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Objectives: This research aimed to assess the value of radiomics combined with

multiple machine learning algorithms in the diagnosis of pancreatic ductal

adenocarcinoma (PDAC) lymph node (LN) metastasis, which is expected to

provide clinical treatment strategies.

Methods: A total of 128 patients with pathologically confirmed PDAC and who

underwent surgical resection were randomized into training (n=93) and

validation (n=35) groups. This study incorporated a total of 13 distinct machine

learning algorithms and explored 85 unique combinations of these algorithms.

The area under the curve (AUC) of each model was computed. The model with

the highest mean AUC was selected as the best model which was selected to

determine the radiomics score (Radscore). The clinical factors were examined by

the univariate and multivariate analysis, which allowed for the identification of

factors suitable for clinical modeling. The multivariate logistic regression was

used to create a combined model using Radscore and clinical variables. The

diagnostic performance was assessed by receiver operating characteristic

curves, calibration curves, and decision curve analysis (DCA).

Results: Among the 233 models constructed using arterial phase (AP), venous

phase (VP), and AP+VP radiomics features, the model built by applying AP+VP

radiomics features and a combination of Lasso+Logistic algorithm had the

highest mean AUC. A clinical model was eventually constructed using CA199

and tumor size. The combined model consisted of AP+VP-Radscore and two
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clinical factors that showed the best diagnostic efficiency in the training (AUC =

0.920) and validation (AUC = 0.866) cohorts. Regarding preoperative diagnosis of

LN metastasis, the calibration curve and DCA demonstrated that the combined

model had a good consistency and greatest net benefit.

Conclusions: Combining radiomics and machine learning algorithms

demonstrated the potential for identifying the LN metastasis of PDAC. As a

non-invasive and efficient preoperative prediction tool, it can be beneficial for

decision-making in clinical practice.
KEYWORDS

pancreatic ductal adenocarcinoma, radiomics, lymph node metastasis, machine
learning, computed tomography
1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) accounts for the

seventh-highest cancer mortality rate worldwide, and 50% of

patients with PDAC suffer from metastatic disease (1). Recently,

neoadjuvant therapy has emerged as a significant component in the

management of PDAC (2). According to an investigation, the

administration of neoadjuvant therapy followed by resection is

associated with improved rates of overall survival in comparison

to individuals who undergo upfront resection followed by adjuvant

therapy (3). Neoadjuvant chemotherapy for pancreatic cancer with

significant lymph node (LN) metastases was recommended by the

National Comprehensive Cancer Network (NCCN) guidelines (4).

Hence, the preoperative evaluation of LN status holds significant

importance in establishing a personalized treatment strategy for

individuals diagnosed with PDAC.

The most commonly used imaging modality to evaluate patients

with PDAC prior to surgery is computed tomography (CT).

However, previous studies have suggested that the ability of CT

to effectively forecast the presence of nodal involvement in

surgically treatable PDAC is constrained (5). Approximately 70%

of patients with negative clinical lymph nodes present with lymph

node involvement upon pathologic assessment (6). The lymph node

enlargement may occur independently of localized inflammation

caused by malignant biliary obstruction (7). This indicates that the

preoperative radiological staging of nodule involvement remains

difficult. Therefore, there is an unquestionable need for more

effective methods to assess the LN status for patients with

pancreatic cancer.

Radiomics provides a large amount of medical image

information that can reveal hidden features of diseases that are

invisible to the naked eye (8). Previous research has demonstrated

the efficacy of integrating radiomics and machine learning (ML)

techniques in many applications (9–11). Several researchers have

constructed multiphasic contrast-enhanced CT (CECT) radiomics

models to evaluate the preoperative LN status of PDAC (12–14).
02
These studies indicated that radiomics models have significant

potential in predicting pancreatic cancer with lymph node

metastasis (LNM). However, the researchers predominantly

chose modeling algorithms based on their preferences and

limitations in knowledge. It is imperative that evidence be

provided to select appropriate models for solving clinical

problems. To the best of our knowledge, no study has explored

the use of radiomics combined with multiple ML algorithms in the

preoperative identification of the LN status in PDAC. The

objective of this study was to evaluate the predictive value of

clinical data and radiomic features for forecasting the LN status of

patients with pancreatic cancer using a combination of various

ML algorithms.
2 Materials and methods

2.1 Patients

This study was approved by the ethics committee of the First

Affiliated Hospital of Fujian Medical University. This was a

retrospective research of patients diagnosed with PDAC who

underwent surgical resection with LN dissection treated at the

First Affiliated Hospital of Fujian Medical University between

January 2013 and August 2022. The inclusion criteria were: (1)

