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pheochromocytoma and adrenal
lipoid adenoma by radiomics:
are enhanced CT scanning
images necessary?
Shi he Liu1, Pei Nie1, Shun li Liu1, Dapeng Hao1, Juntao Zhang2,
Rui Sun1, Zhi tao Yang1, Chuan yu Zhang1* and Qing Fu1*

1Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China,
2GE Healthcare, PDx GMS Advanced Analytics, Shanghai, China
Purpose: To establish various radiomics models based on conventional CT scan

images and enhanced CT images, explore their value in the classification of

pheochromocytoma (PHEO) and lipid-poor adrenal adenoma (LPA) and screen

the most parsimonious and efficient model

Methods: The clinical and imaging data of 332 patients (352 lesions) with PHEO

or LPA confirmed by surgical pathology in the Affiliated Hospital of Qingdao

University were retrospectively analyzed. The region of interest (ROI) on

conventional and enhanced CT images was delineated using ITK-SNAP

software. Different radiomics signatures were constructed from the radiomics

features extracted from conventional and enhanced CT images, and a radiomics

score (Rad score) was calculated. A clinical model was established using

demographic features and CT findings, while radiomics nomograms were

established using multiple logistic regression analysis.The predictive efficiency

of different models was evaluated using the area under curve (AUC) and receiver

operating characteristic (ROC) curve. The Delong test was used to evaluate

whether there were statistical differences in predictive efficiency between

different models.

Results: The radiomics signature based on conventional CT images showed

AUCs of 0.97 (training cohort, 95% CI: 0.95∼1.00) and 0.97 (validation cohort,

95% CI: 0.92∼1.00). The AUCs of the nomogram model based on conventional

scan CT images and enhanced CT images in the training cohort and the

validation cohort were 0.97 (95% CI: 0.95∼1.00) and 0.97 (95% CI: 0.94~1.00)

and 0.98 (95% CI: 0.97∼1.00) and 0.97 (95% CI: 0.94∼1.00), respectively. The
prediction efficiency of models based on enhanced CT images was slightly

higher than that of models based on conventional CT images, but these

differences were statistically insignificant(P>0.05).
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Conclusions: CT-based radiomics signatures and radiomics nomograms can be

used to predict and identify PHEO and LPA. The model established based on

conventional CT images has great identification and prediction efficiency, and it

can also enable patients to avoid harm from radiation and contrast agents caused

by the need for further enhancement scanning in traditional image examinations.
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Introduction

Adrenal adenoma accounts for 75% to 80% of all benign adrenal

tumors and is the most common adrenal tumor (1). The clinical

symptoms are often nonspecific. Depending on the lipid content of

the tumor, a CT value of 10 HU is taken as the boundary. If the

average CT value within the lesion is lower than 10HU, it indicates

that the lesion is an adrenal adenoma rich in lipids. If the CT value

is higher than 10HU, it indicates that the lesion is an adrenal

adenoma lacking in lipids (LPA) (2–5). A pheochromocytoma

(PHEO), which originates from the adrenal medulla, can secrete

catecholamines and cause hypertension and may lead to

neuropathy and heart disease (6). When the clinical and imaging

manifestations of PHEO and adrenal adenoma are not typical, the

classification of the two diseases is difficult, and the misdiagnosis

rate is high before surgery (7–9). Moreover, there are significant

differences in preoperative preparation, surgical approach and

prognosis between the two adrenal adenomas (10). Therefore, it is

very important to correctly distinguish these two diseases

before surgery.

The aim of our research is to develop different radiomics models

based on conventional CT scan images and enhanced CT images to

identify PHEOs and LPAs and to compare the predictive efficacy of

various models to screen the most parsimonious and

efficient model.
Materials and methods

Patients

The imaging and clinical data of 167 patients (168 lesions) with

LPA and 165 patients (184 lesions) with PHEO confirmed by

surgical pathology in the Affiliated Hospital of Qingdao

University from January 2016 to December 2021 were

retrospectively collected (Figure 1). The inclusion criteria were as

follows: (1) Both conventional CT scans and dynamic enhanced CT

scans were performed before surgery. (2) The tumor lesions were

confirmed by surgery and complete pathological data. The

exclusion criteria were as follows: (1) The patient was
02
accompanied by other primary malignant tumors during the

same period; (2) The average CT number of adrenal adenoma

was less than 10HU; (3) The quality of the image could not meet the

requirements of analysis; and (4) With incomplete clinical data.

