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Using multimodal ultrasound
including full-time-series
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cines for identifying the nature
of thyroid nodules
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Jinduo Shou4, Ying Liu2 and Fen Chen1,2*

1Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai, China, 2Department of Ultrasound, The First Affiliated Hospital of Zhejiang Chinese Medical
University, Hangzhou, China, 3Department of Ultrasound, First Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China, 4Department of Ultrasound, Sir Run Run Shaw Hospital, School
of Medicine, Zhejiang University, Hangzhou, China
Background: Based on the conventional ultrasound images of thyroid nodules,

contrast-enhanced ultrasound (CEUS) videos were analyzed to investigate

whether CEUS improves the classification accuracy of benign and malignant

thyroid nodules using machine learning (ML) radiomics and compared

with radiologists.

Materials and methods: The B-mode ultrasound (B-US), real-time elastography

(RTE), color doppler flow images (CDFI) and CEUS cines of patients from two

centers were retrospectively gathered. Then, the region of interest (ROI) was

delineated to extract the radiomics features. Seven ML algorithms combined with

four kinds of radiomics data (B-US, B-US + CDFI + RTE, CEUS, and B-US +CDFI +

RTE + CEUS) were applied to establish 28models. The diagnostic performance of

ML models was compared with interpretat ions from expert and

nonexpert readers.

Results: A total of 181 thyroid nodules from 181 patients of 64men (mean age, 42

years +/- 12) and 117 women (mean age, 46 years +/- 12) were included. Adaptive

boosting (AdaBoost) achieved the highest area under the receiver operating

characteristic curve (AUC) of 0.89 in the test set among 28 models when

combined with B-US + CDFI + RTE + CEUS data and an AUC of 0.72 and 0.66

when combined with B-US and B-US + CDFI + RTE data. The AUC achieved by

senior and junior radiologists was 0.78 versus (vs.) 0.69 (p > 0.05), 0.79 vs. 0.64 (p

< 0.05), and 0.88 vs. 0.69 (p < 0.05) combined with B-US, B-US+CDFI+RTE and

B-US+CDFI+RTE+CEUS, respectively.
Abbreviations: AdaBoost, Adaptive Boosting; AI, Artificial Intelligence; AUC, Area Under the Receiver

Operating Characteristic Curve; B-US, B-mode Ultrasound; CDFI, Color Doppler Flow Images; CEUS,

Contrast-enhanced Ultrasound; DL, Deep Learning; GB, Gradient Boosting; KNN, K Nearest Neighbors; LR,

Logistic Regression; ML, Machine Learning; RF, Random Forest; ROC, the Receiver Operating Characteristic

Curve; ROI, Region of Interest; RTE, Real-time Elastography; SVM, Support Vector Machines; SWE, Shear-

wave Elastography; TI-RADS, Thyroid Image Reporting and Data System; XGBoost, Extreme

Gradient Boosting.
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Conclusion: With the addition of CEUS, the diagnostic performance was

enhanced for all seven classifiers and senior radiologists based on conventional

ultrasound images, while no enhancement was observed for junior radiologists.

The diagnostic performance of ML models was similar to senior radiologists, but

superior to those junior radiologists.
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1 Introduction

In clinical practice, thyroid nodules are detected in up to 65% of

the general population, of which approximately 90% are benign (1).

The histological type of thyroid cancer that accounts for 84% is

papillary thyroid cancer, which is the most common and least

aggressive type (2). Global cancer statistics in 2020 (3) showed

thyroid cancer is responsible for 586,000 cases in the world and

ranks 9th in incidence.

Ultrasound is the most important diagnostic image for thyroid

nodules. Thyroid imaging report and data system (TI-RADS) criteria

have been widely used clinically as risk stratification (4–8). TI-RADS

only including B-mode ultrasound (B-US) information, whereas

ultrasound technology offers multimodal imaging, including real-

time elastography (RTE), color doppler flow images (CDFI), and

contrast-enhanced ultrasound (CEUS). CEUS provides real-time

dynamic observation of microvascular perfusion, which contributes

to increased diagnostic accuracy (9, 10). The Bethesda System for

Reporting Thyroid Cytopathology (TBSRTC) after fine-needle

aspiration (FNA) applications is a well-established method for

obtaining the diagnosis (11). The malignancy of thyroids nodules is

evaluated by radiologists using multimodal ultrasound imaging.

