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Purpose: Despite accumulating data regarding the genomic landscape of

pancreatic ductal adenocarcinoma (PDAC), olaparib is the only biomarker-

driven FDA-approved targeted therapy with a PDAC-specific approval. Treating

ERBB2(HER2)-amplified PDAC with anti-HER2 therapy has been reported with

mixed results. Most pancreatic adenocarcinomas have KRAS alterations, which

have been shown to be a marker of resistance to HER2-targeted therapies in

other malignancies, though the impact of these alterations in pancreatic cancer

is unknown. We describe two cases of ERBB2-amplified pancreatic cancer

patients treated with anti-HER2 therapy and provide data on the frequency of

ERBB2 amplifications and KRAS alterations identified by clinical circulating cell-

free DNA testing.

Methods: De-identified molecular test results for all patients with pancreatic

cancer who received clinical cell-free circulating DNA analysis (Guardant360)

between 06/2014 and 01/2018 were analyzed. Cell-free circulating DNA analysis

included next-generation sequencing of up to 73 genes, including select small

insertion/deletions, copy number amplifications, and fusions.

Results: Of 1,791 patients with pancreatic adenocarcinoma, 36 (2.0%) had an

ERBB2 amplification, 26 (72.2%) of whom had a KRAS alteration. Treatment data

were available for seven patients. Two were treated with anti-HER2 therapy after

their cell-free circulating DNA result, with both benefiting from therapy,

including one with a durable response to trastuzumab and no KRAS alteration

detected until progression.
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Conclusion:Our case series illustrates that certain patients with ERBB2-amplified

pancreatic adenocarcinoma may respond to anti-HER2 therapy and gain several

months of prolonged survival. Our data suggests KRAS mutations as a possible

mechanism of primary and acquired resistance to anti-HER2 therapy in

pancreatic cancer. Additional studies are needed to clarify the role of KRAS in

resistance to anti-HER2 therapy.
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is notoriously

challenging to diagnose and treat, with over 80% of patients

having regional or distant metastases at diagnosis, and over 87%

surviving less than five years (1). There is currently only one United

States Food and Drug Administration (FDA)-approved biomarker-

driven targeted therapy approved specifically for PDAC (the poly

(ADP-ribose) polymerase (PARP) inhibitor olaparib), despite

several PDAC sequencing studies identifying potential genomic

targets, including homologous recombination deficiency (HRD)

genes, BRAF, and receptor tyrosine kinases, such as ERBB2

(HER2) (2–8).

Recent studies have identified ERBB2(HER2) amplifications in

PDAC at rates of 1-7% (2–9). Targeted therapies are FDA-approved

for ERBB2-amplified breast, colon, and gastric cancer (10–14). In

the past, trastuzumab efficacy was examined in patients with ERBB2

positive PDAC, as assessed by IHC, with confirmed response rates

of 6% to 23.5%, but numbers were small and tumors were not

assessed for co-occurring mutations and potential mechanisms of

resistance (15, 16). In the more recent Know Your Tumor study,

four ERBB2-amplified patients with PDAC received trastuzumab in

combination with various drugs and observed responses ranging

from one month to over 12 months (5). The phase II MyPathway

trial included nine ERBB2-amplified patients with PDAC who were

treated with trastuzumab and pertuzumab, of whom two achieved a

partial response (11). Additional case reports have shown mixed

results, with a KRAS wild-type, ERBB2-amplified patient with

PDAC progressing within one month of treatment with

trastuzumab emtansine in the fifth-line setting, and another

patient achieving stable disease with trastuzumab and

pertuzumab, followed by complete response when treated with

immunotherapy, radiation, and trastuzumab deruxtecan in the

third-line setting (4, 17). KRAS mutations have been seen at the

time of primary and acquired resistance to anti-HER2 therapy in

other cancer types, including colorectal and gastroesophageal

cancer; however, the impact of KRAS mutations co-occurring

with potentially targetable alterations in PDAC has not been

defined (11, 18–20).
02
While mutations in potentially targetable genes in PDAC are

individually rare, recent studies suggest that 10-20% of PDAC

tumors may harbor therapeutically actionable alterations (4, 21).

