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Purpose: To develop deep-learning radiomics model for predicting biochemical

recurrence (BCR) of advanced prostate cancer (PCa) based on pretreatment

apparent diffusion coefficient (ADC) maps.

Methods: Data were collected retrospectively from 131 patients diagnosed with

advanced PCa, randomly divided into training (n = 93) and test (n = 38) datasets.

Pre-treatment ADC images were segmented using a pre-trained artificial

intelligence (AI) model to identify suspicious PCa areas. Three models were

constructed, including a clinical model, a conventional radiomics model and a

deep-radiomics model. The receiver operating characteristic (ROC), precision-

recall (PR) curve and decision curve analysis (DCA) were used to assess predictive

performance in test dataset. The net reclassification index (NRI) and integrated

discrimination improvement (IDI) were employed to compare the performance

enhancement of the deep-radiomics model in relation to the other two models.

Results: The deep-radiomics model exhibited a significantly higher area under

the curve (AUC) of ROC than the other two (P = 0.033, 0.026), as well as PR curve

(AUC difference 0.420, 0.432). The DCA curve demonstrated superior

performance for the deep-radiomics model across all risk thresholds than the

other two. Taking the clinical model as reference, the NRI and IDI was 0.508 and

0.679 for the deep-radiomics model with significant difference. Compared with

the conventional radiomics model, the NRI and IDI was 0.149 and 0.164 for the

deep-radiomics model without significant difference.

Conclusion: The deep-radiomics model exhibits promising potential in

predicting BCR in advanced PCa, compared to both the clinical model and the

conventional radiomics model.
KEYWORDS
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deep learning
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1 Introduction

Prostate cancer (PCa) is the second most common cancer in men

and cancer-related mortality ranks the fifth (1). Treatment options

include active surveillance, radical prostatectomy (RP), radiotherapy

(RT), hormonal therapy (HT), chemotherapy, immunotherapy and

others (2). After treatment, some patients might experience

biochemical recurrence (BCR) (3). BCR serves as a prognostic

indicator for the cure of PCa, clinical metastases and ultimately

PCa-related death (3). Prediction of BCR could help healthcare

professionals in treatment planning by identifying patients who

may benefit from additional therapies or interventions.

Various prediction models for BCR incorporate clinical

variables such as age, prostate specific antigen (PSA) level, clinical

stage, Gleason score, and other relevant factors (3–8). These clinical

variables are believed to be associated with the aggressiveness of

PCa, which explains their usefulness in predicting BCR. Magnetic

resonance(MR) image features have also been found to be

associated with the aggressiveness of PCa (9). Therefore, it is

reasonable to expect that utilizing MR image features can

contribute to the prediction of BCR (10). In studies focusing on

MR prediction models, the use of radiomics methods enables the

extraction of more information compared to human image

interpretation alone (11, 12). Radiomics allows for the analysis of

intricate quantitative image features that may not be readily

apparent to the human eyes, thereby enhancing the predictive

capabilities (13–18).

However, previous research has primarily focused on localized

PCa treated with RP and/or RT. Patients with advanced PCa who

received only HT or complex treatment were not included in analysis,

especially those with lymph node metastasis or distant metastasis.

Additionally, previousMR radiomics studies predominantly relied on

manual annotations of regions of interest (ROI) by experts to

construct the prediction models. This manual annotation approach

is time-consuming and labor-intensive and hampers the widespread

clinical application of these models. Moreover, most previous MR

radiomics research involved the extraction and analysis of imaging

features using generic morphological, textural, and statistical features

defined by predetermined formulas (19). While these features provide

useful information, they may not fully capture the intricate patterns

and relationships presented within the images. Recently, deep

learning methods have shown promising applications in

automating the feature extraction process and capturing more

complex patterns and relationships within images (19–21). Deep

learning models of PCa were mainly applied in preclinical discovery

(22), Gleason grading (23), tumor metastasis (24) and BCR in RP

(25). Thus, our study was aimed to develop deep learning model with

automatic segmentation derived from pretreatment apparent

diffusion coefficient (ADC) maps that may be predictive of BCR in

advanced PCa.
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2 Methods

2.1 Data enrollment

This retrospective study received approval from the local

institutional review board of the Peking University First Hospital

Medical Science Research ethics committee (IRB number: 2021-

342), and the requirement for written consent was waived.

