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volumetric modulated arc
therapy patients
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Xueqin Chen2,3, Shenlin Ma2,3, Qinghua Deng2,3

and Xiadong Li2,3*

1Department of Tumor Radiotherapy and Chemotherapy, Lishui People’s Hospital, Lishui, China,
2Medical Imaging and Translational Medicine Laboratory, Hangzhou Cancer Center, Hangzhou, China,
3Department of Radiation Oncology, Hangzhou Cancer Hospital, Zhejiang, Hangzhou, China
Purpose: This study aims to develop an optimal machine learning model that

uses lung equivalent uniform dose (lung EUD to predict radiation pneumonitis

(RP) occurrence in lung cancer patients treated with volumetric modulated arc

therapy (VMAT).

Methods: We analyzed a cohort of 77 patients diagnosed with locally advanced

squamous cell lung cancer (LASCLC) receiving concurrent chemoradiotherapy

with VMAT. Patients were categorized based on the onset of grade II or higher

radiation pneumonitis (RP 2+). Dose volume histogram data, extracted from the

treatment planning system, were used to compute the lung EUD values for both

groups using a specialized numerical analysis code. We identified the parameter

a, representing the most significant relative difference in lung EUD between the

two groups. The predictive potential of variables for RP2+, including physical

dose metrics, lung EUD, normal tissue complication probability (NTCP) from the

Lyman-Kutcher-Burman (LKB) model, and lung EUD-calibrated NTCP for

affected and whole lung, underwent both univariate and multivariate analyses.

Relevant variables were then employed as inputs for machine learning models:

multiple logistic regression (MLR), support vector machine (SVM), decision tree

(DT), and K-nearest neighbor (KNN). Each model's performance was gauged

using the area under the curve (AUC), determining the best-performing model.

Results: The optimal a-value for lung EUD was 0.3, maximizing the relative lung

EUD difference between the RP 2+ and non-RP 2+ groups. A strong correlation

coefficient of 0.929 (P< 0.01) was observed between lung EUD (a = 0.3) and

physical dose metrics. When examining predictive capabilities, lung EUD-based

NTCP for the affected lung (AUC: 0.862) and whole lung (AUC: 0.815) surpassed

LKB-based NTCP for the respective lungs. The decision tree (DT) model using lung

EUD-based predictors emerged as the superiormodel, achieving an AUCof 0.98 in

both training and validation datasets.

Discussions: The likelihood of developing RP 2+ has shown a significant

correlation with the advancements in RT technology. From traditional 3-D

conformal RT, lung cancer treatment methodologies have transitioned to
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sophisticated techniques like static IMRT. Accurately deriving such a dose–effect

relationship through NTCPmodeling of RP incidence is statistically challenging due

to the increased number of degrees-of-freedom. To the best of our knowledge,

many studies have not clarified the rationale behind setting the a-value to 0.99 or 1,

despite the closely aligned calculated lung EUD and lung mean dose MLD. Perfect

independence among variables is rarely achievable in real-world scenarios. Four

prominentmachine learning algorithmswere used to devise our predictionmodels.

The inclusion of lung EUD-based factors substantially enhanced their predictive

performance for RP 2+. Our results advocate for the decision tree model with lung

EUD-based predictors as the optimal prediction tool for VMAT-treated lung cancer

patients. Which could replace conventional dosimetric parameters, potentially

simplifying complex neural network structures in prediction models.
KEYWORDS

lung equivalent uniform dose, radiation pneumonitis, machine learning, normal tissue
complication probability, prediction
1 Introduction

Radiation pneumonitis (RP) is a critical complication for lung

cancer patients undergoing radiation therapy (RT). The incidence of

acute RP ranges between 5% and 36%, with respiratory failure

subsequent to RP being a leading cause of death in these patients

(1). The emergence of RP not only challenges treatment effectiveness

but also significantly diminishes patients’ quality of life (1). As such,

accurately predicting RP and initiating timely interventions are

crucial to prevent severe radiation-induced lung injury.