However, the conclusions of current studies on the additional

diagnostic value of multimodal ultrasound are inconsistent and

controversial (7, 12–14).

With its advancement, artificial intelligence (AI) has begun to

reach or surpass human experts in medical imaging (15, 16) and has

been applied to diagnose diabetic retinopathy, strokes, and breast

lesions (17–19). Radiomics is a method to extract numerous

quantitative parameters from standard-of-care medical imaging to

obtain multidimensional information and mine high-throughput

features that cannot be recognized by human eyes (20–22). It gains

importance in thyroid research such as identifying benign and

malignant thyroid nodules, predicting lymph node metastasis and

disease-free survival of thyroid cancer (23–26). In addition,

radiomics based on machine learning (ML) is reported to have

also been applied to liver and breast medical fields (27–29).

Recently, several studies have been conducted to evaluate the

nature of thyroid nodules conducted based on ML (30–33). All of

these studies used B-US images as input images, and some added
02
shear-wave elastography (SWE), RTE, or CEUS images. It was

found that a small amount of research analyzing the entire

thyroid CEUS cines or the integrated information hidden behind

ultrasound multimodal imaging (34).

Therefore, the conventional ultrasound images and CEUS cines

of thyroid nodules were analyzed, and different image combinations

were used to build ML models in the present study to explore the

clinical value of thyroid multimodal ultrasound, especially CEUS. In

the meanwhile, radiologists were invited to perform the

discriminative readings of conventional ultrasound images and

CEUS videos. Additionally, a comparison of diagnostic

performance was made between radiologists and algorithms, and

among different ML models, to find a more accurate method of

improving clinical diagnosis.
2 Materials and methods

2.1 Study design and patients

Having been approved by the Institutional review board of the

two participating centers, informed consent was waived for this

retrospective study. The initial population consists of 71 patients

with thyroid nodules who underwent CEUS at the First Affiliated

Hospital of Zhejiang Chinese Medical University from September

2018 to January 2022, and 171 patients with thyroid nodules who

underwent CEUS at the First Affiliated Hospital of Zhejiang

University School of Medicine from December 2021 to

January 2022.

Following were the criteria for inclusion: before starting

treatment, patients with TI-RADS 4 or 5 category thyroid nodules

should undergo the following procedures: (1) a CEUS examination;

(2) a fine-needle aspiration biopsy; and (3) measurement of the

maximal diameter of a thyroid nodule, which was between 0.4 and

1.5 cm. The following were the exclusion criteria: (1) patients with

incomplete clinical or imaging data; (2) CEUS cines were of poor

quality; and (3) nodules with Bethesda categories I, III, IV, and V.

181 patients with thyroid nodules, including 66 benign nodules

and 115 malignant nodules, were included in the final thyroid

dataset. They were randomly divided into a training cohort of 126
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patients and a testing cohort of 55 patients at a 7: 3 ratios. Figure 1

displays a thorough flowchart of the patient selection process for

this study.
2.2 Ultrasound image acquisition

In this study, CEUS was performed using two ultrasound

instruments: Esaote Mylab 90 and Philips EPIQ 7. The imaging

parameters were adjusted by board-certified and experienced

radiologists who performed the CEUS examination and acquired

the cines. For each examination, the image settings, including the

time-gain compensation, the focal position, the dynamic range, the

output power, the mechanical index and so on, were optimized.

After getting images of thyroid nodules in B-US, CDFI and RTE

modes, the second-generation ultrasound contrast agent (SonoVue,

Bracco SpA) was used during the CEUS which was made of sulfur

hexafluoride gas microbubbles. It contained 1.5 mL of contrast

agent for thyroid CEUS. Following the injection of the contrast

agent diluted with normal saline into the antecubital vein within 1 s,

5–10 mL of 0.9% normal saline was subsequently flushed. The target

lesion on the largest plane was continuously observed and captured

for 60 seconds from the start of injection, and the entire CEUS

imaging process was documented on an ultrasound workstation
Frontiers in Oncology 03
with the Digital Imaging and Communications in Medicine

(DICOM) format.