A total of 2,232 patients suspected of PCa between 2016 and

2020 in our institution were included in the study. The inclusion

criteria were as follows: (a) Availability of pretreatment MR images

in the Picture Archiving and Communication Systems (PACS). (b)

Clinically diagnosed as advanced stage and initial treatment with

RT, HT, or a combination of both. (c) Regular follow-up at least

every three months in the first year and every six months in the

second year. (d) Availability of clinical data. (e) Follow-up period of

at least two years with documented biochemical recurrence (BCR+)

or non-BCR (BCR-). BCR was defined as any PSA increase greater

than 2 ng/mL compared to the PSA nadir value for patients who

underwent RT with or without HT. For patients who received only

HT, BCR was defined as castrate serum testosterone less than 1.7

nmol/L with either three consecutive PSA increases at least one

week apart, resulting in a two-fold increase exceeding the nadir by

50% and a PSA greater than 2 ng/mL, or radiological progression

evidenced by the appearance of new lesions (26).

Finally, a total of 131 consecutive patients were included in this

study, consisting of 100 BCR- and 31 BCR+ patients (Figure 1). Of

these patients, 4 received only RT (including 4 BCR- and 0 BCR+),

75 received RT with HT (74 BCR- and 1 BCR+), and 52 received

only HT (22 BCR- and 30 BCR+).
2.2 MRI acquisition parameters

A comprehensive description of acquisition parameters for

seven different MR scanners are provided in Table 1. The

magnetic field strength of MR scanners included 1.5 T (n = 46,

35.1%) and 3.0 T (n = 85, 64.9%). The radiomics analysis exclusively

focused on ADC images, which were obtained with a median b

value of 1400 s/mm2. Diffusion weighted imaging (DWI) was

acquired by using single-shot echo planner imaging (SS-EPI)

sequence. The calculation of ADC maps was performed using

vendor-specific software associated with each MR scanner (GE:

Advantage Workstation, Philips: IntelliSpace Portal, Siemens:

syngo.via, UIH: uWS-MR Advanced Postprocess Workstation).

Other imaging sequences, including T1-weighted imaging

(T1WI), T2-weighted imaging (T2WI) and dynamic contrast

enhancement (DCE), were acquired simultaneously but were not

subjected to analysis in current study.
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2.3 Region of interest

The areas of PCa were predicted by priorly trained models (22)

on the ADC maps (Figure 2). Initially, the areas corresponding to

prostate gland were segmented by artificial intelligence (AI) models.

Subsequently, the regions of suspected PCa were segmented in a

sequential manner. The three-dimensional volume ROI was utilized

for extracting image features required for model development. If

multiple PCa foci were segmented, the largest one was automatically

taken as the ROI. Prostate Imaging and Reporting Archiving Data

System (PI-RADS) v2.1 was used to score lesions of interest by an

experienced radiologist (work experience more than 10 years).

Among 131 patients, 106 had only one suspicious lesion, 20 had

two, 4 had three, and 1 had four. The volume, location, and PI-

RADS scores of these lesions are detailed in Table 2. In 121 patients,

the largest lesion coincided with the one rated as the highest PI-

RADS score. In 10 cases, the largest lesion shared the same PI-

RADS score as the second largest lesion.
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2.4 Model development

The collected data were divided into two datasets, namely, the

training dataset (n = 93) and the test dataset (n = 38), using a

random allocation with a ratio of 7:3 (27). Subsequently, three

prediction models were developed using the training dataset: a

clinical model, a conventional radiomics model, and a deep-

radiomics model. The clinical characteristics, including age, PSA

level, PI-RADS score, International Society of Urological Pathology

(ISUP) group for biopsy pathology, clinical stage and treatment,

remained consistent across all models. However, the image features

varied among models, and their specific extraction methods will be

elaborated in the subsequent manuscript.

To construct the clinical model, location, volume and ADC

value of PCa area segmented by the AI models were selected as

image features. Univariable logistic regression and multivariable

logistic regression analysis were conducted to identify the

significant predictors. The selection of predictors was performed
FIGURE 1

Flow chart of patient enrollment.
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using a stepwise selection approach guided by the Akaike

information criterion (AIC). The adequacy of the model was

evaluated by calculating the R2 value using the Nagelkerke

method. To help comprehensive interpretation of the model, a

nomogram graph was generated.