The prevailing method to predict radiation-induced pneumonitis

in clinical practice adopts the dose-volume threshold approach. This

method analyzes the volume of lung tissue receiving a specific

radiation dose, termed V_dose, using techniques like conformal

3D-CRT or intensity modulated radiotherapy (IMRT). While many

studies (2, 3) have reported a correlation between V_dose and RP

occurrence (4), others (5, 6) found challenges such as incomplete data

or nonlinear patterns, hindering the establishment of a solid

correlation threshold. With the advent of advanced radiation

techniques like volumetric modulated arc therapy (VMAT) and

tomotherapy (TOMO), there’s been an upsurge in the lung’s low-

dose volume. For instance, Shen WB et al. underscored V_5 (volume

of lung receiving a low radiation dose) as a key predictor for grade 2

or higher radiation pneumonitis (RP 2+) in patients receiving

radiotherapy for middle and lower thoracic esophageal cancer (7).

Presently, RP prediction mainly hinges on specific dose volume

thresholds derived from lung dose volume histograms (DVH),

potentially missing essential data pertinent to RP development.

In this study, we undertook the formulation and comparative

assessment of diverse machine learning models designed to predict

RP 2+ under non-uniform radiation conditions. We centered our

investigation on the lung equivalent uniform dose (lung EUD) and
02
its parameter a, both exhibiting strong correlation with RP 2+

prediction. Our utilized machine learning algorithms encompass

decision trees (DT), K-nearest neighbor (KNN), logistic regression

(LR), and support vector machine (SVM).

Niemerko et al. initially introduced the concept of equivalent uniform

dose (EUD) grounded in the “Weber-Fechner-Stevens” law, suggesting

that two distinct dose distributions are equivalent if they induce identical

radiobiological effects (8). Consequently, EUD can be understood as

the dose of uniform radiation inducing a radiobiological effect akin to

non-uniform radiation (9). Within this context, the a parameter in

EUD is pivotal, signifying the tissue’s radiation dose tolerance; higher a
values denote increased tolerance. Different a values categorize diverse

tissue types, adhering to the “Stevens law”. Tumor tissue exhibits a

negative a value, suggesting that under-dosing promotes unchecked

tumor growth. In contrast, serial organs in normal tissue possess higha
values due to heightened vulnerability to large doses, while parallel

organs have diminished a values reflecting their lesser dose sensitivity.

The EUD formula is conceptualized through a stimulus-

response model, as illustrated in Equation 1. For streamlining the

correlation analysis between the risk of RP 2+ and lung irradiation,

we judiciously chose a pertinent a value. This choice predicates on

viewing RP 2+ as a biological consequence of external radiation

therapy. We also furnish the optimal a value, a significant lung

tissue descriptor, facilitating the precise prediction of RP 2+.
2 Materials and methods

2.1 Patients

We meticulously assembled a retrospective cohort of 77 patients

diagnosed with locally advanced squamous cell lung cancer
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(LASCLC) from July 2017 to February 2018. Each patient, as part of

their concurrent chemoradiotherapy, received weekly nab-paclitaxel

doses of 60 mg/m^2 and carboplatin with an area under the plasma

concentration-time curve (AUC) of 2. They underwent a thoracic

radiation therapy regimen of 66 Gy over 33 fractions. Post radiation,

consolidation chemotherapy, entailing nab-paclitaxel (260 mg/m^2

on day 1) and carboplatin (AUC 6 on day 1), was administered. The

cohort included 42 patients on a weekly regimen—22 with paclitaxel,

6 with cisplatin, 5 with pemetrexed plus cisplatin, and 9 with

paclitaxel plus carboplatin. The remaining 35 patients followed a

4-week regimen—16 with docetaxel plus cisplatin, and 19 with

pemetrexed plus carboplatin. Table 1 provides a concise overview

of the patients’ clinical attributes.
2.2 Radiation therapy techniques

Patients were positioned using thermoplastic films and

underwent CT simulation scans with the Philips Brilliance Big

Bore CT scanner covering from the upper margin of the liver to the

cricoid cartilage. Dose distributions, calculated with the Pinnacle

(V9.8) treatment planning system, were delivered via Volumetric
Frontiers in Oncology 03
Modulated Arc Therapy (VMAT). Treatment volumes were

delineated as per the Radiation Therapy Oncology Group

(RTOG) atlas. The planning target volume (PTV) was derived

from the clinical target volume (CTV) with specific expansions.

