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Predicting voxel-level dose
distributions of single-isocenter
volumetric modulated arc
therapy treatment plan for
multiple brain metastases
Peng Huang †, Jiawen Shang †, Zhihui Hu, Zhiqiang Liu*

and Hui Yan*

Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for
Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing, China
Purpose: Brain metastasis is a common, life-threatening neurological problem

for patients with cancer. Single-isocenter volumetric modulated arc therapy

(VMAT) has been popularly used due to its highly conformal dose and short

treatment time. Accurate prediction of its dose distribution can provide a general

standard for evaluating the quality of treatment plan. In this study, a deep learning

model is applied to the dose prediction of a single-isocenter VMAT treatment

plan for radiotherapy of multiple brain metastases.

Method: A U-net with residual networks (U-ResNet) is employed for the task of

dose prediction. The deep learning model is first trained from a database

consisting of hundreds of historical treatment plans. The 3D dose distribution

is then predicted with the input of the CT image and contours of regions of

interest (ROIs). A total of 150 single-isocenter VMAT plans for multiple brain

metastases are used for training and testing. The model performance is

evaluated based on mean absolute error (MAE) and mean absolute

differences of multiple dosimetric indexes (DIs), including (Dmax and Dmean)

for OARs, (D98, D95, D50, and D2) for PTVs, homogeneity index, and conformity

index. The similarity between the predicted and clinically approved plan dose

distribution is also evaluated.

Result: For 20 tested patients, the largest and smallest MAEs are 3.3% ± 3.6% and

1.3% ± 1.5%, respectively. ThemeanMAE for the 20 tested patients is 2.2% ± 0.7%.

Themean absolute differences ofD98,D95,D50, and D2 for PTV60, PTV52, PTV50,

and PTV40 are less than 2.5%, 3.0%, 2.0%, and 3.0%, respectively. The prediction

accuracy of OARs for Dmax and Dmean is within 3.2% and 1.2%, respectively. The

average DSC ranges from 0.86 to 1 for all tested patients.
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Conclusion: U-ResNet is viable to produce accurate dose distribution that is

comparable to those of the clinically approved treatment plans. The predicted

results can be used to improve current treatment planning design, plan quality,

efficiency, etc.
KEYWORDS

multiple brain metastases, volumetric modulated arc therapy, radiotherapy, deep
learning, dose prediction
1 Introduction

Brain metastasis is the cancer that occurs when cancer cells

from their original sites spread to the brain. The typical tumor sites

causing brain metastasis are the lung, breast, colon, and kidney.

Brain metastases could be single or multiple tumor sites in the brain

(1, 2). The brain metastases could cause pressure on the brain. Also,

the function of the surrounding brain tissue could be changed by

the tumor. The symptoms of brain metastases include memory loss,

seizures, headaches, etc. (3). The traditional treatment methods for

brain metastases are surgery, whole-brain radiotherapy (WBRT),

three-dimensional conformal radiation therapy (3D-CRT), hypo-

fractionated stereotactic radiotherapy (SRT), and single-fraction

stereotactic radiosurgery (SRS) (4–7).

WBRT and 3D-CRT have been traditionally used for the

treatment of multiple brain metastases. However, WBRT can

cause cognitive dysfunction or dementia, while 3D-CRT takes a

long time to treat multiple brain metastases (8–10). In SRS/SRT, a

higher accuracy of patient positioning is required. Recently, the

developments of image-guided radiotherapy (IGRT) and

volumetric modulated arc therapy (VMAT) techniques have

provided precise target localization and quick dose delivery for

patients under radiotherapy. The introduction of VMAT not only

takes a short time in treatment delivery but also shows a highly

conformal dose comparable to conventional SRS/SRT (11, 12). The

treatment of brain metastases using VMAT has been accepted as a

routine treatment modality in recent years (13, 14).

Compared to multiple-isocenter VMAT, single-isocenter

VMAT is popular due to its quick and accurate beam delivery

for the treatment of multiple brain metastases (15–17). However,

to achieve an ideal dose distribution, a set of suitable plan

optimization parameters (dose constraints and their weighting

factors) is needed prior to the optimization of the treatment plan.