Using a stratified random sampling method, patients were divided

into a training cohort (n=232) and a validation cohort (n=100) in a

7:3 ratio.
Image acquisition and segmentation
of lesions

All CT scans were performed on one of the following devices:

GE Discovery CT 750 HD (GE Healthcare, USA),SOMATOM

Definition AS(Siemens Medical Systems, Germany) and Brilliance

iCT (Philips Healthcare, Netherlands). The acquisition and

reconstruction parameters are shown in Table 1. The slice

thickness of the conventional CT was set at 5 mm. During the

enhanceme nt scan, 50 ml iohexol (300 mg/mL) was injected into

the elbow vein with a flow rate of 2.5-3.0 ml/s. The arterial and

venous phase images were collected at 25 s and 65 s after the

injection of contrast agent. The slice thickness of the reconstructed

image was set to 1 mm.

Using image segmentation software (ITK-SNAP, http://

www.itksnap.org, Version: 3.8.0, USA), we manually delineated

the region of interest (ROI) on the axial image that displayed the

largest cross-sectional area of the lesion on the conventional CT

scan. On the axial section images of the arterial phase and venous

phase (with a thickness of 1 mm) of the dynamic enhanced CT scan,

drew ROI layer by layer along the edge of the lesion, and then apply

automatic fusion software to generate 3D ROI of the lesion. All ROI

delineation was completed by 2 radiologists (Doctor QF and Doctor

SLL) with more than 10 years of chest CT diagnosis experience. Dr.

QF outlined the ROI and performed feature extraction. After 1

week, the second ROI mapping and feature extraction were

performed to evaluate the internal consistency of the measurers.

Dr. SLL only performed ROI placement and feature extraction once.

This approach was used to evaluate the inter- and intra- class

correlation coefficients (ICCs). An ICC > 0.75 was regarded as

satisfactory inter- and intra-reader reproducibility.
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Image standardization, feature extraction
and development of the
radiomics signature

Figure 2 shows the workflow of radiomics implementation.

Before extracting the radiomics features, the original images were

normalized through z score transformation, and the average

intensity range for each imaging mode for all subjects was 0, with

a standard deviation of 1. We used a two-step feature selection

method to reduce curse of dimensionality, minimize overfitting,

and determine the most effective feature for distinguishing PHEO

and LPA. Firstly, a single factor analysis of variance (ANOVA) was

performed on all features with ICC scores>0.75, selecting

statistically significant features for the training cohort. Secondly,

the selected features are included in the Least Absolute Shrinkage

and Selection Operator (LASSO) regression algorithm to determine

the best feature (with non zero coefficients) to distinguish between

PHEO and LPA (Figures 3A–C). Tuning regularization parameters

that control regularization intensity were selected by using a

minimum standard of 10 times cross validation l. Then, the final
selected feature with a nonzero coefficient was used to construct a

radiomics signature. Features weighted by their corresponding

nonzero coefficients were screened using a linear combination of
Frontiers in Oncology 03
selected values. Then, the Rad scores of each patient in the training

cohort and external validation cohort were calculated (Figure 4).
Development of the radiomics nomogram
and assessment of the performance of
different models

Integrate independent clinical factors and Rad scores developed

on the training cohort into the radiomics nomogram using

multivariate logistic regression. Then, the Rad score and

independent clinical factors were used to calculate the radiomics

nomogram score (Nomo score) for each patient in the training and

validation cohort.Calibration curves for two groups of patients were

graphically generated to evaluate the performance of the radiomics

nomogram. The AUC, accuracy, specificity, and sensitivity were

used to evaluate the effectiveness of different models. The

calibration efficiency of the nomogram was evaluated using a

calibration curve, and the analysis fitting was performed using the

Hosmer Lime test, which was used to evaluate the calibration ability

of the nomogram. Decision curve analysis (DCA) was used to

evaluate the clinical application value of the prediction model. The

DeLong test was used to evaluate the difference in prediction

efficiency between different models.
Statistical analysis

Statistical analysis was conducted using R software (version

4.2.0, https://www.R-project.org). Qualitative data analysis was

conducted using Fisher’s exact test or chi-square test, and

quantitative data analysis was conducted using independent

sample t-test. Delong test was used for comparing the predictive

value of different models.The following software packages were

used in our study: use the “glmnet (R)” software package for LASSO

regression based on multivariate binary logistic regression. The

ROC curve was plotted using the software package ‘Partial Subject

Operating Characteristics (pROC [R])’. Use the ‘Regression
TABLE 1 The scanning parameters and reconstruction parameters of
these three CT scanners.