To construct the conventional radiomics model, the image

features were extracted from ROIs on the ADC maps using the

Pyradiomics package in Python (https://pyradiomics.readthedocs.io/

en/latest/changes.html). To account for potential variations across

different scanners, preprocessing of the ADCmaps was performed by

applying image normalization to mitigate confounding effects. Three

types of images were analyzed: “Original Images” representing

unfiltered images, “LoG Images” obtained by applying the

Laplacian of Gaussian filter, and “Wavelet Images” generated
Frontiers in Oncology 04
through a three-dimensional wavelet transformation using the

PyWavelet package in the x, y, and z directions. The ROIs were

then preprocessed to ensure a consistent size. A total of 14 shape

features, 18 first-order statistical features, and 24 texture features were

extracted from the images. The shape features were exclusively

extracted from the “Original Images,” while the first-order

statistical and texture features were extracted from all three types of

images. Therefore, a total of 14 shape features, 216 first-order

statistical features, and 840 texture features were obtained. The

mathematical expressions and semantic meanings of the features

extracted can be found at https://pyradiomics.readthedocs.io/en/

latest/. After feature extraction, several additional steps were

performed. Z score normalization was applied to rescale the

extracted features, and Pearson correlation coefficients (PCCs) were
TABLE 1 Image acquisition protocols of ADC maps at seven MR scanners.

GE Philips Siemens UIH Overall

(N=77) (N=22) (N=30) (N=2) (N=131)

Magnetic field

1.5 T 5 (6.5%) 11 (50.0%) 30 (100%) 0 (0%) 46 (35.1%)

3.0 T 72 (93.5%) 11 (50.0%) 0 (0%) 2 (100%) 85 (64.9%)

Model name

Achieva 0 (0%) 9 (40.9%) 0 (0%) 0 (0%) 9 (6.9%)

Aera 0 (0%) 0 (0%) 30 (100%) 0 (0%) 30 (22.9%)

Discovery MR750 69 (89.7%) 0 (0%) 0 (0%) 0 (0%) 69 (52.7%)

Ingenia 0 (0%) 2 (9.1%) 0 (0%) 0 (0%) 2 (1.5%)

Multiva 0 (0%) 11 (50.0%) 0 (0%) 0 (0%) 11 (8.4%)

Signa Excite 8 (10.3%) 0 (0%) 0 (0%) 0 (0%) 8 (6.1%)

uMR 790 0 (0%) 0 (0%) 0 (0%) 2 (100%) 2 (1.5%)

b value (s/mm2)

Median [Q1, Q3] 1400 [1400,1400] 1400 [1000,1400] 1400 [1400,1400] 1400 [1400,1400] 1400 [1400,1400]

Repetition time (ms)

Median [Q1, Q3] 2660 [2640,3000] 2510 [2000,3410] 5010 [5010,5010] 3000 [2400,3000] 3000 [2640,5010]

Echo time (ms)

Median [Q1, Q3] 61.3 [60.8,62.0] 71.0 [66.9,74.9] 53.0 [53.0,53.0] 67.0 [60.0,67.0] 61.2 [58.5,63.3]

Pixel bandwidth (MHz)

Median [Q1, Q3] 1950 [1950,1950] 2010 [1790,2590] 1090 [1090,1090] 1390 [1390,1790] 1950 [1390,1950]

Slice thickness (mm)

Median [Q1, Q3] 4.00 [4.00,4.50] 4.00 [4.00,5.00] 4.00 [4.00,4.00] 3.00 [3.00,3.00] 4.00 [4.00,4.50]

Slice spacing (mm)

Median [Q1, Q3] 4.00 [4.00,4.50] 4.00 [4.00,5.00] 4.00 [4.00,4.00] 3.30 [3.15,3.30] 4.00 [4.00,4.50]

Reconstruction diameter (mm)

Median [Q1, Q3] 240 [240,240] 240 [224,268] 200 [200,200] 200 [200,210] 240 [200,240]

Pixel spacing (mm)

Median [Q1, Q3] 0.938 [0.938,0.938] 1.02 [0.961,1.15] 2.08 [2.08,2.08] 1.04 [0.736,1.04] 0.938 [0.938,1.38]
frontiersin.org

https://pyradiomics.readthedocs.io/en/latest/changes.html
https://pyradiomics.readthedocs.io/en/latest/changes.html
https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
https://doi.org/10.3389/fonc.2024.1342104
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1342104
calculated to identify highly correlated features. Features with a PCC

value exceeding 0.99 were removed to mitigate multicollinearity.