Also, planners have to adjust these parameters manually during

plan optimization, which usually takes several hours. To address

this issue, knowledge-based planning (KBP) was proposed (18,

19) in the last decade. They implemented plan automation

through optimization algorithms or templates from previously

treated patients. These methods can partially reduce the effort

involved in parameter fine-tuning but still require human

involvement (20). Recently, the research interest in KBP has
02
transitioned from classic machine learning methods to modern

deep learning methods (21–25). Unlike classic machine learning

methods, modern deep learning methods can directly learn

features from the original data and predict 3D doses with

high precision.

The recent development of the dose prediction model is mostly

based on the U-Net structure, which consists of an encoder and

decoder with skip connections. 2D U-Net was first applied to

prostate IMRT plans by Nguyen et al. (21). After that, many

efforts were made. Residual learning was introduced to the dose

prediction model by several researchers (22–25), while dense

connectivity was used to enhance feature representation capability

by other researchers in their models (26–28). In addition, other

types of networks, such as Resnet (27, 29, 30) and GAN (31–33), are

also used for dose prediction. So far, the deep U-net-like

architecture and its variants with various types of residual or

dense blocks become the mainstream structure for dose

prediction (34–38).

With the successful applications of deep learning models in

predicting dose distribution for many primary tumor sites such as

the lung (25, 26), head-and-neck (23, 28, 33, 34), and prostate (21,

35), it is interesting to investigate this application for brain

metastasis. In the study, a deep U-net architecture (30),

previously successfully applied to predict dose distribution for

head-and-neck cancer patients, is used as the base model in

predicting the dose distribution of the VMAT plan for brain

metastasis. The rest of this paper is organized as follows: In

Methods, the patient data, prediction model, and experimental

settings are introduced in detail. In Results, the prediction

accuracy of the deep learning model is evaluated by comparing it

with the dose distribution of the clinically approved plans. Finally,

the advantages and disadvantages of the prediction model are

discussed, and future work is prospected in the Discussions.
2 Methods

2.1 Patient data

The dataset consists of 150 single-isocenter VMAT treatment

plans designed for multiple brain metastases patients treated in our
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institute during 2019–2022. All patient plans are made by medical

physicists and approved by radiation oncologists for clinical

treatment. The number of tumors in each patient is varied from

one to four. PTVs include PTV60 for 31 patients, PTV52 for 41

patients, PTV50 for 34 patients, and PTV40 for 44 patients. Primary

OARs include body, brain stem, spinal cord, left lens, right lens, left

optic nerve, right optic nerve, and optic chiasm.

The 150 patient plans are randomly divided into three sets: 100

for training sets, 30 for validation sets, and 20 for testing sets. These

VMAT plans are designed with two arcs and delivered with 6 MV

beam energy. The input images are all rescaled to 256 × 256 × 21

matrixes (7 for CT images, 7 for contour image, and 7 channels for

target prescriptions), and the output image is 256 × 256 × 1

matrixes (dose distributions on each slice). This study was

conducted in accordance with the Declaration of Helsinki (as

revised in 2013). This study was approved by the ethics

committee of the National Cancer Center/Cancer Hospital,

Chinese Academy of Medical Sciences, and Peking Union

Medical College. The committee waived the written informed

consent because this is a retrospective study.
2.2 Prediction model

The U-net with residual network (U-ResNet) model

incorporating residual convolutional and de-convolutional blocks

is shown in Figure 1. It consists of contracting and expansive paths.

The contracting path follows convolutional layers and stacked

building blocks of Identity-Block and Conv-Block to extract

multiscale patient-specific features, doubling the number of

feature maps at each step. The expansive path at each step

consists of a de-convolutional block that halves the number of

feature maps and concatenation with the corresponding feature
Frontiers in Oncology 03
map from the contracting path. The network ends with one de-

convolution with 1 × 1 filters replacing 3 × 3 filters.