patients who underwent surgical resection for pancreatic tumors

and were pathologically confirmed with PDAC, and (2) patients

who underwent multiphasic CECT of the pancreas within 1 month

before surgery. The exclusion criteria were: (1) patients who

underwent preoperative treatment, (2) patients with other

malignant tumors, (3) patients with no available DICOM image

data or poor image quality due to metal or motion artifacts, (4)

patients without complete clinical and pathological data, and (5)

patients with blood system diseases or active infection. A total of

128 patients met the inclusion and exclusion criteria and were

included in the study. A total of 93 and 35 patients were selected at
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random for training and validation, respectively, with a ratio of 7:3.

Figure 1 illustrates the recruitment process and criteria for

including and excluding patients.
2.2 Clinicopathological characteristics

The LN status was retrieved from the Pathology Information

Management System. The clinical variables included age, gender,

tumor size, body mass index (BMI), carcinoembryonic antigen

(CEA), alpha-fetoprotein (AFP), carbohydrate antigen 125

(CA125), and carbohydrate antigen 199 (CA199). The neutrophil-

to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio

(dNLR), monocyte-to-lymphocyte ratio (MLR), systemic immune-

inflammation index (SII), platelet-lymphocyte ratio (PLR), and

prognostic nutritional index (PNI) were calculated as follows:

NLR = neutrophil count/lymphocyte count, dNLR = neutrophil

count/(white blood cell count - neutrophil count), PLR = platelet

count/lymphocyte count, SII = platelet count * neutrophil count/

lymphocyte count, MLR = monocyte count/lymphocyte count, PNI

= albumin + 5 * lymphocyte count.
2.3 CT image acquisition

All patients diagnosed with PDAC were routinely subjected to

CECT scans before undergoing surgery. Toshiba Aquilion PRIME

80-slice spiral CT or Toshiba Aquilion One 320-slice spiral CT

scanner was utilized to obtain CT images using the following

scanning parameters: tube voltage, 120 kV; tube current, 230

mAs; slice interval, 0 mm; slice thickness, 5 mm; rotation time,

0.35 s. The patients received contrast material intravenously
Frontiers in Oncology 03
through the ulnar vein using a high-pressure syringe with a flow

rate of 3.0 mL/s prior to undergoing imaging. Subsequently, we

acquired images corresponding to the arterial phase (AP), venous

phase (VP), and equilibrium phase, with respective delays of 30, 60,

and 120 s.
2.4 Tumor segmentation and
feature extraction

Figure 2 illustrates the research workflow. The CT pictures were

acquired using the Picture Archiving and Communication System

(PACS) implemented in the hospital. Applying 3D Slicer software

(version 4.10.2), one radiologist (reader 1) manually segmented all

regions of interest (ROIs) along the margin of the tumor from both

the AP and VP images. To evaluate the repeatability of radiomics

feature extraction, the CT images from 50 patients were randomly

selected for ROI segmentation by reader 1 and a hepato-biliary-

pancreatic surgeon (reader 2). The intraclass correlation coefficient

(ICC) assessed the intra- and inter-observer agreements, with an

ICC score above 0.75 indicating satisfactory agreement (15). For

intra-observer reproducibility, reader 1 delineated the tumor ROIs

twice within a month. To assess the inter-observer agreement,

reader 2 independently delineated the ROI once and these results

were compared to reader 1’s initial segmentation.

To achieve the voxel spacing standardization, the image data

underwent resampling to a uniform size of 1.0 × 1.0 × 1.0 mm3.

Additionally, image normalization was performed to mitigate

variations in imaging among different CT scanning machines.

The feature extraction procedure was based on the Image

Biomarker Standardization Initiative (IBSI) and was implemented

using the Pyradiomics package (version 3.0.1) in Python (version
FIGURE 1

Flow chart of inclusion and exclusion criteria for patients.
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3.7.4) (16). There were two distinct categories of radiomics features:

original features and features derived by filter transformation.