Comprehensive genomic profiling with next-generation sequencing

(NGS) provides the opportunity to identify patients who may

benefit from a targeted therapy approach, and analysis of

circulating cell-free DNA (cfDNA) could be particularly useful in

PDAC where tissue specimens are limited and patients often have

less time to wait for genomic test results given the urgency to initiate

treatment (22, 23). Herein, we describe two cases of patients with

ERBB2-amplified PDAC treated with anti-HER2 therapy following

their cfDNA result, and assess the frequency of ERBB2

amplification and co-occurring KRAS mutations and/or

amplification in clinical cfDNA NGS results in over 1,700

samples from patients with PDAC.
2 Materials and methods

2.1 Patients

We analyzed the Guardant360 deidentified database, containing

results of patients who underwent clinical cfDNA testing between

June 2014 and January 2018, and identified patients with a diagnosis

of PDAC as reported by the ordering provider on the test

requisition form. Patients with PDAC who had an ERBB2

amplification detected on at least one cfDNA test were included

for further analysis. This research was approved by the Advarra

Institutional Review Board (IRB) for the generation of deidentified

data sets for research purposes. For select patients, additional details

regarding treatments and outcomes were obtained from the treating

physician as per local IRB guidelines.
2.2 cfDNA analysis

Blood draw, shipment, plasma isolation and cfDNA extraction

procedures for the clinical cfDNA assay used in this study have been

previously described (24). Guardant360 is a CLIA-certified, College
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of American Pathologists-accredited, New York State Department

of Health-approved cfDNA NGS assay with analytic and clinical

validation reported (24). Point mutations were analyzed in 68 to 73

genes, small insertions and/or deletions (indels) in up to 23 genes,

copy number amplifications (CNA) in up to 18 genes, and fusions

in up to six genes, depending on the panel version performed

(Table 1) (24).
2.3 Data analysis

cfDNA ERBB2 amplifications were classified by copy number

and category (1+/2+/3+) and assessed in comparison with co-

occurring cfDNA identified KRAS alterations. At the time of this

study, amplifications were reported on a semi-quantitative scale

given that the absolute number of copies in circulation is dependent

on both tumor fraction and the magnitude of amplifications. The 1+

category applied to amplification magnitude in the lower 50th
Frontiers in Oncology 03
percentile of samples with amplifications, 2+ applied to

amplification magnitude in the 50th to 90th percentile, and 3+

applied to amplification magnitude in the top 10th percentile.

KRAS alterations were categorized as amplifications or single

nucleotide variants (SNVs). All characterized pathogenic KRAS

SNVs were included. For patients with cfDNA analysis at

multiple time points, ERBB2 amplifications and KRAS alterations

were assessed for changes over time.
3 Results

During the study period, 1,791 patients with PDAC had ≥1

alteration detected via cfDNA analysis, 36 (2.0%) of whom had an

ERBB2 amplification (Figure 1). The cohort of patients with ERBB2-

amplified PDAC was 44.4% female with a mean (median) age of

66.3 (65.5) years (range 32-91; Table 2). Among the 21 patients for

whom date of initial diagnosis was available, the mean (median)
TABLE 1 Genes and mutation types analyzed in cfDNA analysis (Guardant360 73 gene panel).