Analysis of variance (ANOVA) was then used to select features for

the final radiomics model. As the classifier, eXtreme gradient

boosting (XGBoost) algorithm was employed. And SHAP (SHapley

Additive exPlanations) values were used to interpret the results

obtained from the XGBoost models.

To construct the deep-radiomics model, the image features were

extracted by employing a deep learning algorithm. The construction

process involved several steps. First, the intensities of ADC maps

were preprocessed by normalizing them. Second, ROIs were

resampled to ensure a consistent voxel size. Third, a pre-trained
Frontiers in Oncology 05
deep learning model was utilized to extract features from ROIs,

leveraging the power of learned representations. Specifically, the

ROIs were input into the convolutional layers of the MedicalNet

architecture, which had been initialized with pre-trained weights to

extract discriminative features. A comprehensive description of the

network can be found in previous work (https://github.com/

Tencent/MedicalNet). The resulting channel feature maps were

then subjected to feature dimension reduction by filtering with

the maximum value. This process yielded a set of 2048 one-

dimensional features. After extracting deep features, the

construction of the deep-radiomics model followed a similar

procedure to the conventional radiomics model.
FIGURE 2

Illustration of an ROI example. (A, B) Two different slices of the ADC map. (C,D) AI model’s prediction of the prostate region (blue zone). (E,F) AI
model’s detection of suspicious lesion areas (green zone). (G,H) The largest lesion (red zone) was selected for radiomics modeling. ROI, region of
interest; ADC, apparent diffusion coefficient.
TABLE 2 Lesions detected by the AI model.

Patient with 1 lesion Patient with 2 lesions Patient with 3 lesions Patient with 4 lesions

Total patients (n) 106 20 4 1

Total lesions (n) 106 40 12 4

PCa location

PZ and TZ 96 (90.6%) 15 (37.5%) 3 (25.0%) 1 (25.0%)

PZ only 8 (7.5%) 15 (37.5%) 8 (66.7%) 1 (25.0%)

TZ only 2 (1.9%) 10 (25.0%) 1 (8.3%) 2 (50.0%)

PCa volume (mm3)

Median [Min, Max] 15300 [288, 102000] 756 [52, 44324] 632 [107, 4581] 286 [103, 1793]

PI-RADS score

3 0 (0%) 3 (7.5%) 0 (0%) 1 (25.0%)

4 8 (7.5%) 19 (47.5%) 9 (75.0%) 1 (25.0%)

5 98 (92.5%) 18 (45.0%) 3 (25.0%) 2 (50.0%)

Largest lesion and highest PI-RADS score consistency

Consistency 106 (100%) 12 (60.0%) 3 (75.0%) 0 (0%)

Inconsistency 0 (0%) 8 (40.0%) 1 (25.0%) 1 (100%)
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The parameters used for feature extraction, feature selection,

internal validation, and model building are presented in the

Supplementary Material.
2.5 Model evaluation

Multiple metrics were employed to evaluate of the constructed

models performance using the test dataset. First, the receiver

operating curve (ROC) analysis with the use of the area under the

curve (AUC) was utilized as a widely accepted metric.

Because of the imbalanced distribution of the BCR- and BCR+

cases, the precision-recall (PR) curve was employed. The AUC of

the PR and 95% bootstrap confidence interval (BCa) were

calculated. If the BCa does not include zero, it indicates that the

difference in PR AUC between the models is statistically significant.

To gain insights into the clinical utility of the models, decision

curve analysis (DCA) was employed. The net reclassification index

(NRI) and integrated discrimination improvement (IDI) were

utilized to quantify the enhancement in prediction accuracy

achieved by the radiomics and deep-radiomics models compared

to the clinical model. A positive NRI indicates improved risk

classification, while a negative NRI suggests misclassification. A

higher IDI value indicates enhanced discrimination between

individuals with and without the event of interest.
2.6 Statistical analysis

IBM SPSS® 20.0 (www.ibm.com), MedCalc 20.014

(www.medcalc.org) and R 3.5.1 (www.r-project.org) were used for

statistical analysis.