Those mentioned above included the shape, first-order, gray-level

dependence matrix (GLDM), neighboring gray-tone difference

matrix (NGTDM), gray-level co-occurrence matrix (GLCM),

gray-level run length matrix (GLRLM), and gray-level size zone

matrix (GLSZM). The latter incorporated wavelet and Laplace of

Gaussian (LoG) filtering techniques. All features extracted from the

image were normalized using z-score transformation.
2.5 Feature selection and radiomics
model building

Two steps were taken for the selection of radiomics features in

order to reduce overfitting or bias. First, relationships between the

features and outcomes were examined in univariate analysis, and

features with P-values lower than 0.05 were selected for further

analysis. Second, to enhance the precision and reliability of the

model, we incorporated a total of 13 distinct ML algorithms and

explored 85 unique combinations of these methods (Supplementary

Table 1). The integrative algorithms included ridge, least absolute

shrinkage and selection operator (Lasso), elastic network (Enet),

partial least squares regression for generalized linear models

(plsRglm), linear discriminant analysis (LDA), generalized

boosted regression modeling (GBM), random forest (RF),

stepwise generalized linear model (Stepglm), support vector

machine (SVM), boosted generalized linear model (glmboost),

extreme gradient boosting (XGBoost), naive Bayes, and logistic

regression. In the process, we used one algorithm to filter the

variables and another algorithm to build the radiomics model. No

hyper-parameter tuning of ML algorithms was performed, and

default parameters were used. Radiomics models contained at

least two features. The radiomics score (Radscore), which
Frontiers in Oncology 04
includes AP-Radscore, VP-Radscore, and AP+VP-Radscore, was

respectively computed for each individual using the AP, VP, and AP

+VP radiomics features in order to assess the model’s effectiveness.

Finally, the area under the curve (AUC) was calculated for each

model, and those exhibiting the highest mean AUC value was

deemed the optimal model so that we could select robust and non-

redundant features for preoperative prediction of the LN status of

PDAC from the training cohort. The advantages and disadvantages

of these ML algorithms can be found in the Supplementary

Material S1.
2.6 Construction of the clinical and
combined model

After univariate analysis comparing LN metastasis (–) and LN

metastasis (+) patients’ demographic and laboratory data, clinical

factors with P-values below 0.05 were retained for multivariate

analysis. A clinical model was then constructed using clinical

variables with P-values below 0.05 in the multivariate logistic

regression (LR) analysis. Clinical model predictors and Radscore

were used to construct a combined model by LR. The combined

model was visually represented using a nomogram. Nomogram

scores (Nomo-scores) were calculated using Radscore and

significant clinical features.
2.7 Model evaluation

The validation datasets were used to assess the model’s

performance. The performance of the model was assessed by

AUC values calculated from the receiver operating characteristic

(ROC) curve, along with 95% confidence interval (95%CI),

sensitivity, specificity, accuracy, F1 score, recall, precision, positive
FIGURE 2

The workflow of model construction and validation.
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predictive value (PPV) and negative predictive value (NPV) (17).

Three different models, including the clinical model, Radscore, and

the combined model, were evaluated and compared using the

DeLong test. Five-fold cross-validation was applied to assess the

model performance. The entire cohort was randomly divided into

five similar-size subsamples. The model-building process was

conducted on four subsamples and validated on the remaining

one sub-sample. This process was repeated five times, ensuring each

subsample was used once as the validation data. A calibration curve

was used to evaluate the calibration of the model. Applying the

Hosmer-Lemeshow test, the goodness-of-fit of the model was

evaluated. In order to evaluate the effectiveness of the three

models, a decision curve analysis (DCA) was performed by

calculating the net benefit at different threshold probabilities.
2.8 Statistical analysis

The statistical analysis was carried out using SPSS (version 23.0)

and R software (version 4.3.1). Continuous variables that followed a

normal distribution were represented using the mean ± standard

deviation, whereas those that did not adhere to normality were

represented by the median (interquartile range). Numbers and

percentages were used to represent categorical variables. Clinical

and imaging features were analyzed for normality test by Shapiro-

Wilk test and were analyzed for statistical differences by Student’s t-

test, Mann-Whitney U test, and Chi-square test as appropriate. The

“pROC” package of R software was used to construct ROC curves

and calculate AUC. Calibration plots were constructed by the “rms”

package. The DCA was constructed using the “rmda” package in the

R program. Statistical significance was set at P-value < 0.05.
3 Results

3.1 Patient characteristics

A total of 128 patients were included in this study, including 80

males and 48 females. The patients were randomized into training

(n=93) and validation (n=35) groups. Table 1 summarizes the

clinicopathological characteristics and demographics of all

patients. The clinicopathologic variables in the training cohort did

not differ significantly from those in the validation cohort.
3.2 Inter- and intra-observer agreements

There were 1316 features extracted from AP and VP images.