Point Mutations (SNVs)

AKT1 ALK APC AR ARAF ARID1A ATM

BRAF BRCA1 BRCA2 CCND1 CCND2 CCNE1 CDH1

CDK4 CDK6 CDKN2A CTNNB1 DDR2* EGFR ERBB2

ESR1 EZH2 FBXW7 FGFR1 FGFR2 FGFR3 GATA3

GNA11 GNAQ GNAS HNF1A HRAS IDH1 IDH2

JAK2 JAK3 KIT KRAS MAP2K1 MAP2K2 MAPK1*

MAPK3* MET MLH1 MPL MTOR* MYC NF1

NFE2L2 NOTCH1 NPM1 NRAS NTRK1 NTRK3* PDGFRA

PIK3CA PTEN PTPN11 RAF1 RB1** RET RHEB

RHOA RIT1 ROS1 SMAD4 SMO STK11 TERT

TP53 TSC1** VHL

Indels

ATM APC ARID1A BRCA1 BRCA2 CDH1 CDKN2A

EGFR ERBB2** GATA3 KIT
MET Ex
14
skipping**

MLH1 MTOR

NF1 PDGFRA PTEN RB1 SMAD4 STK11 TP53

TSC1 VHL

Amplifications

AR BRAF CCND1** CCND2** CCNE1 CDK4 CDK6

EGFR ERBB2 FGFR1 FGFR2 KIT KRAS MET

MYC PDGFRA PIK3CA RAF1

Fusions

ALK FGFR2** FGFR3** RET ROS1 NTRK1
Bold indicates complete exon coverage, otherwise critical exon coverage; Ex, exon.
*Genes/alterations not covered in 70-gene panel.
Genes included in 70-gene panel and removed for 73-gene panel: CDKN2B, SRC.
**Additional genes/alterations not covered in 68-gene panel.
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time from diagnosis to blood draw for liquid biopsy was 582.4

(366.5) days (range 7-2,452). Most patients were receiving systemic

therapy at the time of blood draw for liquid biopsy (Table 2).

Among patients with ERBB2 amplifications (N=36), 19 (52.8%)

were 1+, 15 (41.7%) were 2+, and 2 (5.6%) were 3+ (Table 2). Of

these, 26 (72.2%) also had a KRAS mutation and/or amplification,

with 14 of 26 patients having co-occurring KRAS SNV(s) without

KRAS amplification (Table 3).

Five patients with ERBB2-amplified PDAC had cfDNA analysis

at multiple time points (Figure 2; Patient 17 shown in Figure 3). For

all five patients, the ERBB2 amplification was detected at a single

time point, and all had KRAS alterations at one or more time points.

Three patients had at least one activating KRAS alteration and/or

KRAS amplification detected in all samples, with the ERBB2

amplification occurring in the last sample, notably corresponding

to an increase in tumor shed, as measured via the maximum variant

allele frequency (maxVAF) in the sample. One patient had a KRAS

alteration and an ERBB2 amplification detected in their first sample,

with persistence of the KRAS alteration in their second sample but
Frontiers in Oncology 04
loss of the amplification. One patient (Patient 17 below) had ERBB2

amplification detected in their first sample, with neither ERBB2

amplification nor KRAS alterations detected in two subsequent

blood draws, and a KRAS mutation detected in the fourth blood

draw without identification of the ERBB2 amplification.

Treatment data were available for seven patients, two of whom

were treated with anti-HER2 therapy following their cfDNA result,

with both benefiting from therapy. Patient 5 was a 56- year-old male

with PDAC progressing after treatment with FOLFOX. cfDNA

analysis identified an ERBB2 amplification at 2.3 copies (1+) as

well as SMAD4 R361C at 35.1% VAF, KRAS G12D at 35.0% VAF,

TP53 Q144* at 31.7% VAF, AR T878S at 0.2% VAF, and CDK6

amplification at 2.5 copies (1+). He was treated with the HER2/

EGFR tyrosine kinase inhibitor afatinib in the second-line setting

for one month and had stable disease with improved quality of life

but was not a candidate for continued anti-HER2 or other

subsequent therapy.
FIGURE 1

Diagram outlining the number of patients in each study category.
TABLE 2 Patient Demographics.

