram model reached an AUC of 0.848 in the test set.
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based on the alpha value, ultimately identifying 8 radiomic features

strongly correlated with NAC effectiveness (Figure 4C). The top 5

features in the LASSO regression being texture features post-

wavelet transformation. The selected features, feature groups, and

filters are detailed in Table 2. Using these 8 features, the radiomics

model demonstrated an AUC of 0.859 (95% CI: 0.778–0.909), with

a sensitivity of 86.7% and specificity of 71.7% in the training set. In

the test set, it achieved an AUC of 0.768 (95% CI: 0.681-0.922),

sensitivity of 72.1%, and specificity of 73.4% (Figure 3C).
3.4 Clinical-radiomics nomogram
and utility

Following univariate and multivariate analyses sequentially,

surgical staging was selected out to construct the nomogram. The

nomogram model was constructed using a multivariate logistic

regression that included surgical staging and the radiomics

signature, which was then visually represented in a nomogram

(Figure 5A). Of the two factors, the radiomics signature held the

most weight in predicting outcomes, as shown by its extended scale,
Frontiers in Oncology 06
followed by surgical staging. The nomogram’s scoring system

correlated the high and low probability segments of the radiomics

label with corresponding scores on the axis. Summing each factor’s

scores provided a total score, which translated into an individual’s

probability of effective chemotherapy on the probability axis. The

nomograms had AUCs of 0.887 (95% CI, 0.759–0.944) in the

training set and 0.848 (95% CI, 0.669–0.931) in the test set,

respectively. The ROC curves showed the predictive probabilities

of the nomogram outperformed the clinical model, radiomics

model, and traditional imaging parameters (ADC values)

(Figures 3A–D). The Decision Curve Analysis (DCA) for the

nomogram across the entire dataset demonstrated strong clinical

utility (Figure 5B). In the test set, the nomogram provided more

benefit than treating all or no patients when the threshold

probability of a good response (pGR) ranged from 0.11 to 0.61

and 0.65 to 0.84. The nomogram also outperformed the radiomics

model and clinical model within these threshold ranges. The

DeLong test indicated significant differences between the clinical-

radiomics nomogram model and the clinical model, as well as

between the radiomics model and the clinical model in the training

set (p < 0.05) (Table 3).
A

B

C

FIGURE 4

Radiomic feature selection using LASSO regression. (A) MSE path, the black solid line is the mean value of Mean Square Error, and the maximum
number of iterations is 100. 10-fold cross-test was used to find the optimal -log(alpha) value of 1.53. (B) Lasso path, the radiomic features change
with alpha value; (C) The histogram shows the selected 8 features and their coefficients in Lass model. Using Lasso model, 8 features which are
correspond to the optimal alpha value were selected.
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4 Discussion

In this study, we developed a combined clinical-radiomics

nomogram based on MRI-DWI to preoperatively predict the

response to NAC in osteosarcoma patients. The nomogram

incorporated features extracted from DWI images of segmented

lesions alongside objective clinical features. It outperformed the

traditional MRI ADC value and standalone radiomics model, as

evidenced by decision curve analysis (DCA) illustrating its

clinical utility.
Frontiers in Oncology 07
Osteosarcoma is notorious for its aggressiveness and poor

prognosis. Despite the significant improvements in 5-year survival

rates achieved by integrating NAC with surgical resection, about 30-

40% of patients still suffer from local recurrence or distant

metastasis, which drastically reduces the 5-year survival rate to

23-29% (14). Traditional imaging assessments like CT and MRI

evaluate chemotherapy effects based on morphological changes,

including tumor volume, internal liquefactive necrosis, calcification,

and surrounding bone destruction. However, these methods fall

short in reflecting the viability of tumor cells and correlating with

tumor tissue necrosis rates, thus limiting their effectiveness in

grading, evaluating treatment response, and predicting the

prognosis of osteosarcoma (15). Additionally, research suggested

that changes in tumor volume are not significantly linked to

chemotherapy response. Imaging techniques such as dynamic

contrast-enhanced, PET/CT, and DWI (16) offered valuable

insights into tumor angiogenesis and cellular activity, showing

great promise (17–19). Nevertheless, the heterogeneity of tumors

presents a challenge in identifying highly specific quantitative

markers, creating an urgent clinical need for a straightforward,

accurate, and reproducible method to evaluate the effectiveness of

NAC. Such a tool would facilitate early identification of tumor

chemosensitivity, allow timely adjustments to chemotherapy and

surgical plans, and predict preoperative chemotherapy efficacy

and prognosis.

Kumar and colleagues (20) advanced the field of radiomics by

extracting a broad array of high-dimensional quantitative imaging

features from routine medical images, such as MRI, PET, and CT, in
A

B

FIGURE 5

Combined clinical-radiomics nomogram and its utility. (A) A nomogram integrating the radiomics score and clinical variables was constructed (B)
Decision curve analysis curves for clinical, radiomics, and combined nomogram models in the whole dataset showed that the nomogram had
favorable clinical utility.
TABLE 2 Description of the selected radiomic features with their
associated feature group and filter.