Among the1316APradiomic features, the satisfactoryconsistency rate

offeatures of intra-observer agreementwas rated at 79.8% (mean ICC=

0.841, Supplementary Figure 1A), and inter-observer agreement was

78.3% (mean ICC= 0.823, Supplementary Figure 1B). For the 1316VP

radiomic features, the satisfactory consistency rate of features of intra-

observer agreement was rated at 79.0% (mean ICC= 0.831,

Supplementary Figure 1C), and inter-observer agreement was 79.4%

(mean ICC= 0.828, Supplementary Figure 1D). Of the 2632 AP+VP
Frontiers in Oncology 05
radiomic features, the satisfactory consistency rate of features of intra-

observer agreement was rated at 79.4% (mean ICC= 0.836,

Supplementary Figure 1E), and inter-observer agreement was 78.8%

(mean ICC= 0.825, Supplementary Figure 1F). A total of 989 AP, 977

VP, and 1966 AP+VP radiomic features had intra- and inter-observer

ICCs greater than 0.75, indicating good reproducibility.
3.3 Feature selection and radiomics
model building

After univariate analysis, 12, 29, and 41 features were retained

for AP, VP, and AP+VP, respectively. Subsequently, different

algorithm combinations were used to construct 67 AP, 84 VP,

and 82 AP+VP models. Among the models constructed with AP

features, the RF model had the best predictive efficacy, achieving

AUCs of 0.992 and 0.781 for the training and validation groups,

respectively (Figure 3A). The Stepglm (direction = forward) model

had the best predictive efficacy among the models constructed with

VP features, with AUCs of 0.887 and 0.706 for the training and

validation groups, respectively (Figure 3B). Among the models that

were built using AP+VP features, it was observed that the Lasso

+Logistic model exhibited the highest effectiveness in predicting the

status of LNs. The AUCs for this model were determined to be 0.918

and 0.863 for the training and validation cohorts, respectively

(Figure 3C). The Wayne diagram of the number of models

constructed from the three-period phases is shown in Figure 3D.

Among the models constructed using AP, VP, and AP+VP features,

the Lasso+Logistic model using AP+VP features demonstrated the

best predictive performance. Therefore, further analysis was focused

on this model. In the Lasso+Logistic model using AP+VP features,

Lasso selected nine features with non-zero coefficients

(Figures 4A, B). Furthermore, the Lasso+Logistic model using AP

+VP features was quantitatively integrated into AP+VP-Radscore.

The equation for computing the radiomics score is presented in the

Supplementary Material S2. Figure 4C shows the detailed feature

names and their corresponding coefficients.
3.4 Clinical model and combined
model construction

Univariate analysis indicated that tumor size, CA199 and

CA125 levels were statistically significant (P<0.05). Multivariate

analysis indicated that CA199 level (OR=1.001 [1.000–1.003],

P=0.043) and tumor size (OR=1.379 [1.079–1.763], P=0.010) were

independent predictors of PDAC LN status (Table 2). These two

variables developed a clinical model. A combined model was

constructed by integrating clinical variables, including CA199 and

tumor size, with the AP+VP-Radscore.
3.5 Model evaluation

We built a clinical model, AP+VP-Radscore, as well as a

combined model. A comparison of the ROC curves for all
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prediction models can be seen in Figures 5A, B. The clinical model

exhibited suboptimal performance, as evidenced by the AUC values

of 0.714 and 0.657 in the training and validation datasets,

respectively. The combined model had superior predictive

performance compared to the other two models. This model

exhibited sensitivity, specificity, and AUC values of 84.44%,

85.42%, and 0.920 (95% CI: 0.868-0.973), respectively, in the

training dataset, and 77.78%, 88.24%, and 0.866 (95% CI: 0.737-

0.995), respectively, in the validation dataset (Table 3). The DeLong

test presented that the combined model and AP+VP-Radscore

exhibited significantly enhanced predictive performances (AUCs:

0.920 vs 0.714, P <0.001 and AUCs: 0.918 vs 0.714, P <0.001,
Frontiers in Oncology 06
respectively) compared to the clinical model in the training set

(Figures 5C, D). Additionally, the combined model demonstrated

higher prediction accuracy in comparison to the AP+VP-Radscore;

however, this improvement did not reach a statistical significance in

either the training or validation datasets. Among all the three

models, the combined model outperformed the other two models,

whether in training or validation datasets. Subsequently, the

performance of the models was evaluated using five-fold cross-

validation (Supplementary Table 2). The combined model

demonstrated stable prediction performance in both the training

(mean AUC± standard deviation [SD], 0.909 ± 0.009) and

validation (mean AUC ± SD, 0.904 ± 0.037) cohorts.
TABLE 1 Demographic and clinicopathological characteristics of patients.