All study-related videos were completed and recorded by two

radiologists (C.F. And Y.ZD.), both of whom have over 15 years of

experience in evaluating thyroid CEUS.
2.3 ROI delineation

All thyroid CEUS videos from two hospitals were converted

into AVI format, while static B-US, CDFI, and RTE images were

converted into JPGE format. The radiologists first reviewed the

complete video to observe the lesion boundaries. Then, the

rectangular region of interest (ROI) was delineated on a CEUS

frame and 3 static images in B-US, CDFI and RTE modes separately

using Labelme (version 3.21.1), including the entire lesion and part

of the surrounding tissues, and the images were stored in JSON

format. The bounding box remained unchanged on every frame of

the CEUS cine (Figure 2).

All ROIs were manually delineated by a young radiologist

(H.HL.) and then reviewed by another senior radiologist (C.F.),

all of whom were blinded to the clinical and pathological data of the

patients. Any disagreement among the radiologists was resolved by

discussion until a consensus was reached.
FIGURE 1

Flowchart of patient selection for the study. B-US, B-mode ultrasound; RTE, real-time elastography; CDFI, color doppler flow images; CEUS,
contrast-enhanced ultrasound.
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2.4 Radiomics feature extraction and
model building

Features were extracted from the ROI using PyRadiomics

(version 3.0.1). Extracted texture features were calculated on the

two-dimensional shape (9 features), first-order statistics (18 features),

gray-level cooccurrence matrix (23 features), gray-level run-length

matrix (16 features), gray-level size-zone matrix (16 features),

neighboring gray tone difference matrix (5 features) and gray level

dependence matrix (14 Features). A detailed definition of all image

features can be found online. (http://pyradiomics.readthedocs.io/en/

latest/features.html).

The minimum analysis time of a CEUS video is 1 minute; a rate

of 18 frames per second was applied for a total of 1080 images. The

difference between each picture is small and changes over time.

Therefore, 1080 lines of radiomics features were extracted from the

1-minute video of each patient’s CEUS cine.

We applied 7 supervised ML algorithms; these classifiers were k

nearest neighbors (KNN), random forest (RF), logistic regression

(LR), Support Vector Machines (SVM), eXtreme Gradient Boosting

(XGBoost), Gradient Boosting (GB) and Adaptive Boosting

(AdaBoost). Four classes of radiomics data were used as the

inputs of each ML model: B-US, B-US + CDFI + RTE, CEUS and

B-US + CDFI + RTE + CEUS. Seven classification methods

combined with four kinds of radiomics data to establish 28 (7×

4 = 28) models. Each of the 28 models was trained and 10-fold cross

validated in the training set with scikit-learn. The receiver operating

characteristic (ROC) curve and area under the ROC curve (AUC)

were employed to evaluate the predictive accuracy of the radiomics
Frontiers in Oncology 04
signatures developed. The model that had the highest AUC value in

the test dataset was selected as the final model.
2.5 Subjective evaluation

A total of four radiologists (S. JD., B.HW., L.Y., and Z.JY.)

retrospectively reviewed static images and CEUS cines of patients

with thyroid nodules. All radiologists were blinded to the clinical

and pathological information of the patients and split into two

groups: experienced radiologists (S. JD. and B.HW., with more than

15 years of clinical experience) and junior radiologists (L.Y. and

Z.JY., with less than 10 years of clinical experience). None of the

radiologists were involved in the CEUS examinations.

Conventional ultrasound (including B-US, CDFI, and RTE) static

images and CEUS cine clips were successively reviewed by two groups

of radiologists (Figure 3). The radiologists assessed the possibility of

malignancy of each lesion and diagnosed it as malignant or benign

independently, based on the Thyroid Imaging Reporting and Data

System (TI-RADS). In cases in which discrepancies existed within the

group, a consensus was reached after discussion.
2.6 Statistical analysis

Student’s t test or the Mann-Whitney test, as appropriate, was

used to compare continuous variables. The c2 test was used to

compare categorical variables. The AUCs were used to evaluate the

probability of correct classification of benign and malignant nodules.