Descriptive statistics were used to summarize the data, with

mean (standard deviation) reported of continuous variables that

followed a normal distribution and median [Q1, Q3] of continuous

variables that did not follow a normal distribution. Categorical

variables were reported as frequencies (percentage%). A Mann-

Whitney U test or chi-square test was used to assess differences in

clinical characteristics both between the training and test cohorts

and between the BCR- and BCR+ groups. The DeLong test was used

to compare the difference between the AUCs of ROC. The level of

statistical significance was set at P < 0.05.
3 Results

3.1 Clinical characteristics

Out of 131 cases, 62 (47.3%) were classified as locally advanced

PCa, while 20 (15.3%) exhibited lymph node metastasis, and 49

(37.4%) presented with distant metastasis. There was no significant

difference in any feature between the training and test datasets
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(Table 3). BCR rates were 24.7% (23/93) in the training cohort and

21.1% (8/38) in the test cohort, without significant difference (P

= 0.824).

Compared the BCR+ and BCR- groups (Table 4), no significant

difference was found in age, PI-RADS score, PCa location, PCa

ADC value, and ISUP group (all P > 0.05). There were significant

differences in PSA level, PCa volume, clinical stage and treatment

method between the BCR- and BCR+ groups (all P < 0.05).
3.2 Model development

The clinical model was constructed using stepwise multivariable

logistic regression. PSA and stage were the final predictor variables

included in the model after selection process (Table 5, Figure 3).

The conventional radiomics model incorporated PSA, stage,

treatment, and four image features extracted from ADC maps as

the final predictor variables (Figure 4). Similarly, the deep-

radiomics model included PSA, stage, treatment, and three image

features extracted using a deep learning algorithm as the final

predictor variables (Figure 5).
3.3 Model evaluation

The AUC of the ROC was 0.717 (95% CI: 0.492, 0.941) for the

clinical model, 0.771 (95% CI: 0.607, 0.935) for the conventional

radiomics model, and 0.954 (95% CI: 0.892, 1.000) for the deep-

radiomics model in the test dataset (Figure 6A). The deep-radiomics

model exhibited a significantly higher AUC than the clinical model (P

= 0.033) and the conventional radiomics model (P = 0.026). However,

there was no significant difference between the AUC of the clinical

model and the conventional radiomics model (P = 0.570).

The AUC of the PR curve was 0.385 (95% CI: 0.191, 0.696) for

the clinical model, 0.373 (95% CI: 0.209, 0.665) for the conventional

radiomics model, and 0.805 (95% CI: 0.451, 0.985) for the deep-

radiomics model (Figure 6B). The PR AUC difference between the

clinical model and the deep-radiomics model was 0.420 (95% BCa:

0.292, 0.651), indicating a statistically significant distinction.

Similarly, the PR AUC difference between the conventional

radiomics model and the deep-radiomics model was 0.432 (95%

BCa: 0.327, 0.638), demonstrating statistical significance. However,

the PR AUC difference between the clinical model and the

conventional radiomics model was 0.011 (95% BCa: -0.070,

0.216), revealing no statistical significance.

The DCA curve demonstrated superior performance of the deep-

radiomics model compared to the conventional radiomics model and

the clinical model across all risk thresholds. Additionally, the DCA

curve of the conventional radiomics model outperformed the clinical

model across all risk thresholds (Figure 6C).

Compared to the clinical model, the conventional radiomics model

demonstrated an NRI of 0.359 (95% CI: 0.099, 0.973), and the deep-

radiomics model showed a higher NRI of 0.508 (95% CI: 0.309, 1.175).
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Compared to the conventional radiomics model, the deep-radiomics

model showed an NRI of 0.149 (95% CI: 0.032, 0.300).

When using the clinical model as reference, the conventional

radiomics model exhibited an IDI of 0.516 (95% CI: 0.294, 0.666),

and the deep-radiomics model showed a higher IDI of 0.679 (95%

CI: 0.431, 0.795). When comparing the conventional radiomics

model to the deep-radiomics model, the IDI was 0.164 (95% CI:

-0.045, 0.363) without statistical difference.
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4 Discussion
In the current study, we introduced a clinical model and two

radiomics models demonstrating favorable accuracy in predicting

BCR for patients with advanced PCa and the deep-radiomics model

showed the most excellent performance. Several clinical prediction

models have been proposed (3–8), and MR radiomics models also
TABLE 3 Clinical characteristics of the training and test datasets.