N (%/range)

Patients 36

Gender

Female
Male

16 (44.4)
20 (55.6)

Age (years)

Mean
Median

66.3 (32–91)
65.5 (32–91)

Number of cfDNA time points

1
2
3
4

31 (86.1)
3 (8.3)
1 (2.8)
1 (2.8)

cfDNA panel version*

68-gene panel
70-gene panel
73-gene panel

3 (8.3)
16 (44.5)
17 (47.2)

Time from diagnosis to cfDNA blood draw (days, N=21)

Mean
Median

582.4 (7–2452)
366.5 (7-2452)

Current treatment regimen**

Gemcitabine + Nab-Paclitaxel
FOLFIRINOX
FOLFOX
FOLFIRINOX + Capecitabine
FOLFIRINOX + Gemcitabine
Irinotecan
Oxaliplatin + Capecitabine
Targeted therapy on trial
None—newly diagnosed
None—other/unknown reason
Unknown

5 (13.8)
4 (11.1)
1 (2.8)
1 (2.8)
1 (2.8)
1 (2.8)
1 (2.8)
1 (2.8)
2 (5.6)
3 (8.3)
16 (44.4)
*For patients with multiple time points spanning different panel versions, the largest panel
was counted.
**Current treatment regimen at the time of blood draw for liquid biopsy. If more than one
time point, treatment at the time of the 1st blood draw was recorded.
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Patient 17 was a 64- year-old male, originally diagnosed with

PDAC with metastases to the retroperitoneal lymph nodes. He was

treated with first-line FOLFIRINOX and capecitabine maintenance

for two years. At progression, liquid biopsy was ordered and was

positive for an ERBB2 amplification at 2.2 copies (1+), TP53 E285K

at 0.1% VAF, and a BRCA1 variant of uncertain significance (VUS)

at 0.9% VAF (Figure 3). The patient was initiated on FOLFOX, and
Frontiers in Oncology 05
trastuzumab was added soon afterward. The patient experienced

clinical improvement and significant decline in CA19-9 (1,847 to 22

U/mL) over a four-month period (Figure 3). Only VUS and

synonymous variants were detected on a repeat liquid biopsy,

with a maxVAF of 0.7% (Figure 3). FOLFOX was discontinued

after about four months and the patient remained on trastuzumab

alone with further clinical improvement and decrease in CA19-9

(16 U/mL). After 6 months on trastuzumab, the patient began to

experience progression, and a third cfDNA test continued to only

show VUS and synonymous variants with a maxVAF of 0.6%.

FOLFOX was re-introduced with no biochemical or radiographic

response. The patient then went on a clinical trial with an

immunotherapy combination and did well on this trial. A final

cfDNA test taken approximately one year after the previous test

demonstrated the emergence of KRAS G12R at 0.3% VAF, BRCA2

L1522fs at 0.3% VAF, TP53 R196* at 0.2% VAF, and TP53 E285K at

0 . 1% VAF , wi th the ERBB2 ampl ifica t ion s t i l l no t

detected (Figure 3).
4 Discussion

Therapeutic options in patients with metastatic PDAC are limited.

Patients with KRAS wildtype disease may have a different biology that

may be more amenable to targeted therapies, but KRAS wildtype

disease is present in a minority of patients with PDAC. Advancement

of targeted therapies in PDAC has been challenging, with only one
FIGURE 2

Serial cfDNA time points for patients with ERBB2 amplification identified in at least a single time point. Single nucleotide variants and insertion/
deletion alterations are illustrated, with amplifications and treatment at the time of the cfDNA draw shown below.
TABLE 3 ERBB2 amplification level (N=36) and co-occurring
KRAS alterations.