Differences between AUCs were calculated using the DeLong test.
FIGURE 2

Example of delineating regions of interest (ROIs) on a contrast-enhanced ultrasound (CEUS) frame and 3 static images in B-mode ultrasound (B-US),
real-time elastography (RTE), and color doppler flow images (CDFI) modes. And the design process of all machine learning (ML) models.
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To evaluate the predictive performance of different models,

sensitivity (SEN), specificity (SPE), accuracy (ACC), positive

predictive value (PPV), negative predictive value (NPV) and F1

score were investigated. Data analysis was performed using SPSS

(version 26.0) and PyRadiomics (version 3.0.1). All statistical tests

were two-sided. Differences were considered significant at p < 0.05.
3 Results

3.1 Baseline characteristics

Baseline clinical and pathological data came from patients’medical

records, including age, sex, and lesion size (Table 1). A total of 181

patients were included in this study. Among the thyroid nodules, 66

(36.5%) nodules were benign, and 115 (63.5%) nodules were

malignant. Among 117 female patients, benign nodules were found

in 47 patients (40.2%) and malignant nodules in 70 patients (59.8%).

Among 64 male patients, benign nodules were found in 19 patients

(29.7%) and malignant nodules in 45 patients (70.3%). Patients with

malignant thyroid nodules were younger than those with benign

thyroid nodules(33.0-47.0y vs. 46.0-59.3y, p < 0.05). No difference

was observed between benign andmalignant thyroid nodules in size on

B-US (0.57-0.89cm vs. 0.53-0.93cm, p>0.05).
Frontiers in Oncology 05
3.2 Performance evaluation of ML models

Inputting different radiomics features extracted from 4 types of

image sets resulted in 28 models constructed with 7 different ML

methods, and the AUCs of these models were evaluated in the test

cohort (Table 2). The AUCs of B-US data combined with all 7
FIGURE 3

Ultrasonic image of the thyroid nodule which was misjudged by the radiologists but correctly predicted by the algorithm. (A) B-mode ultrasound
showed a longitudinal section of the nodule. (B) Real-time elastography image of the nodule. (C) Color doppler flow image of the nodule. (D) The
30-second image of contrast-enhanced ultrasound in thyroid nodule.
TABLE 1 Characteristics of patients and images.

Characteristics Benign Malignant P

Patients number 66 (36.5%) 115 (63.5%)

Sex

Female
Male

47(40.2%)
19(29.7%)

70(59.8%)
45(70.3%)

Age (years)

Median 51.5 40.0 <0.05

Interquartile 46.0-59.3 33.0-47.0

Size of lesions(cm)

Median 0.68 0.66 >0.05

Interquartile 0.57-0.89 0.53-0.93
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classifiers ranged from 0.55 to 0.72 and the AUCs of B-US + CDFI +

RTE data combined with all 7 classifiers ranged from 0.58 to 0.71.

According to this, we found that CDFI and RTE ultrasonic image data

have a low classification value. For the CEUS data combined with all 7

classifiers, the AUCs of the models ranged from 0.65 to 0.83. Given the

B-US+CDFI+RTE+CEUS data combined with all 7 classifiers, the

AUCs of the models ranged from 0.64 to 0.89 (Figure 4).

Among the 7 classifiers, only 4 (SVM, RF, LR, and KNN)

achieved higher AUCs with B-US+CDFI+RTE data combined than

with only B-US data alone (0.67 vs. 0.55, 0.64 vs. 0.55, 0.64 vs. 0.63,

0.71 vs. 0.61). There were 6 of 7 classifiers (XGBoost, SVM, RF, LR,

GvB, and AdaBoost) that achieved higher AUCs with B-US+CDFI

+RTE+CEUS data combined than with B-US+CDFI+RTE data

combined (0.88 vs. 0.65, p<0.05; 0.72 vs. 0.67, p >0.05; 0.76 vs.
Frontiers in Oncology 06
0.64, p>0.05; 0.78 vs. 0.64, p >0.05; 0.85 vs. 0.58, p<0.05; 0.89 vs.