For tumors in one lung, a single arc VMAT minimized impact on

healthy lung tissue (Figure 1A). For central mediastinum tumors, a

3-arc VMAT approach was chosen, resembling static intensity-

modulated radiation therapy (IMRT) (Figure 1B). Prior to each

session, isocentric validation was executed using cone-beam CT

(CBCT) and any needed repositioning was conducted with the

HexaPOD six-dimensional couch adjustment.
2.3 Evaluation criterion for
radiation pneumonitis

Post radiation therapy (RT), patients were evaluated within six

months to confirm the diagnosis and grade of radiation

pneumonitis, the patient’s clinical symptoms, imaging studies,

and laboratory test results are reviewed and evaluated by a

clinical team or a radiologist using the Radiation Therapy

Oncology Group (RTOG (10)) classification criteria for acute

radiation lung injury. Those manifesting RP 2+(Grade2:

Persistent cough requiring narcotic, antitussive agents or dyspnea

with minimal effort but not at rest; Grade3: Severe cough

unresponsive to narcotic antitussive agent or dyspnea at rest/

clinical or radiological evidence of acute pneumonitis/intermittent

oxygen or steroids may be required; Grade4: Severe respiratory

insufficiency/continuous oxygen or assisted ventilation.) were

categorized as the radiation pneumonitis group (GRP), and others

as the non-radiation pneumonitis group (G-NRP).
2.4 Lung EUD calculation

Data, including DVH and lung volume metrics, were extracted

from the Pinnacle treatment planning system. Each voxel’s

radiation dose (D_i) in the lung was computed using MATLAB

software (version R2011b). lung EUD values for the bilateral and

unilaterally affected lung were calculated employing Equation 1

from Zhou et al. (11), where a, an organ EUD characteristic

parameter, was constrained between -50 and +50 in the Pinnacle

system due to limitations. The relative lung EUD difference between

GRP and G-NRP groups was determined using Equation 2. By

exploring the a-R correlation, we identified the specific a value that

best differentiated average lung EUD values between the groups.

This aided in understanding the relationship between this

determined lung EUD value and traditional volume dose

thresholds.

EUD = (
1
NoDa

i )
1

a= , (1)

R =
½lung EUD(GRP) − lung EUD(G −NRP)�

lung EUD(G − NRP)
� 100%: (2)
TABLE 1 Clinical characteristics of the patients (n=77).

Characteristics Without RP 2
+ (percent)

With RP 2
+ (percent)

p
values

Patients 55 (71.4%) 22 (28.6%) 0.35

Sex 0.24

Male 58(75.3%) 16(72.7%)

Female 19(24.7%) 6(27.3%)

Median age, y (IQR) 67(12) 71(11) 0.45

Charlson rate 0.21

0-2 72(93.5%) 5(6.5%)

3-4 4(5.2%) 73(94.8%)

5-6 1(1.3%) 76(98.7%)

Tumor location 0.22

LLL 13(16.9%) 4(18.2%)

LUL 14(18.2%) 2(9.1%)

RLL 39(50.6%) 13(59.1%)

RUL 11(14.3%) 3(13.6%)

Smoking history 0.57

Ever 41(53.2%) 7(31.8%)

Never 36(46.8%) 15(68.2%)

Radioprotectant 0.76

With usage 26(33.8%) 8(36.4%)

Without usage 51(66.2%) 14(63.6%)
LLL, left lower lobe; LUL, left upper lobe; RLL, right lower lobe; RUL, right upper lobe.
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2.5 NTCP calculation

The NTCP_LKB and lung EUD calibrated NTCP_lung EUD for

each patient were determined using the Lyman-Kutcher-Burman

(LKB) model, as described by Equations 3, 4. In this study, all NTCP

calculations were specific to the affected and entire lung.

NTCP = 1
ffiffiffiffi

2p
p ∫

t

�∞
e−

t2

2 dt

t =
dref −TD50(veff )
m·TD50(veff )

veff =o
i
vi · (di=dref )

1=n

(3)

NTCP _ LEUD =
1

1 + ( TD50
LEUD )

4g 50 (4)

The model contains four parameters: TD50, slope parameter

g50 or m, and a parameter n to account for the strength of the

volume dependence of the tolerance dose as a power law. TD50 is

the dose to the reference volume (usually the whole organ), for

which there is a 50% probability of complications occurring. The

parameter g50 or m defines the slope of the dose-complication

probability curve. Veff was set to either the whole organ (liver data)

or the largest irradiated volume (spinal cord data) for this study.