Characteristics Training cohort (n =93) Validation cohort (n =35) Pinter

LN Metastasis (−) LN Metastasis (+) Pintra LN Metastasis (−) LN Metastasis (+) Pintra

Age 61.73 ± 11.72 61.49 ± 9.94 0.916 60.94 ± 10.24 63.28 ± 9.86 0.496 0.802

BMI 22.02 ± 2.74 21.49 ± 3.16 0.390 21.29 ± 2.11 21.65 ± 3.41 0.715 0.621

Gender 0.050 0.407 0.720

Male 35(72.92) 24(53.33) 9(52.94) 12(66.67)

Female 13(27.08) 21(46.67) 8(47.06) 6(33.33)

HBP 0.184 0.088 0.979

No 36(75.00) 28(62.22) 14(82.35) 10(55.56)

Yes 12(25.00) 17(37.78) 3(17.65) 8(44.44)

Diabetes 0.805 0.193 0.645

No 30(62.50) 27(60.00) 13(76.47) 10(55.56)

Yes 18(37.50) 18(40.00) 4(23.53) 8(44.44)

CA125 15.88(10.68-21.70) 22.30(13.75-51.00) 0.012 25.32(10.95-40.75) 20.54(9.49-39.98) 0.843 0.728

CA199 118.50(22.43-239.70) 244.00(95.45-812.95) 0.006 28.20(7.19-236.40) 258.00(83.23-777.30) 0.045 0.561

CEA 4.18(2.46-6.35) 2.84(2.05-5.38) 0.087 3.25(2.26-5.84) 3.39(2.16-6.22) 0.961 0.472

AFP 2.14(1.61-3.00) 2.43(1.71-3.38) 0.254 2.76(1.86-4.82) 2.54(1.74-3.19) 0.400 0.281

Tumor size 3.30(2.50-4.48) 4.50(2.85-5.85) 0.003 3.50(2.80-5.15) 3.65(3.10-5.75) 0.418 0.738

LYM 1.58 ± 0.58 1.48 ± 0.50 0.360 1.49 ± 0.59 1.39 ± 0.55 0.594 0.391

WBC 6.26(5.17-7.33) 5.46(4.67-6.77) 0.220 6.07(4.92-6.82) 5.75(4.21-6.76) 0.488 0.485

NEU 3.67(2.69-4.61) 3.61(2.84-4.52) 1.000 3.42(2.96-4.28) 3.02(2.42-4.53) 0.338 0.499

M 0.36(0.30-0.45) 0.31(0.26-0.40) 0.100 0.36(0.29-0.40) 0.33(0.30-0.50) 0.608 0.634

PLT 226.00(196.25-266.50) 212.00(166.50-258.00) 0.214 211.00(176.00-293.50) 210.50(159.75-265.50) 0.563 0.441

NLR 2.40(1.73-3.41) 2.73(1.80-3.60) 0.299 2.48(1.93-3.13) 2.56(1.75-2.95) 0.741 0.779

dNLR 1.64(1.20-2.25) 1.90(1.34-2.31) 0.155 1.68(1.39-2.11) 1.69(1.22-1.99) 0.509 0.598

PLR 158.71(110.76-195.24) 142.74(118.35-204.69) 0.939 144.05(122.29-199.19) 156.66(116.66-195.32) 1.000 0.730

SII 536.45(367.49-849.28) 531.10(388.12-796.42) 0.945 612.86(327.41-808.38) 437.38(323.53-598.28) 0.448 0.427

MLR 0.23(0.19-0.33) 0.22(0.17-0.35) 0.628 0.21(0.19-0.32) 0.27(0.17-0.39) 0.597 0.532

PNI 48.24 ± 5.38 48.15 ± 5.69 0.939 47.19 ± 5.53 47.24 ± 5.41 0.977 0.368
fr
HBP, high blood pressure; NEU, neutrophil; LYM, lymphocyte; WBC, white blood cell; M, monocyte; PLT, platelet; Pintra is the result of univariate analyses between the LNmetastasis (−) and LN
metastasis (+) groups while Pinter represents whether a significant difference exists between the training and validation datasets.
ontiersin.org