Overall Training dataset Test dataset
P value

(N=131) (N=93) (N=38)

Age (year)

Mean (SD) 71.9 (7.66) 71.3 (8.09) 73.4 (6.34) 0.152

tPSA (ng/dL)

Median [Q1, Q3] 42.6 [14.2,124] 43.5 [14.3,124] 27.3 [13.8,94.0] 0.505

PI-RADS score

4 14 (10.7%) 10 (10.8%) 4 (10.5%) >0.999

5 117 (89.3%) 83 (89.2%) 34 (89.5%)

PCa location

PZ and TZ 115 (87.8%) 84 (90.3%) 31 (81.6%) 0.297

PZ only 10 (7.6%) 5 (5.4%) 5 (13.2%)

TZ only 6 (4.6%) 4 (4.3%) 2 (5.3%)

PCa volume (mm3)

Median [Q1, Q3] 10000 [2750,25100] 12000 [2880,26400] 6140 [2200,19400] 0.373

PCa ADC value (*10^-3 s/mm3)

Mean (SD) 791 (128) 790 (124) 793 (138) 0.821

ISUP

1 4 (3.1%) 4 (4.3%) 0 (0%) 0.557

2 12 (9.2%) 7 (7.5%) 5 (13.2%)

3 20 (15.3%) 15 (16.1%) 5 (13.2%)

4 27 (20.6%) 18 (19.4%) 9 (23.7%)

5 68 (51.9%) 49 (52.7%) 19 (50.0%)

Stage

T3~4N0M0 62 (47.3%) 43 (46.2%) 19 (50.0%) 0.316

TxN1M0 20 (15.3%) 17 (18.3%) 3 (7.9%)

TxNxM1 49 (37.4%) 33 (35.5%) 16 (42.1%)

Treatment

Radiotherapy 4 (3.1%) 1 (1.1%) 3 (7.9%) 0.104

Hormonal therapy 52 (39.7%) 39 (41.9%) 13 (34.2%)

Comprehensive therapy 75 (57.3%) 53 (57.0%) 22 (57.9%)

Label

BCR- 100 (76.3%) 70 (75.3%) 30 (78.9%) 0.824

BCR+ 31 (23.7%) 23 (24.7%) 8 (21.1%)
fro
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showed promising results (10, 13–18). Our findings align with

previous studies in terms of the predictive efficiency of radiomics

models for BCR. However, our study differs from previous research

in three main aspects: (1) patients with advanced PCa who received

non-surgical treatment as research objective, (2) the utilization of a

pre-trained AI model for automatic segmentation of the ROI, and

(3) a comparison between conventional radiomics models and deep

learning radiomics models in terms of feature extraction.

MR radiomics models have demonstrated diverse applications in

the detection, classification and management of PCa (28, 29).
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However, studies specifically focusing on radiomics models for

predicting BCR remain limitation and exist inconsistency in the

methodologies (13–18). A review of literature indicates that a

variety of MR imaging sequences were used in BCR prediction

models, such as MR perfusion (13), T2WI (15, 17), ADC maps

(14), a combination of T2WI and ADC maps (14, 16) and

combinations of T1WI with T2WI and DWI (14, 16). In these

studies, different types of ROI were annotated, encompassing the

prostate gland (13, 17, 18), prostate with an expandedmargin (15) and

prostate tumor (14–16). Notably, manual annotation methods were

predominantly employed for ROI delineation (13, 16–18) and a small

number of studies utilized semi-automatic annotation techniques (14,
TABLE 4 Clinical characteristics of the BCR- and BCR+ datasets.