Where vi is each irradiated fractional sub volume (i = 1,……, n, ∑i vi

=1) irradiated with dose di and the reference dose dref. The specific

values for these parameters are as follows: TD50 = 24.5 Gy, g50 = 2,

dref=2, and m=2.
2.6 Statistical analysis

Performed with R version 4.1.1, statistical analysis incorporated

the independent sample t-test to probe variables and correlation

analysis to study relationships between Vdose, lung EUD (optimal),

and RP 2+ occurrence. A significance level of P< 0.05 was used to

discern any significant difference in RP 2+ incidence between GRP

and G-NRP. The Area Under the Curve (AUC) in the Receiver

Operating Characteristic (ROC) analysis gauged the predictive

efficacy of potential predictors.
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2.7 Machine learning methods

Post multivariate regression analysis and AUC computation,

significant variables underwent training and validation of machine

learning models. Four algorithms—multiple logistic regression

(MLR), SVM, DT, and KNN—were utilized. We allocated 70% of

the dataset for training and the remainder for validation, with model

building incorporating a 5-fold cross-validation. Models were crafted

using the Sklearn package in Python (Version 3.8.10). The AUC of

the ROC curve assessed each model’s predictive performance.
3 Results

3.1 Incidence of RP 2+

Based on the adverse reaction assessment criteria set by the

Radiation Therapy Oncology Group (RTOG) in the U.S., we began

evaluating acute reactions from the start of radiotherapy. During

the monitoring period, 22 patients, or 28.6% of the study group,

exhibited RP 2+ symptoms. Conversely, 55 patients did not show

any discernible RP signs.
3.2 Variation in lung EUD value among GRP
and G-NRP for different a values

Figure 2A depicts the rising trend of lung EUD values for both GRP

and G-NRP with increasing a value. Notably, at the lower dose range,

lung EUD (G-NRP) surpasses lung EUD (GRP) untila approaches -0.8

(Figure 2B). Beyond this threshold, the lung EUD (G-NRP) declines

below lung EUD (GRP) for a values greater than -0.8. The most

pronounced relative difference in lung EUD values between the groups

with and without radiation pneumonitis peaks at a = 0.3.
3.3 Physical and biological dosimetric
metrics between GRP and G-NRP

An independent sample t-test was employed to explore the link

between the risk of RP 2+ and pertinent factors, such as planning
FIGURE 1

Illustration of VMAT treatment arcs for tumors located in one side of the lung (A) and in the central mediastinum of the lung (B). (Treatment arcs are
shown in yellow with arrows, PTV is displayed with the red solid line.).
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target volume (Vol_PTV), bilateral lung volume (Vol_Lung), PTV-to-

lung ratio, and more. Table 2 provides a concise summary. Significant

differences in parameters like V5, V10, V20, V30, MLD, and lung

EUD for the lung were observed between groups (with P-values

stated). However, no significant differences in terms of Vol_Lung,

Vol_PTV, and others were detected as their P-values were above 0.05.

As shown in Table 2, significant differences were observed in

several key parameters when comparing the groups with and

without RP 2+. These differences were particularly notable in V5,

V10, V20, V30, MLD, and lung EUD for the lung, with statistically

significant values (P = 0.025, P = 0.007, P = 0.023, P = 0.034, P =

0.024, P = 0.005, respectively). Additionally, there were significant

disparities in the NTCP calculations for both the affected lung and
Frontiers in Oncology 05
the entire lung between the two groups (P = 0.000). However, no

statistically significant distinctions were observed between the

groups in terms of Vol_Lung, Vol_PTV, PTV-to-Lung ratio, and

SAA, as the corresponding P-values exceeded 0.05.
3.4 Correlation between traditional
dosimetric metrics and lung EUD

Table 3’s correlation analysis reveals that when a is 0.3, the

calculated lung EUD value strongly correlates with several

dosimetric metrics. However, as a changes, the correlations with

traditional metrics decline, with some exceptions.
TABLE 2 T test for Dose-related parameters between GRP and G-NRP.