0.66, p<0.05).

We obtained the predictive performance of 7 classifiers with B-

US+CDFI+RTE+CEUS data in the test cohort (Table 3). Among

them, XGBoost and AdaBoost achieved better performance. Their

AUCs were 0.88 and 0.89, respectively, and both ACC was 0.82.
3.3 Performance evaluation comparison of
algorithm and radiologists

In order to compare the diagnostic performance with

radiologists, we selected 2 classifiers (XGBoost and AdaBoost) with

higher AUCs from the B-US+CDFI+RTE+CEUS data combination

(Table 4 and Figure 5). For both B-US and B-US+CDFI+RTE data

combination, the AUCs of the 2 classifiers approximated those of

junior radiologists but fell below those of senior radiologists. For the

combination of B-US+CDFI+RTE+CEUS data, the AUCs of 2

classifiers exceeded those of junior and senior radiologists. In all 3

different kinds of combinations, the AUCs of senior radiologists were

higher than the AUCs of junior radiologists (0.78 vs. 0.69, p>0.05;

0.79 vs. 0.64, p<0.05; 0.88 vs. 0.69, p<0.05).

After adding the CDFI and RTE data, the AUCs of both classifiers

and junior radiologists decreased compared to when only B-US data

were available (0.64 vs. 0.68, p>0.05; 0.66 vs. 0.72, p>0.05; 0.64 vs. 0.69,

p>0.05). When B-US+CDFI+RTE+CEUS data were combined, both

classifiers and radiologists obtained higher AUCs than when B-US

+CDFI+RTE data were combined (0.88 vs. 0.64, p<0.05; 0.89 vs. 0.66,

p<0.05; 0.88 vs. 0.79, p>0.05; 0.69 vs. 0.64, p>0.05).
3.4 Performance evaluation comparison of
algorithm and radiologists in difficult cases

Cases with disagreement after the discussion of senior

radiologists or agreement but inconsistent with pathology results
TABLE 2 Comparison of the area under the receiver operating
characteristic curves (AUCs) of different machine learning (ML) methods
with different data combinations in test cohort.

Models B-US B-US
+CDFI
+RTE

p1
value

CEUS B-US
+CDFI
+RTE
+CEUS

p2
value

XGBoost 0.68 0.64 0.65 0.76 0.88 <0.05

SVM 0.55 0.67 0.14 0.83 0.72 0.49

RF 0.55 0.64 0.41 0.69 0.76 0.17

LR 0.63 0.64 0.84 0.81 0.78 0.12

KNN 0.61 0.71 0.19 0.65 0.64 0.39

GB 0.67 0.58 0.31 0.74 0.85 <0.05

AdaBoost 0.72 0.66 0.30 0.80 0.89 <0.05
XGBoost, eXtreme Gradient Boosting; SVM, Support Vector Machines; RF, random forest;
LR, logistic regression; KNN, k nearest neighbors; GB, Gradient Boosting; AdaBoost, Adaptive
Boosting. B-US, B-mode ultrasound; CDFI, color doppler flow images; RTE, real-time
elastography; CEUS, contrast-enhanced ultrasound.
p1: B-US+CDFI+RTE compared with B-US.
p2: B-US+CDFI+RTE+CEUS compared with B-US+CDFI+RTE.
FIGURE 4

Receiver operating characteristic (ROC) curves of different ML models with B-US+CDFI+RTE+CEUS data combination in test cohort.
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were defined as difficult cases. From 24 difficult cases in the test set,

overall, the AUCs of the classifiers were closer to those of senior

radiologists, and the AUCs of the classifiers were higher than those

of junior radiologists.