Parameters Discovery
750 HD

SOMATOM
Definition AS

Brilliance
iCT

Scan parameters 120kVp,
Smart mA

Care kV,Care Dose
4D,

Ref mAs

120kVp,
Dose Right

Pitch
Reconstruction slice
thickness(mm)

0.984
1.25

0.6
1

0.984
1

Reconstruction
kernel

soft B30f standard
FIGURE 1

Flow diagram of the patient selection.
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Modeling Strategy (rms [R])’ software package for nomogram

development and calibration curves. The significance level is set

at p<0.05.
Results

Clinical factors of the patients

Comparison of clinical data and CT image characteristics of all

patients with PHEO and LPA showed statistically significant

differences (P< 0.01) in lesion location, maximum lesion
Frontiers in Oncology 04
diameter, necrosis, edge, CT values and perfusion values, as

shown in Table 2.
Validation of the models

The AUC of the clinical model was 0.83 (95% CI: 0.76-0.89) in

the training cohort and 0.83 (95% CI: 0.72-0.94) in the validation

cohort. Clinically relevant factors of lesion location, CT values

(arterial phase CT values), and necrosis were independent

predictors for classifying PHEO and adrenal LPA, and these

factors were integrated with the radscore to create a nomogram,
FIGURE 3

(A–C) Use the Least Absolute Shrinkage and Selection Operator (LASSO) regression model for radiomics feature selection. (A) Using cross validation
to select the optimal model parameters l. (B) Using 10 cross validation tests, a coefficient profile was generated and matched with the selected
logarithm l. (C) Nine radiomics features with nonzero coefficients were selected.
FIGURE 2

Flowchart of radiomics implementation in this study.
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TABLE 2 Clinical factors of the patients.

Clinical factors PHEO(n=165, 184 lesions) LPA (n=167, 168 lesions) p-value c2 or t

Gender
Male 73(44.2%) 62(37.1%)

0.19 1.74*
Female 92(55.8%) 105(62.9%)

Age, year 51.3 ± 12.6 51.2 ± 12.7 0.95 0.07

Location

left 83(50.3%) 102(61.1%)

<0.01 16.17*right 65(39.4%) 64(38.3%)

bilateral 17(10.3%) 1(0.6%)

Maximum diameter(mm) 49.4 ± 28.3 23.5 ± 11.8 <0.01 11.02

Hypertension
positive 88(53.3%) 97(58.1%)

0.66 0.19*
negative 77(46.7%) 70(41.9%)

Necrotic
positive 138(75.0%) 47(28.0%)

<0.01 77.88*
negative 46(25.0%) 121(72.0%)

edge
positive 115(62.5%) 154(91.7%)

<0.01 41.46*
negative 69(37.5%) 14(8.3%)

Arterial phase CT value(CT_A) (Hu) 123.2 ± 51.0 71.8 ± 25.5 <0.01 11.79

Conventional CT value (Hu) 41.4 ± 7.1 27.1 ± 9.3 <0.01 16.32

Perfusion value (Hu) 81.8 ± 52.4 44.6 ± 22.2 <0.01 8.50
F
rontiers in Oncology
 05
* c2 test, Perfusion value=Arterial phase CT value-Conventional CT value.
FIGURE 4

(A, B) shows the Rad score of each patient in the training cohort (A) and validation cohort (B). The Rad score was used to classify patients with
PHEO and LPA according to the threshold. Use Wilcoxon test to verify whether there is a statistical difference between the two groups.
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as shown in Figure 5. The predictive effectiveness of the clinic

model,radiomics signatures and radiomics nomogram models

established based on conventional CT images and dynamic

enhanced CT images (Mixed images of arterial and venous

phases) are shown in Table 3. We compared the predictive value

of different models using Delong test, and the results showed that

the prediction efficiency of the model based on enhanced CT images

was slightly higher than that based on conventional CT images, but

the difference was not statistically significant (p>0.05)(Table 3).