GRP G-NRP

N Average SD N Average SD t P

Vol_Lung 22 3155.60 925.76 55 3085.38 873.63 -0.332 0.741

Vol_PTV 22 474.77 276.33 55 391.15 248.15 -1.347 0.183

PTV-to-lung ratio 22 0.16 0.11 55 0.13 0.081 -1.360 0.180

V5 22 44.07 6.24 55 39.55 9.55 -2.292 0.025

V10 22 32.60 5.26 55 28.17 7.59 -2.794 0.007

V20 22 22.73 3.66 55 19.70 6.51 -2.327 0.023

V30 22 15.87 3.27 55 13.55 5.24 -2.162 0.034

MLD 22 1239.87 210.19 55 1094.13 301.65 -2.310 0.024

lung EUD(= 0.3) 22 627.94 187.57 55 510.23 165.69 -2.887 0.005

NTCP_LKB_Sick 22 0.083 0.038 55 0.039 0.024 6.172 0.000

NTCP_LKB_Total 22 0.076 0.023 55 0.054 0.027 3.800 0.000

NTCP_lung EUD_Sick 22 0.195 0.065 55 0.047 0.209 10.235 0.000

NTCP_lung EUD_Total 22 0.116 0.053 55 0.032 0.019 10.318 0.000

SAA 22 377.80 102.84 55 384.13 89.34 0.277 0.783
fro
MLD, mean lung dose; SAA, sum of the arc angle; NTCP_LKB_Sick, NTCP_LKB for the affected lung; NTCP_LKB_Total, NTCP_LKB for the entire lung.
BA

FIGURE 2

Average values of lung EUD in GRP and G-NPR groups (A) and the relative lung EUD difference (B) between the two groups.
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3.5 Multivariate analysis of RP 2+ based on
lung EUD and dosimetric metrics

A multivariate regression analysis identified factors linked to

the risk of RP 2+. Only factors with P< 0.05 were considered

significant. Due to the robust correlation among specific lung

metrics, they were amalgamated into a single term in the analysis.

As evidenced in Table 4, several factors were identified as

independent predictors of RP 2+.
3.6 ROC analysis of predictors

The Receiver Operating Characteristic (ROC) curve analysis

assessed the efficacy of predictive factors for RP 2+. Table 5’s

comprehensive results spotlight the predictive potential of specific

parameters. Furthermore, the data was segmented into low-risk and

high-risk groups based on variable cutoffs. Figure 3’s violin plots

elucidate the variable distributions within these groups, revealing the

challenges in pinpointing RP2+ based solely on physical dose cutoffs.

Variables that exhibited a significance level below 0.05 in the

multivariate regression analysis were further investigated. The

dataset was subsequently divided into two categories: a low-risk

group and a high-risk group, determined by the respective cutoff

values of each selected variable. These divisions enabled the

generation of violin plots, depicted in Figure 3, illustrating the

distribution of the remaining variables within both groups: those

with RP2+ and those without it. To provide an example, the dataset

was split into two subsets based on the 6.075 Gy cutoff for physical

dose. The violin plots visually represented the distributions of other

selected variables, namely lung EUD, NTCP_LKB_SICK, and

NTCP_lung EUD_SICK, in both groups with and without RP2+.
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As depicted in Figure 3(A1), an interesting observation emerges

when categorizing the groups based on the physical dose cutoff.

Some samples in the low-risk group exhibited RP2+, while a few

samples in the high-risk group did not show RP2+. It becomes

apparent that patients with RP2+ in the low-risk group had lung

EUD values clustering around 8. Conversely, those in the high-risk

group without RP2+ had predominantly lower lung EUD values,

mainly below 6. This observation highlights the challenge of

accurately identifying RP2+ solely based on the physical dose

cutoff. The relatively low AUC value of 0.643 associated with

physical dose in predicting RP2+ further validates this predicament.

Upon closer examination of the high-risk group in B1) and the low-

risk group in B2, as illustrated in Figure 3, an intriguing pattern emerges

in the samples of RP2+-negative patients. These samples exhibit a

phenomenon similar to Gaussian mixed distribution. This observation

prompts the realization that relying solely on the cutoff value of

NTCP_lung EUD_SICK may not be sufficient for precise classification

of patients. Importantly, this multifaceted distribution pattern is also

evident in figures D1 and D3 using lung EUD as the classification

parameter, as well as in figure C3 utilizing NTCP_LKB_SICK as the

classification parameter. Taken together, these findings suggest that our

sample dataset cannot be linearly separated, underscoring the need for a

multi-parameter, nonlinear machine learning algorithm to achieve more

accurate classification and prediction.
3.7 Machine learning models’
predictive performance

Selected variables were used as inputs for machine learning

models. Two distinct predictor sets were formed and subjected to

model training. Figure 4 showcases the receiver operating
TABLE 4 Multivariate regression analysis for prediction of RP 2+.