N (%)

ERBB2 3+ amplification
KRAS SNV
KRAS amplification
KRAS SNV and amplification

2 (5.6)
-
-
2 (5.6)

ERBB2 2+ amplification
KRAS SNV
KRAS amplification
KRAS SNV and amplification

15 (41.7)
6 (16.7)
2 (5.6)
3 (8.3)

ERBB2 1+ amplification
KRAS SNV(s)
KRAS amplification
KRAS SNV and amplification

19 (52.8)
8 (22.2)
1 (2.8)
4 (11.1)

All cases with co-occurring KRAS alterations 26 (72.2)
For patients with more than one cfDNA time point, the time point where the ERBB2 amp and
the most KRAS alterations were present was considered. Only pathogenic KRAS SNVs were
considered. KRAS variants of uncertain significance were excluded.
SNV, single nucleotide variant.
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FDA-approved biomarker-directed targeted therapy (olaparib)

currently available with a PDAC-specific approval. KRAS is the most

frequently mutated gene in PDAC (70-95%), and until recently, was

not generally considered a therapeutically targetable alteration (6, 25–

28). Historic trials evaluating KRAS positive PDAC have primarily

focused on a variety of MEK inhibitors and have shown limited benefit

(29). More recently, the development of drugs specifically targeting

KRAS G12C alterations, known to be present in a minority of PDAC

cases, have shown promise (30, 31). Other KRAS alterations, such as

G12D are much more common in PDAC, and drugs targeting other

non-G12C alterations are in development (32).

Outside of KRAS, the efficacy of other targeted therapies continues

to be explored in PDAC. Germline and/or somatic mutations in HRD

genes may be present in up to 20% of advanced PDAC tumors (2).

While a study of veliparib in patients with PDAC and germline

pathogenic BRCA1/2 or PALB2 mutations had no confirmed

responses, a study of rucaparib in patients with germline or somatic

BRCA1/2mutations had a 16% objective response rate (ORR) and 32%

disease control rate (DCR) (33, 34). Additionally, a trial of olaparib in

PDAC achieved a 22% ORR and 57% DCR, and the phase III POLO

trial evaluating olaparib maintenance therapy versus placebo in

patients with metastatic PDAC and germline BRCA1/2 mutations

found significantly longer progression free survival (PFS) for olaparib
Frontiers in Oncology 06
versus placebo, resulting in its FDA approval (35–38). Additional

targetable biomarkers in PDAC include NRG1 fusions, microsatellite

instability (MSI), and BRAF V600E (39–47). The cumulative results of

trials examining these biomarkers suggest identification of PDAC

patients with targetable alterations, even if they are rare, may open

up therapy options to patients who may have limited other options.

While studies have identified ERBB2(HER2) amplifications in

PDAC at rates of 1-7%, most have shown mixed responses to

HER2-targeted therapies in ERBB2 positive PDAC patients, with

variable documentation of co-occurring RAS mutations (2–9, 15, 16).

In the Know Your Tumor study, four ERBB2-amplified patients with

PDAC received trastuzumab in combination with various drugs and

observed responses ranging from one month to over 12 months (5).

The phase II MyPathway trial included nine ERBB2-amplified patients

with PDAC who were treated with trastuzumab and pertuzumab, of

whom two achieved a partial response (11). Additional trials examining

anti-HER2 therapy in PDAC, like the TAPUR trial, have yet to read out

(48, 49). Among this clinical laboratory database of 1,791 patients with

PDAC, ERBB2 amplifications were seen at rates consistent with

previous, smaller, studies (2.0%), with the majority also harboring at

least oneKRAS activating alteration. Notably, we report a case in which

a patient with ERBB2-amplified PDAC (in the absence of co-occurring

KRASmutations) responded to anti-HER2 therapy for several months
FIGURE 3

Molecular and clinical response to anti-HER2 therapy. Changes in mutations identified and variant allele fraction in Patient 17 as identified by cfDNA
analysis along with corresponding systemic therapy and imaging results. The CA19-9 levels for Patient 17 over time corresponding to the systemic
therapy and molecular results are also shown. Imaging shows CT scans at initation of FOLFOX (A), discontinuation of FOLOX (B), and three months
after trastuzumab monotherapy (C).
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with clinical improvement and decline of tumor markers, before