https://doi.org/10.3389/fonc.2024.1342317
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2024.1342317
To determine the LN status of PDAC, we developed a nomogram

based on the combined model (Figure 6A). Supplementary Figure 2

displays the Nomo-scores of every individual in both the training and

validation groups. Supplementary Figure 3 shows the CECT images

and hematoxylin-eosin stained pictures with and without LN

metastasis. Nomogram calibration curves demonstrated favorable

calibration for training and validation groups (Figure 6B, C). The

Hosmer-Lemeshow test showed no significant difference between the

predicted calibration and ideal curves in the training (c2 = 3.705,

P=0.883) and validation (c2 = 13.654, P=0.091) cohorts. This suggests

that the nomogram exhibited a good level of conformity in both the

cohorts. Figures 7A, B displays the DCA curves of the three models.

The combined model exhibited superior net benefit in accurately

identifying the LN status of PDAC in both the training and

validation populations.
Frontiers in Oncology 07
4 Discussion

PDAC has a heightened mortality rate and a dismal prognosis,

mostly attributed to the challenges associated with early identification

and the curative treatment modalities. In patients with PDAC,

pancreatectomy has the greatest likelihood of improving long-term

survival. LN status as an essential and independent prognostic

indicator has been demonstrated (18). However, there remains a

debate as to whether standard or extended LN dissection should be

included during pancreatectomy (19, 20). Therefore, it is essential to

accurately stage the LN before surgery in order to provide patients

with comprehensive counseling on surgical choices and prognosis.

The objective of this research was to construct and verify multipleML

models using CECT to differentiate the LN status in PDAC. As the

combined model incorporated elements like CA199 levels and tumor
FIGURE 3

Develop and validate models through integrated machine learning. (A) A total of 67 prediction models were built using features from arterial phase
radiomics, and the AUC of each model was further computed on the training and validation datasets. (B) 84 predictive models built from venous
phase radiomics features. (C) 82 predictive models constructed based on radiomics features of arterial and venous phases. (D) Wayne diagram of the
number of models.
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size, it varied from the conventional single radiomics model. The

combined model demonstrated significant capability of

distinguishing LN metastasis in the training (AUC, 0.920) and

validation (AUC, 0.866) cohorts. To the best of our knowledge, this

is the first study to compare multiple ML algorithms to detect the LN

metastases in PDAC preoperatively.

CA199 is currently regarded as the most appropriate serum

marker for patients with resectable PDAC, as it is the only

prognostic biomarker approved by the Food and Drug

Administration (21). A study has provided evidence of the

clinical significance of the preoperative CA199 level as a

prognostic marker in patients with PDAC presenting with

metastases in the para-aortic LN (22). In our study, the CA199

level was validated as an independent risk factor of LN metastasis

for PDAC. We speculated that such results may be because CA199

is a particular biomarker that reflects the biological activity and that

the greater the CA199 level, the worse the patient’s prognosis (23).

A study found a positive association between the size of tumors and
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occurrence of LN metastases in endometrial carcinoma (24).

Similarly, our investigation has unveiled that the size of the

tumor serves as a noteworthy and independent predictor of the

occurrence of LN metastasis. However, clinical models consisting of

CA199 and tumor size have poor predictive ability for LN status

(AUC= 0.714 in training datasets; AUC = 0.657 in validation

datasets). Some studies suggested that patients with severe

obstructive jaundice may have elevated CA199, which can

mislead predictive results (25). It partially explains the poor

predictive efficacy of clinical models. The predictive value of

inflammatory indices in relation to the prognosis of individuals

diagnosed with PDAC has been shown in previous studies (26, 27).

However, our investigation could not confirm the association

between inflammatory indices and LN metastases. The differences

in the study population may explain the inconsistencies with

previous findings, and research with larger sample sizes or in

other populations is warranted in the future.

Although CT is the most commonly used method to evaluate

pancreatic cancer resectability, Imai et al. (28) indicated that low-

order data such as LN diameter and volume measured from CT

image cannot reflect obvious differences between patients with

pancreatic cancer with and without LN metastasis. This may

explain why visual assessment of CT scans has a low efficiency for

detecting LN metastases among patients with pancreatic cancer.