B S.E, Wals P-value

Physical dose* 0.002 0.000 4.340 0.027

lung EUD(a = 0.3) 0.004 0.002 5.576 0.018

PTV-to-lung ratio 0.140 3.427 0.002 0.967

NTCP_LKB_SICK 0.002 0.001 -3.091 0.001

NTCP_lung EUD_SICK 0.917 0.306 2.990 0.002

NTCP_lung EUD_TOTAL 0.409 0.243 0.168 0.886

NTCP_LKB_TOTAL 0.129 0.069 1.861 0.063

Constant -3.205 1.088 8.671 0.003
Physical dose*= MLD *V5 * V10 * V20 * V30.
TABLE 3 Correlation between dosimetric metrics and lung EUD calculated at different a values.

V5 V10 V20 V30 MLD

lung EUD(a=0.3)
person
p

0.936
0.000

0.911
0.000

0.914
0.000

0.923
0.000

0.961
0.000

lung EUD(a=1)
person
p

0.374
0.002

0.424
0.000

0.444
0.000

0.606
0.000

0.868
0.000
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characteristic (ROC) curves of various models, indicating the

superiority of models integrating lung EUD-based predictors over

those that don’t. Specifically, the SVM model with lung EUD

predictors markedly excelled.

The Decision Tree (DT) model, enriched with lung EUD

predictors, was the standout, achieving an AUC of 0.98 in both

training and validation datasets.

Lastly, the final DT model’s exhaustive evaluation is displayed

in Figure 5, highlighting its commendable prediction benefits and

calibration. This model’s predictions closely align with patients who

can benefit clinically, with a calibration curve mirroring an ideal

curve. This alignment emphasizes the model’s credibility in

predicting RP2+ probabilities.
TABLE 5 AUC calculation of predictors for prediction of RP 2+.

Parameter AUC cut-off value 95% CI

Physical dose* 0.643 6.075 4.342~9.324

lung EUD(a = 0.3)* 0.695 598 cGy 0.572~0.818

PTV-to-lung ratio 0.434 0.156 0.078~0.234

NTCP_LKB_SICK* 0.826 6.55% 0.725~0.927

NTCP_lung EUD_SICK* 0.862 7.72% 0.900~1.000

NTCP_lung EUD_TOTAL 0.815 5.51% 0.824~1.000

NTCP_LKB_TOTAL 0.737 5.55% 0.627~0.847
Physical dose*= MLD *V5 * V10 * V20 * V30.
FIGURE 3

(A1-A3) The patients were divided into low-risk and high-risk groups according to the cut off value of physical dose, and the distribution of lung
EUD, NTCP_lung EUD_SICK and NTCP_LKB_SICK values in two groups are shown, respectively; (B1-B3) The patients were divided into low-risk and
high-risk groups according to the cut off value of NTCP_lung EUD_SICK, and the distribution of lung EUD, physical dose and NTCP_LKB_SICK
values in two groups are shown, respectively; (C1-C3) The patients were divided into low-risk and high-risk groups according to the cut off value of
NTCP_LKB_SICK, and the distribution of lung EUD, NTCP_lung EUD_SICK and physical dose values in two groups are shown, respectively; (D1-D3)
The patients were divided into low-risk and high-risk groups according to the cut off value of lung EUD, and the distribution of NTCP_LKB_SICK,
NTCP_lung EUD_SICK and physical dose values in two groups are shown, respectively.
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Ultimately, following a 5-fold cross-validation process in both

the training and validation datasets, we identified the two types of

models that exhibited the most exemplary performance. These

outcomes are visually represented in Figure 4.

Evidently, the models constructed with the inclusion of lung

EUD-based predictors demonstrate superior prediction

performance in contrast to those constructed without such

predictors. Notably, the SVM model, which incorporates lung

EUD-based predictors, significantly outperforms its counterpart

without them. For instance, in the training set, the SVM model

inclusive of lung EUD-based predictors attains an impressive AUC

of 0.94, as opposed to 0.68 in the model lacking these predictors.