With the addition of CDFI and RTE data, the AUCs of both

classifiers and senior radiologists increased compared to use B-US

data only (0.66 vs. 0.50, p>0.05; 0.56 vs. 0.55, p>0.05; 0.58 vs. 0.52,

p>0.05), and then with the addition of CEUS data, the AUCs of both

classifiers and senior radiologists increased also (0.80 vs. 0.66,

p>0.05; 0.83 vs. 0.56, p<0.05; 0.66 vs. 0.58, p>0.05) (Table 5). In

contrast, after adding reading CDFI, RTE, and CEUS imaging, the

AUC of junior radiologists decreased instead.
4 Discussion

In our study, we finally built 28 ML-based radiomics models

and the AUC of the best model was 0.89 when inputting

multimodality ultrasound imaging. In the same situation, the

AUC of senior radiologists was 0.88 and 0.69 for junior
Frontiers in Oncology 07
radiologists. We showed a case where the radiologist was wrong

but the algorithm predicted correctly (Figure 3). The diagnostic

performance of the algorithm and radiologists for identifying

benign and malignant thyroid nodules differed. What’s more, the

addition of CEUS data improved their diagnostic performance,

implying that thyroid CEUS cines carry substantial information

that can be mined and analyzed.

Cancer statistics for Chinese from 2016 indicated that thyroid

cancer has grown considerably, ranking fourth among newly

common cancers in women (35). The incidence of thyroid cancer

has continued to increase in many countries, but its mortality rate

has remained stable over the same period, suggesting that much of

the increase is due to over-diagnosis, which accounts for 60-90% of

detected cases of thyroid cancer in some countries (36, 37). Multiple

methods are available for determining the nature of nodules,

including multimodal ultrasonography, fine needle aspiration, and

AI based non-invasive methods. Examinations that combine B-US,

CDFI, RTE, and CEUS are preferred by radiologists for the

assessment of thyroid nodules that appear to be malignant. B-US

serves as the basis for the classification of malignancy of thyroid

nodules. TI-RADS is commonly used in clinical work (38),

enhancing diagnostic accuracy and reducing unnecessary biopsies

(5, 39). The value of the following ultrasound techniques is in

continuous exploration, with a number of studies highlighting and

utilizing CEUS. As we know, CDFI detects blood flow inside and

around thyroid nodules, while RTE indicates thyroid nodule

hardness, increasing diagnostic accuracy (40). Several scholars

have done studies on the correlation between ultrasound strain

elastography (SE) and the size of thyroid nodules (41–44). Based on

three diagnostic tools including SE, it was investigated that a cut-off

value of 10 mm and 15 mm in the diameter of thyroid nodules may

not be able to predict the degree of malignancy. Our study improves

the possibility of recognizing the nature of thyroid nodules with

diameters less than 15 mm by using ML combined with multimodal

ultrasound images. CEUS can detect differences in blood

distribution, as well as differences in hemodynamics between the

tumor and the surrounding tissue (10).
TABLE 3 Comparison of the predictive performance of different ML
models with B-US+CDFI+RTE+CEUS data combination in test cohort.

Models ACC SEN SPE PPV NPV F1

XGBoost 0.82 0.94 0.60 0.81 0.86 0.87

SVM 0.60 0.66 0.50 0.70 0.46 0.68

RF 0.71 0.66 0.80 0.85 0.57 0.74

LR 0.75 0.83 0.60 0.78 0.67 0.81

KNN 0.64 0.86 0.25 0.67 0.50 0.75

GB 0.80 0.89 0.65 0.82 0.77 0.85

AdaBoost 0.82 0.94 0.60 0.81 0.86 0.87
XGBoost, eXtreme Gradient Boosting; SVM, Support Vector Machines; RF, random forest;
LR, logistic regression; KNN, k nearest neighbors; GB, Gradient Boosting; AdaBoost, Adaptive
Boosting. ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value;
NPV, negative predictive value; F1, F1 score.
TABLE 4 Comparison of AUCs of ML models and radiologists with different data combinations in test cohort.