In the training and validation process, the training samples are

augmented by randomly flipping, rotating, scaling, or shifting. The

model is trained from scratch with the layer kernel weights initialized

using Xavier uniform initialization. Adam optimizer (39) with a batch

size of 4 is used for optimization. The initial learning rate (LR) is 1e

−4, and the LR is reduced to 20% of its original value if the validation

loss does not improve after 10 epochs. The training process is also

stopped if the validation loss does not improve after 20 epochs. The

model with the best performance on the validation samples is

obtained for testing. The proposed network is implemented in

Keras with TensorFlow as the backend on a workstation equipped

with two NVIDIA GeForce 2080 Ti GPUs. The training process for a

single model takes around 20 h. The prediction process for one case

takes less than 1 s.
2.3 Model evaluation

The mean absolute error (MAE) is used to evaluate the accuracy

of the predicted 3D dose distribution. It is the average error over all

voxels of the body and is defined as Equation 1:

MAEk =
1
Nk
oNk

i=1 DP − DTj j � 100% (1)

Where Nk is the number of total voxels belonging to the kth

structure. DP and DT are the predicted and ground-truth (or

calculated) doses of the ith voxel. The voxel doses were

normalized by the value of the prescription dose. Several

traditional dosimetry indexes (DIs) (Dmax, Dmean for OARs and

D98, D95, D50, and D2 for PTVs), conformity index (CI), and

homogeneity index (HI) are also evaluated.
FIGURE 1

Schematic diagram of the deep U-net architecture.
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CI formula is defined as Equation 2:

CI =
VT ,ref

VT
� VT ,ref

Vref
(2)

VT ,ref is the volume of the target volume at which the received

dose is equal to or greater than the reference dose; VT is the volume

of the target volume; Vref is the volume at which the received dose is

equal to or greater than the reference dose. The closer the value of

CI is to 1, the better the target is covered. HI formula is defined as

Equation 3:

HI =
D2 − D98

D50
(3)

where Dn represents the minimum radiation dose received by

n% of the volume of the radiation area. The closer the value of HI to

0, the better the uniformity of the target dose. In addition, the

absolute differences in DI between predicted and clinically approved

plans are evaluated as follows: |dDI| = |DIclinical − DIPredicted|.

The dice similarity coefficient (DSC) between dose distributions

is also evaluated and defined as Equation 4:

DSC(A, B) =
2 A∩Bj j
Aj j+ Bj j (4)

where A represents the clinical isodose volume and B denotes

the predicted isodose volume.
3 Results

Dose difference

The MAE plot for all 20 tested patients is shown in Figure 2.

The largest and smallest MAEs are 3.3% ± 3.6% and 1.3% ± 1.5%

within the patient’s body, respectively. The largest and smallest

MAEs are 5.2% ± 4.0% and 2.1% ± 1.7% within the targets,

respectively. The average MAE is 2.2% ± 0.7% (relative to the

prescription of PTV) within the body, and the average MAE is 3.6%

± 1.0% within targets.
Frontiers in Oncology 04
Dosimetric index

For PTVs with multiple prescription doses, the dosimetric

indexes are shown in Table 1. On average, the absolute

differences of D98, D95, D50, and D2 for PTV60, PTV52, PTV50,

and PTV40 are less than 2.5%, 3.0%, 2.0%, and 3.0%, respectively.

There are no significant differences between predicted and clinically

approved plan doses for PTVs. There are no significant differences

from the predicted results for HI and CI. Regarding OARs, the

dosimetric indexes of Dmax and Dmean are shown in Table 2. The

prediction accuracy for Dmax and Dmean is between 3.2% and 1.2%.

Six OARs for Dmax and eight for Dmean were predicted within 2%.

There is no significant difference between clinical and predicted

results. For certain patients, the Dmax and Dmean of OARs are close

to 0, as they are far from PTV. This causes a large standard

deviation of dosimetric results for these OARs. In general, the

dosimetric indexes predicted by the model well match those from

the clinically approved plans.

The examples of two patients’ DVHs are presented in Figure 3.

The clinical and predicted DVHs are shown in solid and dashed

lines, respectively. Case 1 has two prescription doses (5,250 cGY

and 6,000 cGy) and more OARs, while case 2 has one prescription

dose (4,800 cGy) and three OARs. For OARs, the maximal dose

discrepancy is presented in the higher dose region of the brain stem

in both cases. For PTV, the maximal dose discrepancy is presented

in the higher dose region of PTV5250 in case 1 and the lower dose

region of PTV4800 in case 2.
Volumes similarity

The dice similarity coefficients between predicted and clinically

approved plan doses for the different isodose volumes are

calculated. As shown in Figure 4, the DSC versus isodose volumes

for 20 tested patients are presented. The black curve denotes the

averaged DSC curve, which usually ranges from 0 to 1, with 1

standing for ideal match. The averaged DSC for the different

isodose volumes ranges from 0.86 to 1.