Of all the models considered, the DT model, when enriched with

lung EUD-based predictors, emerges as the top performer, boasting
Frontiers in Oncology 08
an AUC value of 0.98 in both the training and validation sets, thereby

showcasing its exceptional predictive capabilities. We conducted a

comprehensive evaluation of the final DT classification model by

assessing its net benefits and calibration outcomes, as illustrated in

Figure 5. In Figure 5A, discernible patterns emerge, wherein patients

who stand to derive clinical benefits from the model’s predictions are

concentrated within the red area. In alignment with the tenets of the

DAC algorithm, this model approximates an ideal model. Notably,

upon implementing interventions guided by our DT model’s

predictions, the net benefits for patients exhibit only marginal

reductions as the threshold value increases. Furthermore, the

calibration analysis of the model reveals that its calibration curve

closely aligns with the distribution of an ideal calibration curve. This

congruence underscores that the model’s predicted probabilities for
BA

FIGURE 5

DAC curve (A) and model calibration curve (B) of the final decision tree mode.
B

C D

A

FIGURE 4

The receiver operating characteristic (ROC) curves of machine learning models for the prediction/classification of patients with and without radiation
pneumonitis of grade two or higher (RP 2+). Prediction model performance in the training set (A) and validation set (B) without including the lung
EUD and NTCP_lung EUD_SICK in the model building; Prediction model performance in the training set (C) and validation set (D) with including the
lung EUD and NTCP_lung EUD_SICK in the model building. AUC, area under the curve; SVM, support vector machine.
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RP2+ closely mirror the empirical probabilities, thereby enhancing

its reliability.
4 Discussion

The likelihood of developing RP 2+ has shown a significant

correlation with the advancements in RT technology. From

traditional 3-D conformal RT, lung cancer treatment

methodologies have transitioned to sophisticated techniques like

static IMRT. Asakura et al. (2) had reported that a larger volume of

lung receives lower doses because of multiple beam arrangement and

a smaller volume of lung receives higher doses because of better dose

conformity in IMRT plans. Acute pneumonitis correlates more with

V30 values, whereas chronic pneumonitis was predominantly seen in

patients with higher V20 values. Recent innovations, such as VMAT

(exemplified by Rapid Arc) and spiral Tomotherapy (TOMO),

renowned for rapid treatment delivery, have broadened the low-

dose irradiation expanse within the lung. Yaqin Zhao et al. showed

that compared with IMRT, VMAT could increase the risk of acute

radiation pneumonitis (72.73% vs. 36.96%) (P< 0.05) (6), Zhao Y

reported that lung infection during radiotherapy, use of VMAT,

mean lung dose(MLD), and dosimetric parameters (e.g. V20, V30)

are significantly correlated with RP (6). Similar work has been

reported by ZHU Shuchai et al. that the low dose volume of V5 is

effective in predicting ≥grade 2 acute RP in patients with middle and

lower thoracic esophageal cancer (7). These developments have

inadvertently heightened the radiation doses in the lung tissue

surrounding tumors, leading to a non-uniform radiation distribution.

lung has a parallel tissue architecture consisting of several

independently functioning sub-units (FSUs). Accurately deriving

such a dose–effect relationship through NTCP modeling of RP

incidence is statistically challenging due to the increased number of

degrees-of-freedom. As it is not possible to measure the damage to

every single FSU, surrogates such as perfusion loss, ventilation and

tissue density changes are used in the literature to find the local

dose–effect relation. Selvaraj, Jothybasu et al. (5) reached a

conclusion that the EUD perfusion based NTCP model had the

lowest Akaike information criteria while the highest Akaike weights

compared with V-x, MLD, which suggests that equivalent uniform

dose (EUD) has certain advantages over traditional physical dose-

based indicators in predicting radiation pneumonitis. In addition,

the biological dose background of EUD can more accurately reflect

the comprehensive damage of lung functional subunits (FSU) under

non-uniform dose distribution. The EUD concept appears as a

robust radiobiological surrogate of the dose distribution to select the

optimal patient’s plan (12).

Historically, RP 2+ prediction was anchored on conventional

RT dosimetric factors. Cunliffe et al. (13) proposed EUD as an

independent predictor for RP 2+, but its predictive strength fell

short compared to traditional factors like V20. Asakura’s study

primarily hinged on the EUD formula introduced by Collier DC

et al. (14) which overlooked the critical biological characteristic

parameter a, possibly explaining the observed predictive variance.

A prospective, multi-institutional research focused on the

dependence of radiation pneumonitis (RP) on generalized
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equivalent uniform dose (gEUD) was carried by E. L. Williams

et al. (15) The gEUD was calculated for values of the volume

parameter (a) ranging from log10a=-1.0 to +1.0 in steps of 0.1. The

Lyman-Kutcher-Burman (LKB) model was fit to the RP data as a

function of a. We determined the range of a where gEUD was

significantly correlated with RP, the likelihood profile for the model

fits and the best fit parameters. They found that the best fit awas 0.63

[0.32 - 1.02]. While, our study underscores a pronounced difference

in relative lung EUD values between groups when a is set at 0.3 which

very closed to the lower limit of the 95% confidence interval. This

result was also verified by another research carried by Fan Liu et al.