demonstrating a KRAS alteration newly detected by cfDNA and loss

of ERBB2 amplification via cfDNA after progression. Of note, this

patient had relatively low tumor shed throughout their disease course

(maxVAF at each time point did not exceed 1%), and thus it is difficult

to say exactly when the patient acquired the KRASG12R alteration as it

was only seen in cfDNA approximately one year following trastuzumab

discontinuation. Acquired KRAS alterations have been seen at the time

of progression on trastuzumab in other cancer types (18). In contrast, a

patient with co-occurring KRAS G12D and ERBB2 amplification prior

to anti-HER2 therapy initiation achieved stable disease for one month.

The presence of KRAS alterations at the time of resistance to

anti-HER2 therapy is consistent with recent data from a clinical trial

of trastuzumab and lapatinib in metastatic colorectal cancer (19). In

that study, RAS and RAF alterations were detected at baseline in the

plasma of 6/7 (86%) patients refractory to anti-HER2 therapy, but

in only 3/22 (14%) patients who benefited from anti-HER2 therapy.

KRASmutations were subsequently identified at progression in two

patients who initially had SD and one with an initial PR (19).

Notably, the MyPathway HER2 basket trial examining use of

trastuzumab plus pertuzumab in ERBB2-amplified patients across

solid tumors stratified patients by KRAS status, and showed that

patients with a KRAS mutation had an ORR of 3.8% and DCR of

3.8%, compared to an ORR of 25.6% and DCR of 49.7% in patients

who were KRAS wildtype, suggesting co-occurring KRASmutations

had a significant impact on likelihood of response (20). Taken

together, these reports and our cases suggest that certain patients

with ERBB2-amplified PDAC do benefit from anti-HER2 therapy.

Though limited in size, our results are consistent with previous

work suggesting that KRAS mutations may function as primary or

acquired resistance to anti-HER2 therapy, similar to what has been

observed in colorectal and gastroesophageal cancer.

Of note, two HER2-directed antibody-drug conjugates have now

been FDA-approved in metastatic ERBB2-amplified breast cancer and

are being explored in various other cancer types (50). These drugs have

demonstrated significant improvements in patient outcomes in ERBB2-

amplified breast cancer patients, and in the case of trastuzumab

deruxtecan, are also approved for patients with “HER2-low” disease

(50). Pan-cancer trials of these drugs have so far included a limited

number of PDAC patients, with the phase II DESTINY-PanTumour02

trial including 25 PDAC patients, with three patients having response

via independent central assessment, and the phase II KAMELEON trial

including four PDAC patients, of whom one had a partial response (51,

52). Further exploration of the potential of these HER2-targeted

antibody-drug conjugates in the PDAC population are needed.

Detection of copy number amplification via cfDNA is dependent

on two factors: 1) the degree of tumor shed, and 2) the level of

amplification. Thus, a low-level amplification may not be detected even

in a patient with a high-degree of tumor shed (53). In each case where

ERBB2 amplification was not originally detected, the sample with the

amplification detected had a higher maxVAF, indicative of increased

tumor shed. Thus, we cannot rule-out the possibility that the ERBB2

amplification was present in earlier samples but was occurring below

the assay’s limit of detection. We also saw loss of ERBB2 expression in

patients who were originally ERBB2-amplified, and in one of these

instances the patient (Patient 17) was known to have been treated with
Frontiers in Oncology 07
anti-HER2 therapy. Loss of HER2 expression following anti-HER2

therapy has been reported in other cancer types, and thus in some

instances may explain loss of HER2 expression over time (54–56).

Attempts to account for the degree of tumor shed when examining

plasma-based copy number calls are ongoing, but it remains a

challenge to clearly account for tumor evolution/heterogeneity,

treatment effects, and tumor shed when assessing changes in the

amplification status of a particular tumor, especially when dealing

with low and medium-level amplifications (53).