Radiomics, also referred to as a “whole-tumor virtual biopsy

technique,” enables the extraction of numerous image features

from the entire tumor, reflecting its heterogeneity and

characteristics (29). A biopsy examines only a portion of the

tumor tissue, which cannot comprehensively assess the intra-
FIGURE 4

Radiomics features selection. (A) The value (l) was chosen for the Lasso algorithm’s tuning parameter through 10-fold cross-validation. Two vertical
lines show the optimal values according to the minimum criterion and 1-SE criterion. The optimal l value of 0.0229 was chosen. (B) Profiles of Lasso
coefficients for 41 radiomics features. A vertical line was drawn at the value selected using 10-fold cross-validation, and a total of nine features with
non-zero coefficients were chosen. (C) Nine selected radiomics features and their coefficients.
TABLE 2 Clinical factors in the multivariate analysis.

Characteristics
Coefficient P value OR 95% CI

of OR

CA199 0.001 0.043 1.001 (1.000, 1.003)

CA125 0.003 0.450 1.003 (0.995, 1.011)

Tumor size 0.321 0.010 1.379 (1.079, 1.763)

Constant -1.930 0.001 0.145 -
OR, odds ratio.
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tumor heterogeneity before surgery (30). In contrast, radiomics can

non-invasively reflect comprehensive information about the entire

tumor. This approach has promise for enhancing diagnostic

capabilities and facilitating the development of personalized

treatment approaches (31). The data from radiomics contain first-

, second-, and higher-order features that can hardly be identified by

the naked eye (31). This data was used for predicting the LN status

of bladder, breast, and gastric, and esophageal cancers and were

suggested to have some advantages (32–35). Several studies in

recent years have used CECT radiomics analysis of primary

lesions to predict LN metastasis. PDAC tumors or peri-tumors

have been shown to have a high lymphatic vessel density (36, 37).

PDAC commonly infiltrates the LNs through the lymphatic system,

as opposed to direct or adjacent extension of the primary cancer

into the LN (38, 39). Accordingly, analyzing the image of the

primary tumor may be more effective than the image of LNs in

predicting LN metastasis. That is why ROIs were segmented into

tumor regions in this study. Some previous studies have used only

one VP radiomics feature to construct the models; however, our

study shows that AP radiomics feature is also important (12, 40, 41).

Some other studies have only considered AP images, which may

miss some useful information about the VP images (7, 42). Our
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findings suggest that AP and VP radiomics feature have comparable

performances in predicting the LN status. Besides, the predictive

performance of the AP+VP-Radscore constructed by combining AP

and VP features was higher than that of the model constructed by a

single phase. Thus, incorporating more CT phases may allow for the

development of more effective models. Shi et al. conducted a study

wherein they employed MRI radiomics to detect LN metastasis in

individuals with PDAC prior to surgery (43). However, it should be

noted that their study incorporated a limited number of clinical

factors. A previous study developed a radiomics-based strategy for

preoperative prediction of LN status in patients with resectable

PDAC. However, only the largest tumor strata were examined in

their investigation, and the sample comprised only 85 cases (41).

Most of these previous studies used only one algorithm, hence

limited conclusions can be drawn. Our study differed from previous

studies as we incorporated AP and VP of CT rather than one scan

phase. Multiple radiomics ML models were compared rather than

solely focusing on a single model. The integration of the clinical

variables and the AP+VP-Radscore in our combined model

demonstrated a high level of predictive capability, as evidenced by

an AUC of 0.866 in the validation cohort. This performance

surpassed that of both the single phase Radscore and clinical
FIGURE 5

The comparative predictive performance of various models. ROC curves of different models in the training (A) and validation (B) cohorts; Heat map
of the P-values for the DeLong test between the training (C) and validation (D) cohorts of different models.
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model. Hence, the inclusion of clinical variables holds significance

and warrants consideration in the analysis of radiomics.