(15) which found the best fit values of the volume effect parameter a
with upper 95% confidence limit around 1.0 in the joint data. While

acknowledging potential calculation errors, it’s evident that the

optimal a value for lung radiotherapy lung EUD lies between 0

and 1. This range holds clinical and research significance. Although

literature often suggests an a value of 1 (16, 17). for parallel organs,

the right selection remains crucial in radiotherapy contexts.

To the best of our knowledge, many studies have not clarified

the rationale behind setting the a-value to 0.99 or 1 (12),despite the
closely aligned calculated lung EUD and lung mean dose MLD.

Jianrong Dai et al. (18) reported in their work that the equivalent

uniform dose (EUD) derived from parallel/serial NTCP of the

contralateral lung was identified as the second significant factor

for RP2+ with an AUC of 0.744. In their study, the a-value was set
to 0.99, which was close to the results of MLD (a-value equals to 1).
However, our research revealed that the EUD value is highly

sensitive to the a-value.
T.Hinton also proposed a method by combing miRNA and

cytokine data along with generalized equivalent uniform dose

(gEUD) to identify pathways with better accuracy of predicting

RP2+ as compared to either miRNA or cytokines alone (19). From

their research it was found that the prediction performance of RP 2

+was significantly improved when the lung_gEUD was adopted

both in pre-treatment and during treatment (4 weeks after

treatment). However, the article did not give the specific

calculation method of gEUD and clarified the a-value which will

greatly affect the calculation results of gEUD, thus affecting the

model prediction results.

Asakura et al (2). postulated that the number of radiation fields

in thoracic tumor radiotherapy could predict RP 2+. Given that our

study’s participants underwent VMAT, we analogized the arc range

of VMAT to traditional IMRT’s radiation fields. However, our

analysis found no significant difference in total irradiation arc or

SAA between the groups. Extensive meta-analysis has highlighted

distinct average PTVs between groups with and without RP 2+.

However, it’s essential to discern the ratio of PTV volume to total

lung tissue, which denotes how extensively radiotherapy affects the

lung. Our study incorporated this ratio in regression analysis, but

results differed from those of De Petris et al. (20) possibly due to our

study’s limited sample size.

Perfect independence among variables is rarely achievable in

real-world scenarios. Some variables might show significance in

univariate analysis but lose this significance in multivariate

contexts. This could be attributed to these variables being

overshadowed by other variables in regression models. In our
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study, even with a significant correlation between lung EUD and

physical dose, both metrics maintained their distinct roles in

regression analysis. Hence, using both in clinical contexts can

potentially enhance RP 2+ predictive accuracy.

This study’s simulation calculations inherently introduced

errors in the lung EUD data. Additionally, patient positioning

inaccuracies during treatment might have influenced data

accuracy. Addressing these errors requires further data acquisition

and detailed analysis.

Four prominent machine learning algorithms were used to

devise our prediction models. The inclusion of lung EUD-based

factors substantially enhanced their predictive performance for RP

2+. Our results advocate for the decision tree model with lung EUD-

based predictors as the optimal prediction tool for VMAT-treated

lung cancer patients. Emerging trends focus on combining lung

dosimetric parameters with CT image-based radiomics as well as

TGF-beta1 to predict radiation-induced side effects has widely

reported (21). Our findings suggest lung EUD could replace

conventional dosimetric parameters, potentially simplifying

complex neural network structures in prediction models.
5 Conclusion

This study identified an optimal lung EUD characteristic

parameter of 0.3, which accentuated the relative difference in lung

EUD values between groups with and without RP 2+. Compared to

conventional metrics, lung EUD (set at 0.3) showcased heightened

clinical predictive capacities for RP 2+ under non-uniform

irradiation. Furthermore, lung EUD-calibrated NTCP displayed

superior predictive potential over the LKB model-based NTCP.

The decision tree model, enriched with lung EUD predictors,

demonstrated outstanding predictive capabilities, advocating its

application in forecasting RP 2+ in lung cancer patients

undergoing VMAT.
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