Figure 6 shows that in the validation cohort, the predictive ability of

the radiomics nomogram (AUC=0.97, 95% CI: 0.94-1.00) and

radiomics signature (AUC=0.97, 95% CI: 0.92-1.00) based on

conventional CT images was better than that of the clinical model

(AUC=0.83, 95% CI: 0.72-0.94). Figure 7 shows the DCAs of the

radiomics nomogram and radiomics signature.

Both radiomics models and clinical models can predict the

classification of PHEO and LPA. In the training and validation

cohorts, the predictive ability of the nomogram (red) (AUC=0.97)

and the radiomics signature (blue) (AUC=0.97) were better than

that of the clinical model (green) (AUC=0.83).
Frontiers in Oncology 06
Net income is displayed on the y-axis. The dark blue line

represents the nomogram model model that combined clinical

features and radscores. The red line indicates that all patients are

assumed to have PHEO, the light blue line indicates that none of the

patients have PHEO, the yellow line represents the results of the

clinical model, and the gray line represents the results of radiomics

signature. It can be seen that the radiomics signature model and the

nomogram model have higher net income.
Discussion

Adrenal adenoma is very common in clinical work, and CT has

high specificity and sensitivity in the diagnosis of adrenal adenoma

when its CT value on conventional scan is below 10 Hu due to its rich

lipid component. However, some adrenal adenomas lacking lipids

(called LPAs) are difficult to diagnose correctly (11, 12). PHEOs can

secrete catecholamines. The typical clinical manifestation is

hypertension, as well as headache and palpitations associated with

hypertension, but in practice, approximately 10% to 20% of patients
TABLE 3 Comparing the predictive value of different models using Delong test.

Models

Training cohort
p-

value

Validation cohort
p-

valueAUC
(95% CI)

Accuracy Sensitivity Specificity
AUC

(95% CI)
Accuracy Sensitivity Specificity

CT-conventional
radiomics signature

0.97
(0.95~1.00)

0.95 0.96 0.94 Reference
0.97

(0.92~1.00)
0.92 0.82 0.86 Reference

Clinical model
0.83

(0.76~0.89)
0.79 0.89 0.67 <0.001

0.83
(0.72~0.94)

0.68 0.91 0.39 0.03

Enhanced CT
radiomics signature

0.98
(0.97~1.00)

0.95 0.94 0.96 0.94
0.98

(0.95~1.00)
0.89 0.97 0.79 0.48

CT- conventional
radiomics nomogram

0.97
(0.95~1.00)

0.95 0.92 0.99 0.98
0.97

(0.94~1.00)
0.91 0.87 0.96 0.74

Enhanced CT
radiomics nomogram

0.98
(0.97~1.00)

0.96 0.98 0.94 0.87
0.97

(0.94~1.00)
0.89 0.85 0.96 0.81
fron
p-value: Comparing the predictive value of different subgroup models using Delong test.
FIGURE 5

Radiomics nomogram used to classify LPA and PHEO.(CT_A: Arterial phase CT value) Data of a patient with LPA (A–C),data of a patient with PHEO
(D–F); radiomics nomogram (G). The lesions of two patients had similar imaging findings.
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have no clinical manifestations or atypical manifestations (13, 14).

Adrenal LPA and PHEO are both blood-rich tumors and have many

similarities in CT presentation that make them difficult to differentiate

(15–18). However, the surgical risk of PHEO is high, and the literature

reports that adequate preoperative preparation could reduce the

surgical mortality of PHEO from 30%-40% to 0-5.5% (19–21).

Therefore, it is necessary to make an accurate clinical diagnosis of

patients before surgery.

In the past, the relative and absolute enhancement washout rates

were often used to characterize adrenal tumors, but Park said that it

was difficult to identify PHEO and LPA using the enhancement

washout rate (22, 23). In studying abdominal energy spectrum CT,

Marin et al. found that lipid-rich components showed a certain pattern

of CT value changes in a certain energy range with high specificity but

had little diagnostic significance for lipid-poor components (24).