Corresponding to the cases shown in Figure 3, their clinical and

predicted dose maps in 2D slices are presented in Figure 5. In the

first and second columns, the clinical and predicted dose maps in

axial view are displayed with a color wash pattern. The different

images between the first and second columns are presented in the

third column. For case 1, the predicted doses are higher than the

clinical doses in two small regions on the left and right sides of PTV.

For case 2, the predicted doses are less than the clinical doses on the

left-bottom sides of PTV. Overall, the predicted and clinical doses

are highly consistent.
4 Discussions

In this study, an advanced deep learning model is applied to

predict 3D dose distribution based on our clinical dataset. As far as

we know, there is no deep learning model used in predicting the

dose of VMAT plans for multiple brain metastases. Using 150 brain
FIGURE 2

Mean absolute errors within the body for 20 tested patients.
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TABLE 2 Statistics of dosimetric metrics for OARs in 20 tested patients.

Dmax (Gy) Dmean (Gy)

OARs and body Clinically
approved

Model
predicted

|dDI| (%) p-value Clinically
approved

Model
predicted

|dDI| (%) p-value

Brain stem 4.7 ± 4.8 4.2 ± 4.9 2.8 ± 2.1 0.247 1.1 ± 1.1 1.1 ± 1.6 0.9 ± 1.0 0.990

Spinal cord 0.7 ± 1.7 0.7 ± 1.6 0.6 ± 1.3 0.961 0.1 ± 0.2 0.0 ± 0.1 0.1 ± 0.2 0.113

Center lens 0.6 ± 0.8 0.8 ± 1.0 0.7 ± 0.7 0.076 0.4 ± 0.7 0.6 ± 0.9 0.6 ± 0.5 0.219

Right lens 0.8 ± 0.9 0.7 ± 0.8 0.6 ± 0.6 0.450 0.5 ± 0.7 0.4 ± 0.5 0.6 ± 0.5 0.248

Center optic nerve 1.7 ± 3.0 1.4 ± 2.5 0.9 ± 0.9 0.161 1.1 ± 2.1 1.0 ± 1.9 0.7 ± 0.6 0.302

Right optic nerve 1.3 ± 1.5 1.1 ± 1.6 1.2 ± 1.1 0.233 0.7 ± 1.0 0.6 ± 1.1 0.8 ± 0.8 0.508

Optic chiasm 3.7 ± 4.5 3.8 ± 6.0 1.8 ± 3.2 0.857 1.3 ± 2.0 1.2 ± 2.0 1.2 ± 1.4 0.789

Body 60.2 ± 7.3 59.4 ± 7.5 3.2 ± 2.5 0.137 1.6 ± 1.1 1.6 ± 1.0 0.3 ± 0.2 0.705
F
rontiers in Oncology
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TABLE 1 Statistics of dosimetric indexes for PTVs of 20 tested patients.