In this study, the predictive power of the combined AP and VP

features outperformed that of separate AP or VPmodel. The AP+VP-

Radscore in our study was calculated by six wavelet texture, two LoG

filtered texture, and one original features. Wavelet features have been

confirmed as useful indexes in predicting the tumor pathological

grade and histologic subtype (44, 45). According to our study, the

wavelet texture features took an important position in the LN

metastasis prediction model. By using the wavelet decomposition of

images at several scales, fine and coarse textures could be extracted to

depict the spatial heterogeneity within tumor regions (46). The

findings of this research align with those of other studies that

employed wavelet-based features in their radiomics models. A

previous research endeavor was initiated to construct a predictive

model to assess the preoperative LN status for intrahepatic

cholangiocarcinoma, which was constructed using wavelet features

exclusively (47). In another research aimed at evaluating the role of

radiomics in predicting LN status in intrahepatic cholangiocarcinoma,

it was observed that wavelet features constituted 79% of the features

incorporated into the model (48). Xiao et al. conducted research to

establish and validate a nomogram for the purpose of forecasting the

occurrence of LN metastasis in individuals with early-stage cervical

cancer. The constructed model encompassed a total of 23 features,

with 19 of these being wavelet features (49). We speculated that the

possible explanation for this phenomenon could be the potential

correlation between wavelet features and the infiltration of

malignancies into the lymphatic system. LoG filtering is a

sophisticated technique for picture filtering that integrates the

principles of Laplace and Gaussian filtering. The utilization of

Laplacian filtering in image processing can effectively emphasize

locations within the image that have undergone mutations in gray

level, hence enhancing the contrast in gray levels. The application of a

Gaussian operator can mitigate the noise introduced by the Laplace

operator (50, 51). LoG filtering can also be beneficial in detecting LN

metastases of PDAC based on the results of our study. Our results

show that GLSZM features are helpful in diagnosingmetastatic LNs in

PDAC. A previous study used radiomics to predict LN metastasis in

individuals diagnosed with PDAC, and the model also included

GLSZM features (12). GLSZM features quantify gray level zones in

an image. The texture features based on GLSZM, which capture the

interplay of adjacent pixels, have demonstrated a superior ability to

quantify tumor texture and heterogeneity compared to features based

on histograms (52).

ML algorithms, including SVM, LDA, and LR, have been

extensively employed in the domain of clinical prediction and

classification tasks (53, 54). Multiple studies show that LR has

better performance than other ML algorithms (55–58). A meta-

analysis which compared the efficacy of multiple ML algorithms in

pregnancy care prognosis prediction indicated that LR models had

superior performance compared to non-LR models in trials with a

low risk of bias (57). Li et al. (58) employed stepwise selection using

LR as well as four ML techniques, including gradient boosting

machine, RF, XGBoost, and single-layer neural networks, in order

to construct predictive models for hip fractures. LR was found to be

best in terms of discrimination performance. ML has demonstrated
T
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high performance in tasks characterized by a significant signal-to-

noise ratio, such as identification of handwriting and video games.

Clinical predictive issues frequently exhibit one low signal-to-noise

ratio (59). LR is based on a sigmoid function and works best on

binary classification problems (60). Consequently, LR with

universality cannot be ignored in this study. To explore the best

algorithm for predicting PDAC LN status, we compared 233 models

and finally confirmed that the Lasso-Logistic regression model

constructed with AP+VP features outperformed other ML
Frontiers in Oncology 11
algorithms. This discovery implies that the efficacy of the model

is impacted by the characteristics of the algorithm and its

congruence with the study goals.

Our study had several limitations. First, it was only based on single-

center data. Although our study adopted cross-validation, it may not

avoid the overfitting risk. A large sample, multicenter study utilizing

multiple CT scanners is necessary to validate the accuracy and stability

of our combined model. Second, subgroup analysis based on sites of

LN metastases was not implemented. Third, we only evaluated the AP
FIGURE 6

(A) A nomogram was plotted by combining AP+VP-Radscore with independent clinical predictors in the training cohort. Nomogram calibration
curves for the training (B) and validation (C) cohorts.
FIGURE 7

DCA curves for three models in the training (A) and validation sets (B).
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and VP images of CECT; combining the plain and delayed phases may

contain more information about tumor heterogeneity. Moreover, this

study did not employ dynamic radiomics features to quantify the

degree of variation between AP and VP, thereby overlooking the

temporal evolution of radiomics features. Dynamic radiomics

features should also be explored in future studies. Fourth, we used

the default parameter settings of ML algorithms instead of tuning the

parameters, which may have hindered the algorithm from achieving its

optimal performance. Finally, the image segmentation approach

utilized in this study relied on manual delineation. In the future,

automated segmentation techniques could be employed to enhance

consistency and efficiency.

In summary, of the 233 radiomics models examined, the model

built by applying AP+VP radiomics features and a combination of

Lasso-Logistic algorithm had the most favorable performance in

both the training and validation cohorts. Our investigation showed

that integrating the AP+VP-Radscore with clinical parameters

yielded the best performance. This combined model has the

potential to serve as an accurate and non-invasive instrument for

forecasting LN metastasis of PDAC, hence facilitating clinical

decision-making.
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