More and more radiomics analysis was being applied to

medical imaging research (25). Radiomics can help clinicians

make accurate diagnoses by exploring the connection between

images and pathology and clinics (26–28). In addition, radiomics
Frontiers in Oncology 07
characteristics may be important predictive factors for cancer

differential diagnosis, treatment response, and survival prediction

(29, 30). Xiaoping Yi et al (31) found that non enhanced CT

quantitative texture analysis based on machine learning may be a

reliable quantitative method for distinguishing PHEO from LPA.

However, the sample size of this study was relatively small, and no

model based on enhanced scanning 3D data had been established

for comparison. Therefore, our study is the first to establish multiple

imaging radiomics models based on conventional CT and enhanced

CT images to predict LPA and PHEO, and we also compared the

predictive performance of different models. The AUCs of the

radiomics signature based on conventional CT images were 0.97

in the training cohort and 0.97 in the validation cohort. In the

validation cohort, the AUCs of the radiomics signature and

radiomics nomogram based on enhanced CT images were 0.98

and 0.97, respectively. Both models showed good predictive ability,

better than the predictive performance of the clinical model. These

results are also superior to the findings of Xiaoping Yi. The

radiomics nomogram based on conventional CT images also
FIGURE 7

Decision curve analysis (DCA) of different models.
FIGURE 6

The models based on clinical and conventional CT scan images applied AUC to evaluate the prediction ability of different models (A: ROC curve of
the training cohort; B: ROC curve of the validation cohort).
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yielded satisfactory results. The Delong test results showed that the

prediction efficiency of the models based on enhanced CT images

was slightly higher than that of the models based on conventional

CT images, but the difference was not statistically significant (P

>0.05). CT scanning can cause ionizing radiation damage, and

dynamic enhanced scanning not only increases radiation exposure

but also produces harmful effects such as contrast agent allergy and

contrast agent nephrotoxicity (32–35). At present, radiological

examinations should strictly follow the principle of “As Low As

Reasonably Achievable” (32, 33, 36–38). The model based on

conventional CT scans can effectively distinguish adrenal LPAs

from PHEOs, and the radiation and contrast hazards associated

with further enhancement scans can be avoided.

In this study, radiomic features were selected to construct

radiomics signature model for classifying PHEO and adrenal LPA,

including:P_wavelet_LLH_gldm_Dependence Non Uniformity,

P_wavelet LLH_glszm_Large Area Low Gray Level Emphasis,

P_wavelet_HHH glrlm_Run Length Non Uniformity Normalized,

P_wavelet_LLH_glrlm_Run Length Non Uniformity Normalized,

P_original_shape_Sphericity,P_wavelet_LLH_glcm_Contrast,

P_original_shape _Minor Axis Length, P_original_firstorder_Median,

P_wavelet_LLH_glrlm_Run Variance, among which 1 first order

feature, 3 glrlm features,1 glszm feature,1 glcm feature,1 gldm feature

and 2 original shape features were included.Amix offirst-order, texture

and wavelet features seemed to be important for classifying PHEO and

adrenal LPA. In our study, we used filters to extract radiomics features

from the original images.Among the 9 independent imaging features

ultimately selected, there are 6 wavelet features. Wavelet features can

comprehensively analyze changes in spatial frequency. These features

can provide detailed analysis of texture changes. Wavelet features can

also quantify the heterogeneity of tumors in various directions through

different spatial scales, so it is believed that wavelet features may help us

understand the pathophysiology and morphology of tumors (39).

Previous studies had revealed the potential value of wavelet features

in histological subtype prediction and prognostic assessment (40, 41).

Our results show that wavelet features also have significant capabilities

in the prediction models of PHEO and LPA.First order features can

reflect the grayscale distribution of tumors and are obtained by

calculating the grayscale values of tumors, usually representing low

dimensional information that is easy to perceive visually.In addition,

our model also includes two original shape features, which respectively

suggest that the short axis length and sphericity of the tumor may have

value in distinguishing PHEO and LPA.

Nevertheless, our research has some limitations: (1) there may

be problems of selection bias and information bias in retrospective

studies; (2) different CT machines reduce the consistency of image

comparison to a certain extent; and (3) future multicenter and

prospective trials are needed to verify the results of this study.

In conclusion, the CT-based radiomics signature and radiomics

nomogram in our research have good predictive efficacy in identifying

PHEO and adrenal LPA. The model based on conventional CT scans

can identify both diseases while avoiding the radiation and contrast

hazards caused by dynamic enhancement scans.
Frontiers in Oncology 08
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