BCR- BCR+ P
value(N=100) (N=31)

Age (year)

Mean (SD) 72.3 (7.55) 70.6 (8.00) 0.335

tPSA (ng/dL)

Median [Q1, Q3] 36.8 [13.9,95.9] 75.2 [17.8,472] 0.044

PI-RADS score

4 12 (12.0%) 2 (6.5%) 0.589

5 88 (88.0%) 29 (93.5%)

PCa location

PZ and TZ 8 (8.0%) 2 (6.5%) 0.352

PZ only 6 (6.0%) 0 (0%)

TZ only 86 (86.0%) 29 (93.5%)

PCa volume (mm3)

Median [Q1, Q3]
6190
[2240,19500]

23800
[5760,41300]

0.004

PCa ADC value (*10^-3 s/mm3)

Mean (SD) 802 (133) 756 (103) 0.111

ISUP

1 2 (2.0%) 2 (6.5%) 0.077

2 12 (12.0%) 0 (0%)

3 17 (17.0%) 3 (9.7%)

4 22 (22.0%) 5 (16.1%)

5 47 (47.0%) 21 (67.7%)

Stage

TxN0M0 55 (55.0%) 7 (22.6%) <0.001

TxN1M0 18 (18.0%) 2 (6.5%)

TxNxM1 27 (27.0%) 22 (71.0%)

Treatment

Radiotherapy 4 (4.0%) 0 (0%) <0.001

Hormonal therapy 22 (22.0%) 30 (96.8%)

Comprehensive
therapy

74 (74.0%) 1 (3.2%)
TABLE 5 Odds ratios of the logistic regression models.

Parameter Description

Odds ratio
(univariable,
95% CI)

Odds ratio
(multivariable,
95% CI)

Age Mean ± SD
0.97 (0.91-1.03,
P = 0.313)

tPSA Mean ± SD
1.00 (1.00-1.00,
P = 0.059)

1.00 (1.00-1.00,
P = 0.276)

PI-
RADS
score 4 Reference

5
1.35 (0.27-6.89,
P = 0.714)

ISUP 1 Reference

2
0.00 (0.00-Inf,
P = 0.991)

3
0.25 (0.02-2.58,
P = 0.244)

4
0.20 (0.02-2.03,
P = 0.174)

5
0.44 (0.06-3.43,
P = 0.434)

Stage TxN0M0 Reference Reference

TxN1M0
0.82 (0.15-4.54,
P = 0.822)

0.79 (0.14-4.36,
P = 0.783)

TxNxM1
5.14 (1.71-
15.46, P
= 0.004)

4.02 (1.25-12.90,
P = 0.019)

Treatment Radiotherapy Reference

Hormonal
therapy

7.45*10^6
(0.00-Inf, P
= 0.991)

Comprehensive
therapy

1.11*10^5
(0.00-Inf, P
= 0.994)

PCa
ADC value Mean ± SD

1.00 (0.99-1.00,
P = 0.437)

PCa
volume Mean ± SD

1.00 (1.00-1.00,
P = 0.061)
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15). These MR radiomics models demonstrated AUC values ranging

from 0.63 to 0.85 for the prediction of BCR (13–18). Our study

demonstrated that the three models had predictive performance

(AUCs ranging from 0.717 to 0.954) comparable to or slightly

better than previous studies. Additionally, a notable strength of this

study was the utilization of an automatic annotation approach for

ROIs using a pre-trained AI model. This automatic process addresses

the inherent challenges associated with manual ROI annotation, such

as the labor-intensive nature and the potential for intra- and inter-

observer variability, which can compromise the robustness of

radiomics models.

Another strength of our study is the comparison of image

feature extraction methods in the radiomics pipeline. In the process

of constructing radiomics models, the subsequent step after

selecting ROI involves extracting image features for training the

classifier (20). In our study, we developed two types of radiomics

models: a conventional radiomics model and a deep-radiomics
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model. The key distinction between the two models lies in the

approach of feature generation. The conventional radiomics model

extracts standard features from ROIs calculated based on

predefined formulas, whereas the deep-radiomics model employs

deep network architectures to discover task-specific optimal

features (21). Predictive features in the deep-radiomics model are

learned independently during training, eliminating the need for

explicit feature definitions. Given that the deep-radiomics model

adapts to the data, it is reasonable to expect it to yield superior

results compared to the conventional model. However, in 26% of

previous studies, deep-radiomics models did not surpass

conventional models (21). It reported that deep-radiomics models

outperformed conventional radiomics models with a median

increase in the AUC from 0.025 to 0.045. Since it is generally

unknown which method will perform best in advance, it is

recommended to test multiple methods as a best practice (30). It

is inspiring that the predictive model that combined clinical
A B

FIGURE 3

Development of clinical model. (A, B) a generalized linear model and the nomogram of the clinical model.
FIGURE 4

The construction of conventional radiomics model, including feature importance (upper left graph), SHAP values (upper right graph), partial
dependence plot (lower left graph) and breakdown plot (lower right graph).
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characteristics, visual features, deep learning features, and

radiomics features based on computed tomography (CT) or MR

images showed improved predictive efficiency (31–33), while the

purpose of our study was to find a simple and convenient way to

predict the BCR in advanced PCa. If a large number of parameters

and complex predictive methods were used, the complexity of

operations may affect the efficiency of clinical work and limit

predictive models promotion. Therefore, three separate predictive

models were evaluated instead of combining them in this study.