Overall, review of patients with serial cfDNA samples demonstrate

tumor evolution in response to therapy, illustrating a well-known cause

of tumor heterogeneity. Previous studies using rapid autopsy sampling

of multiple metastatic sites have demonstrated that the molecular

makeup of the primary tumor versus each metastatic site can vary

(57). Thus, in the setting of disease progression, tissue biopsies may be

limited in their ability to fully capture acquired resistance mutations

unless multiple metastatic sites are biopsied at multiple time points,

which is often not feasible. The difficulty of repeating tissue biopsies in

patients progressing on therapy is especially acute in PDAC, where

rapid clinical deterioration can create additional challenges to

successful tissue biopsy (22). Liquid biopsy is much less invasive and

has a demonstrated ability to capture a global picture of the alterations

present throughout a patient’s disease burden, and thus may be

optimally suited for tracking disease response and development of

acquired resistance alterations leading to disease progression (58).

There are several limitations to our study, including the fact that it is

a retrospective analysis, and our knowledge of patient clinical history is

limited in most cases to what is provided by the ordering provider on

the test acquisition form, which may not be wholly accurate and does

not include orthogonal molecular testing information. Given this, we

can only comment on the response to anti-HER2 therapy for a limited

number of patients. For most of the patients with serial samples, we can

only make educated guesses about why we see fluctuations in the

appearance of ERBB2 amplification and/or KRAS activating mutations

based on the degree of tumor shed, as detailed above. Additionally, it is

possible that there are inherent biases in the cohort of patients selected

to undergo testing via cfDNA by their treating physician (e.g., they could

have more aggressive disease and/or have progressed through more

lines of therapy). As such, the alterations seen here may not reflect the

molecular landscape seen in a treatment naïve patient population and

the cohort may not reflect the broader PDAC population.

In conclusion, this analysis of over 1,700 PDAC samples from

patients undergoing clinical cfDNA testing demonstrates the utility of

cfDNA in detecting targetable alterations in this patient population.

Additionally, this case series of patients treated with anti-HER2 therapy

based on ERBB2(HER2) amplification detected via cfDNA provides

additional evidence to suggest that cfDNA may be an adequate tool to

detect ERBB2(HER2) amplifications and identify patients who may

benefit from anti-HER2 therapies, as demonstrated here by the patient

who responded to anti-HER2 therapy for several months. Notably, there

are a growing number of anti-HER2 therapies available, including

multiple antibody-drug conjugates, meaning identification of these

patients may become more relevant in the future (59). The

importance of molecular testing in identifying patients with rare, but

targetable, alterations across cancer types has been highlighted a number

of times, and seems particularly relevant in PDAC given the lack of
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treatment options available and often rapid disease progression (22, 23).

This case series supports the idea that co-occurring alterations may play

a key role in determining which patients respond to targeted therapy or

not, suggesting KRAS as a possible mechanism of innate and acquired

resistance, and further demonstrating the need for patients to undergo

comprehensive molecular profiling to identify optimal therapy. Given

the well-known difficulties of obtaining tissue biopsy in PDAC,

particularly following disease progression, cfDNA offers an attractive

alternative (22). Moreover, cfDNA has a unique advantage in its ability

to capture temporal and spatial tumor heterogeneity, both well-

established causes of disease progression and mixed responses to

treatment (58). This ability may be uniquely helpful in PDAC, as

patients can progress quickly through lines of therapy and historic tissue

biopsies may not accurately reflect the current molecular landscape, as

shown here by the tumor evolution seen in serial cfDNA samples.

Further studies reporting co-occurring mutations and clinical outcomes

are needed to better clarify the role of KRAS and other potential

mechanisms of resistance to anti-HER2 therapy to allow for the

identification of PDAC patients most likely to benefit from this

treatment, including further exploration of how molecular testing,

applied more broadly in patients with PDAC, could aid in getting

more patients with PDAC onto a growing number of targeted therapies.
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