B-US B-US+CDFI+RTE p1 value B-US+CDFI
+RTE+CEUS

p2 value

XGBoost
AdaBoost
Senior Radiologists

0.68
0.72
0.78

0.64
0.66
0.79

0.65
0.30
0.32

0.88
0.89
0.88

<0.05
<0.05
0.16

Junior Radiologists 0.69 0.64 0.15 0.69 0.15

p3 value 0.45 0.15 / 0.86 /

p4 value 0.74 0.71 / <0.05 /

p5value 0.18 <0.05 / <0.05 /
XGBoost, eXtreme Gradient Boosting; AdaBoost, Adaptive Boosting; B-US, B-mode ultrasound; CDFI, color doppler flow images; RTE, real-time elastography; CEUS, contrast-
enhanced ultrasound.
p1: B-US+CDFI+RTE compared with B-US.
p2: B-US+CDFI+RTE+CEUS compared with B-US+CDFI+RTE.
p3: AdaBoost compared with Senior Radiologists.
p4: AdaBoost compared with Junior Radiologists.
p5: Senior Radiologists compared with Junior Radiologists.
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Applying AI to evaluate and analyze image data is an emerging

field (15–19, 24, 25). Based on our limited knowledge, we have not

yet seen a study making full use of extensive information extracted

from full-time sequences of thyroid CEUS cines. A study added

CEUS to B-US images, featuring a single frame of the CEUS cine

with peak enhancement intensity to represent the entire CEUS cine

(30). Applying DL methods to the breast had already been done by

our team (45). Now we explored whether ML methods would be

more effective considering the data volume of thyroid nodules.

The DL-based method works like a “black box” and cannot

clearly show the intermediate process. Meanwhile, this study’s

sample data is small and is not suitable for deep learning

methods such as neural networks, which require large amounts of

data. Thus, ML-based methods were tried in this study. Seven

methods in ML classification algorithms were selected. First, LR the
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most commonly used double classification methods in traditional

statistical methods, can be used as a reference for the classification

effect of this study. KNN was selected because it is a frequently used

classifier and is easy to understand, which utilizes a training sample

and predicts the new sample by majority voting on the results of the

k-nearest points to the new sample. SVM and RF classifier are the

most effective classification methods in ML. RF is an improvement

on the bagging method, which reduces variance by building and

averaging many trees to obtain an approximately unbiased model.

SVM in the context of binary classification can be formulated as a

model for finding a decision boundary that maximizes the margin

between two data categories. GB, XGBoost, and AdaBoost belong to

the Boosting family, which can promote weak learners to strong

learners. AdaBoost emphasizes adaptability and constantly adds

weak classifiers to boost by constantly modifying sample weights
FIGURE 5

Receiver operating characteristic (ROC) curves of ML models and radiologists with B-US+CDFI+RTE+CEUS data combination in test cohort.
TABLE 5 Comparison of AUCs of ML models and radiologists with different data combinations in 24 difficult cases of test cohort.

B-US B-US+CDFI+RTE p1 value B-US+CDFI
+RTE+CEUS

p2 value

XGBoost
AdaBoost
Senior Radiologists

0.50
0.55
0.52

0.66
0.56
0.58

0.29
0.96
0.32

0.80
0.83
0.66

0.35
<0.05
0.41

Junior Radiologists 0.61 0.54 0.14 0.54 1.00

p3 value 0.85 0.89 / 0.17 /

p4 value 0.72 0.95 / <0.05 /

p5 value 0.45 0.78 / 0.30 /
XGBoost, eXtreme Gradient Boosting; AdaBoost, Adaptive Boosting; B-US, B-mode ultrasound; CDFI, color doppler flow images; RTE, real-time elastography; CEUS, contrast-
enhanced ultrasound.
p1: B-US+CDFI+RTE compared with B-US.
p2: B-US+CDFI+RTE+CEUS compared with B-US+CDFI+RTE.
p3: AdaBoost compared with Senior Radiologists.
p4: AdaBoost compared with Junior Radiologists.
p5: Senior Radiologists compared with Junior Radiologists.
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(increasing the weight of wrong samples and decreasing the weight

of split pair samples). In addition, it simulates the clinical

ultrasound decision-making path and analyze the four kinds of

radiomics data in order with the above ML methods.