In this study, we employed multiple methods to evaluate the

performance of predictive models from different perspectives (34).

The ROC analysis is commonly used in this type of research because

it provides a measure of the overall discriminatory power of a

model. However, in our study, PR evaluation was more informative

than the ROC because of the imbalanced sample sizes of BCR+ and
Frontiers in Oncology 10
BCR-. It helps assess the model’s ability to correctly identify positive

instances while minimizing false positives (35). While ROC and PR

curve provide valuable insights into the model’s classification

abilities, they do not directly consider real-world clinical scenarios

or the specific context in which the model will be applied. DCA, on

the other hand, takes into account the net benefit or harm

associated with using a predictive model to guide clinical actions

compared to other strategies or no action, thereby providing a more

comprehensive evaluation of the model’s performance in terms of

its clinical impact (35). Besides, NRI and IRI are commonly used in

the field of predictive modeling and risk assessment (34). They

provide a way to assess the added value of incorporating certain

variables or features into a model compared to a baseline or

reference model. They help evaluate to what extent the new

model improves the classification or discrimination performance,
FIGURE 5

The construction of deep-radiomics model, including feature importance (upper left graph), SHAP values (upper right graph), partial dependence
plot (lower left graph) and breakdown plot (lower right graph).
A B C

FIGURE 6

ROC (A), RP (B) and DCA (C) curves for three predictive models in the test dataset.
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thereby achieving better risk stratification or outcome prediction.

Our results consistently showed that the deep-radiomics model

outperformed the other two models in most aspects.

Our study has several inherent limitations that should be

acknowledged. First, the retrospective nature conducted in a single

center resulted in a relatively small cohort, reducing the statistical

power and potentially limiting the generalizability of the findings.

Indeed, this is a recurring problem in the field of radiomics research, as

seen in examples of other sample sizes in the literature include 49 (36),

120 (15, 16) and 133 (17) patients. In an ideal manner, it is

recommended to train an unbiased classifier with the same number

of samples from both BCR+ and BCR- groups in the training dataset.

The test dataset may be imbalanced, but it is not recommended to

have an imbalanced training set. However, considering the

distribution of our enrollment cases and previous studies (17, 18), it

was not feasible in this study and may lead to inaccurate model

parameters. Given AUC is a powerful indicator of classification

performance in skewed datasets, we still obtain a reasonable AUC

on the test dataset, indicating the robustness of radiomic features in

predicting BCR. Our findings are encouraging, as this study provide

preliminary evidence of the correlation between imaging and

prognosis in advanced cancer patients. Besides, previous study has

shown that the performance of the model may decrease due to

heterogeneity in the collection protocols and patients with external

data validation (37). So our results require a larger validation and

external validation before these findings can be applied in the clinical

practice. Further study would increase the patient sample size by

extend inclusion time and potentially develop this study into a

multicenter research project. Second, there was a possibility of

selection bias in our study due to the influence of urologists’ and

patient-related factors on treatment decisions, which were not fully

captured in the data. The diverse treatment options and their impact

on prognosis were not thoroughly analyzed. At last, the application of

deep learning models in our study focused on a specific network

architecture. The reproducibility and generalizability of deep networks

remain uncertain, as they are known to be sensitive to initial weights

and may exhibit erratic behavior. Further studies should explore the

use of alternative network architectures to evaluate their performance.
5 Conclusion

Despite the above limitations, we can conclude that the deep-

radiomics model, shows excellent accuracy in predicting BCR in

advanced PCa, which may make an effect on treatment methods

and subsequent therapeutic interventions. The deep-radiomics

model was superior than the clinical model and the conventional

radiomics model in the aspect of prediction accuracy, clinical

impact and risk assessment.
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