Radiomic feature
Radiomic
class

Filter

SmallAreaHighGrayLevelEmphasis glszm wavelet-LHH

LargeDependenceHighGrayLevelEmphasis gldm wavelet-LHH

LargeDependenceHighGrayLevelEmphasis gldm wavelet-HHH

LargeDependenceLowGrayLeve1Emphasis gldm wavelet-LLH

Smal1AreaHighGrayLevelEmphasis glszm wavelet-LLL

LargeDependenceHighGrayLevelEmphasis gldm original

LargeDependenceHighGrayLevelEmphasis gldm squareroot

DependenceEntropy gldm Wavelet-LLL
GLDM, Gray Level Dependence Matrix; GLSZM, Gray-Level Size Zone Matrix.
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a high-throughput manner. This approach quantitatively

characterizes the temporal and spatial heterogeneity within the

images, uncovering features that are beyond human visual

perception. Radiomics research typically involves five steps: image

acquisition, ROI segmentation, radiomic feature extraction, feature

selection and dimensionality reduction, and predictive model

performance evaluation (21). By tapping into the rich digital

information from conventional medical images and utilizing

machine learning algorithms, radiomics reduces observer

subjectivity and offers a quantitative analysis of tumor

heterogeneity, which is invaluable for precise disease diagnosis

and treatment. There has been a study constructing MRI T2WI-

based radiomics models to predict chemotherapy response in

osteosarcoma, such as the work by Jingyu Zhong et al. (22). The

ultimate aim of radiomics is to devise models with strong predictive

accuracy, applicable to both existing and new data sets. The clinical

value of radiomics is increasingly recognized across various studies

as an emerging technology.

Our study introduced a radiomics model based on MRI-DWI

images that did not require a contrast agent, offered a wealth of

biologically relevant information, including tumor cellular density,

and was conducted within a shorter scanning period. Unlike prior

studies that focused exclusively on radiomics parameters for model

construction, our research integrated objective clinical features with

radiomic scores, thereby enhanced the model’s predictive accuracy

and clinical applicability. The final radiomics model selected 8

textural features strongly related to NAC response (23, 24). Six of

these features were from the Gray Level Dependence Matrix

(GLDM), and two from the Gray Level Size Zone Matrix

(GLSZM), suggesting that patterns in gray values hold

significance in predicting NAC effectiveness. This notion was

consistent with previous imaging studies that explored the

prediction of sentinel lymph node metastasis in breast cancer,

highlighting the potential of these gray value patterns in

clinical prognosis.

In this study, we employed the potential of radiomics to

preliminarily evaluate the effectiveness of a nomogram model that

integrated MRI DWI radiomics and clinical features for predicting

the response to NAC in osteosarcoma. After conducting a rigorous

statistical analysis and reducing the dimensionality of all extracted

radiomic features, we identified eight features with significant

predictive value. These were then utilized to construct a

combined nomogram model. The model showcased promising

predictive performance in the test set, with an AUC of 0.848
Frontiers in Oncology 08
(95% CI: 0.668-0.951), a sensitivity of 75%, and a specificity of

73%. These results suggested that the combined nomogram model

we derived had considerable potential in predicting the outcome of

NAC in osteosarcoma.

The combined nomogram model, with its high predictive

accuracy, presented as both user-friendly and practical, offering a

broad spectrum of clinical applications in managing osteosarcoma.

This model was instrumental in refining treatment strategies,

particularly for locally advanced cervical cancer. Presently, the

lack of effective biomarkers to predict chemotherapy efficacy

renders the decision to administer preoperative NAC somewhat

arbitrary. The utilization of this nomogram empowers physicians to

discern which patients are likely to be responsive or resistant to

chemotherapy prior to commencing treatment, thereby guiding the

selection of suitable therapeutic regimens. For individuals with

extensive tumor burden who exhibit resistance to chemotherapy,

prompt consideration of concurrent chemoradiotherapy may be

appropriate. Conversely, for younger patients who are responsive to

chemotherapy, pursuing NAC followed by surgical intervention is a

feasible approach. Moreover, in regions where access to

radiotherapy is limited, particularly some developing countries,

NAC is being considered as a precursor to concurrent

chemoradiotherapy for tumor management. The combined

radiomics model also holds promise for identifying optimal

candida te s for NAC in prepara t ion for concurrent

chemoradiotherapy. Additionally, the nomogram could

potentially forecast the response of patients with recurrent or

metastatic cervical cancer to systemic chemotherapy, based on

preoperative MRI images. Should this combined radiomics

nomogram be integrated into clinical practice, it stands to make a

substantial contribution to the evolution of personalized precision

medicine for osteosarcoma. To validate its clinical applicability, we

conducted decision curve analysis (DCA), a methodology

corroborated by findings from four preceding studies (25–27).
5 Shortcomings of this study

① This study utilized only one MRI scanning sequence;

combining different sequences is expected to enhance predictive

performance. ② The ROI delineation for this study was performed

manually, a process that is both laborious and time-intensive,

rendering it impractical for handling large datasets and subject to

variability due to the irregular contours of tumor lesions. This

variability could influence the precision of feature selection as well

as the repeatability and reliability of the model. Hence, exploration

into automated ROI segmentation methods is justified; ③ The

study’s focus was restricted to assessing the efficacy of radiomics

features from a single pre-treatment time point in predicting the

NAC response in osteosarcoma, without considering sequential

imaging during the treatment course or carrying out an

exhaustive comparison with other MRI scanning modalities.

Addressing these considerations will be central to future research

and validation efforts.
TABLE 3 Results of DeLong test between clinical model, radiomics
model and nomogram model.

Clinical vs
Radiomcs
P value

Clinical vs
Nomo-
gram
P value

Radiomcs
vs
Nomogram
P value

Training set 0.036 0.004 0.085

Test set 0.474 0.231 0.347
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6 Conclusion

To conclude, the findings of our study indicated that the

integrated model combining radiomics and clinical features

demonstrates robust predictive efficacy for predicting the

response to neoadjuvant chemotherapy in osteosarcoma. This

model is poised to offer invaluable insights for clinical decision-

making in the diagnosis and treatment of osteosarcoma, thus

advancing the pursuit of personalized and precision medicine for

this challenging disease.
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