The results showed that AdaBoost classification, which

combines several weak classifiers to create a superior classifier,

was had the best effect. It outperformed the effects of experienced

doctors. This may be because AdaBoost can enhance the accuracy of

weak classifiers, is relatively robust to overfitting (under certain

conditions), and its efficiency and adaptability make it a strong

choice for classification tasks on small datasets. In the meanwhile,

we found that the multimodal ultrasound model integrated with the

shortest one-minute full-time-series CEUS cines yielded a

maximum AUC of 0.89 and a maximum accuracy of 0.82. Such a

model is more clinically relevant and can facilitate the diagnosis and

treatment of thyroid nodules. Several factors make our study

different from others. To distinguish between benign and

malignant thyroid nodules, several thyroid radiomics research

extracted multi-dimensional features from thyroid B-US images

by SVMmethods. The accuracy of the SVM models in these studies

ranged from 75.9% to 98.3% (33, 46, 47). Park VY et al. extracted

features based on thyroid B-US images and developed a linear

prediction model, the best model yielded an AUC of 0.75 in the test

set (48). While our best model with B-US images yielded an AUC of

0.72. When it comes to thyroid multimodal images, a study

established ML‐assisted visual approaches and radiomics

approaches based on B-US and SWE images to predict the

malignancy of thyroid nodules (31). What’s more, Zhang B et al.

demonstrated that both ML models and radiologists can lead to

more reliable differentiation of benign and malignant nodules based

on B-US combined with RTE images (32). However, in our study,

when adding CDFI and RTE images, the predictive performance of

both 3 classifiers (XGBoost, GB, AdaBoost) and junior radiologists

seems to decline compared with B-US images only. Overfitting

existed due to the weakened generalization ability of the model after

the addition of CDFI and RTE feature samples. Meanwhile, the

static images might have been less informative than the dynamic

cines, while the junior radiologists did not interpret CDFI and RTE

accurately enough. On the other hand, adding CEUS data to B-US,

CDFI, and RTE data combination increased the AUCs of XGBoost,

AdaBoost, GB, and junior radiologists. Compared to real clinical

work, where radiologists routinely observe the features of thyroid

nodules dynamically, static CDFI and RTE images have failed to

accurately convey comprehensive information about the nodules.

Simultaneously, CEUS cines deliver a larger amount of data and

information than CDFI and RTE images.

After the inclusion of CEUS, the trend of AUC changed

differently among ML models, senior radiologists, and junior

radiologists. Junior radiologists were inexperienced in CEUS

interpretation. On the contrary, senior radiologists were more

experienced in CEUS interpretation owing to the long CEUS

learning curve, which contains a lot of detailed domain

knowledge. Comparatively, the ML methods captured the

information accurately without the above-mentioned differences.
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It was shown in our results that the diagnostic performance of both

over half of the classifiers and senior radiologists improved after

adding CDFI and RTE data to the B-US data, while almost all

classifiers and radiologists performed better after adding

CEUS data.

In general, with each addition of multimodal data, especially

CEUS data, the AUCs of models gradually increased. A conclusion

could be drawn that B-US, CDFI, and RTE images are valuable, and

the inclusion of CEUS cines can provide a higher level of value. In

the discrimination of benign and malignant thyroid nodules, CEUS

was of great help to both the algorithm and radiologists by

improving their diagnostic performance. Out of 28 different

classifiers, the classifier with better diagnostic performance

surpassed the performance of junior radiologists but was similar

to that of senior radiologists. This finding was similar to outcomes

from other studies (49, 50). In 24 difficult cases, with the inclusion

of CEUS, the ML models excelled senior radiologists and

significantly outperformed junior radiologists, demonstrating the

powerful ability to identify thyroid nodules when CEUS is

integrated with the ML algorithm.

The current study still contained some limitations. First of all,

only a small sample dataset was obtained for this study, and no

additional medical research centers were combined to capture a

more comprehensive sample. In addition, this study did not provide

a separate external validation cohort; instead, internal validation

was used. Third, the B-US, CDFI, and RTE images reviewed in this

study were static and left features from multi-sections of thyroid

nodules unconsidered. In follow-up studies, multimodal ultrasound

dynamic video modeling and classification of thyroid nodules

would have high clinical application value.
5 Conclusion

Multimodal ultrasound images including CEUS combined with

the ML algorithm provide a better classification of thyroid nodules

as benign or malignant, and CEUS optimizes the diagnostic

performance of both algorithms and radiologists.
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