PTVs Dosimetric
indexes

Clinically
approved

Model predicted |dDI| p-value

PTV60 D98 (Gy) 60.1 ± 1.0 58.9 ± 1.5 2.1% ± 2.1% 0.054

D95 (Gy) 60.7 ± 0.8 59.5 ± 1.2 2.2% ± 1.9% 0.063

D50 (Gy) 62.8 ± 1.2 62.4 ± 1.0 1.9% ± 2.0% 0.541

D2 (Gy) 65.0 ± 2.3 64.9 ± 1.5 2.5% ± 1.4% 0.947

HI 0.1 ± 0.0 0.1 ± 0.0 0.0% ± 0.0 0.336

CI 1.0 ± 0.0 1.0 ± 0.0 0.0% ± 0.0 0.282

PTV52 D98 (Gy) 50.7 ± 0.7 49.4 ± 1.8 3.0% ± 1.2% 0.142

D95 (Gy) 52.2 ± 0.1 51.3 ± 0.9 1.8% ± 1.5% 0.116

D50 (Gy) 57.1 ± 0.8 56.1 ± 0.7 2.1% ± 1.4% 0.104

D2 (Gy) 60.5 ± 2.1 59.7 ± 1.6 2.0% ± 1.9% 0.271

HI 0.2 ± 0.0 0.2 ± 0.0 0.0% ± 0.0 0.657

CI 1.0 ± 0.0 0.9 ± 0.0 0.0% ± 0.0 0.087

PTV50 D98 (Gy) 49.0 ± 0.6 48.2 ± 0.4 1.4% ± 2.0% 0.489

D95 (Gy) 50.3 ± 0.4 49.3 ± 0.3 2.0% ± 1.4% 0.295

D50 (Gy) 55.5 ± 0.5 54.7 ± 0.2 1.5% ± 0.7% 0.208

D2 (Gy) 59.4 ± 0.8 59.4 ± 0.6 0.2% ± 0.2% 0.627

HI 0.2 ± 0.0 0.2 ± 0.0 0.0% ± 0.0 0.391

CI 1.0 ± 0.0 0.9 ± 0.0 0.0% ± 0.0 0.353

PTV40 D98 (Gy) 38.3 ± 0.6 37.9 ± 0.4 1.0% ± 1.2% 0.207

D95 (Gy) 40.0 ± 0.1 39.4 ± 0.8 1.6% ± 1.6% 0.225

D50 (Gy) 43.3 ± 1.1 43.6 ± 0.3 2.6% ± 1.6% 0.741

D2 (Gy) 45.9 ± 1.6 46.5 ± 0.4 3.0% ± 1.1% 0.400

HI 0.2 ± 0.0 0.2 ± 0.0 0.0% ± 0.0 0.453

CI 1.0 ± 0.0 0.9 ± 0.0 0.0% ± 0.0 0.350
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metastases from VMAT plans, the U-ResNet model exhibits

accurate dose distribution and high efficiency. As shown in

Table 1, the mean prediction errors range from 1.9% to 2.5%,

1.8% to 3.0%, 0.2% to 2.0%, and 1.0% to 3.0% for PTV60, PTV52,

PTV50, and PTV40, respectively. For the absolute value of the PTV

dose, the mean value of the predicted plan doses is slightly less than

that of the clinically approved plan doses. This may be due to the

inclusion of various target prescriptions in a single model, where the

varying combinations of prescriptions may impact the prediction

accuracy of the target dose. The limited number of samples and

larger variation of tumor sites may be another reason. There is no

significant difference in dosimetric indexes between clinically

approved and predicted plan doses. Although the results

demonstrate that the prediction accuracy is acceptable for clinical

use, there is still a certain room for improvement.

Although U-ResNet succeeded in dose prediction, as reported

by many researchers, there is still a lot of room for improvement.

The receptive field would be enlarged increasingly by the stacked
Frontiers in Oncology 06
multiple convolution layers in the decoder. However, the network’s

capability to catch features in multiscale resolution could be limited.

The predicted voxel dose is affected not only by the neighboring

voxels but also by the spatial distribution between PTVs and OARs.

Thus, to extract multiscale features from the image simultaneously,

the introduction of pyramid blocks is needed. We will test the

model with the modules in a serial or parallel manner in the future,

which could further improve the performance of the

prediction model.

There are several challenges to this study. First, it is difficult to

collect hundreds of VMAT plans with similar locations and shapes

of tumor mass for model learning. In the case of multiple brain

metastases, the number of tumor masses and their locations could

vary considerably among patients. The limited number of samples

and larger variation of tumor sites and shapes will make it hard to

learn a solid pattern for a learning model. A more effective model or

strategy is needed in dealing with such situations for multiple brain

metastases. Second, the introduction of U-ResNet increases the
FIGURE 4

Similarity between clinical and predicted isodose distributions for 20 tested patients.
FIGURE 3

The comparison of the clinical and predicted DVHs for two cases.
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complexity and time of model training. As tested, the time on model

training is about 20 h on a workstation equipped with two NVIDIA

GeForce 2080Ti GPUs. In the future, we plan to further fine-tune

the basic 3D model and build a more memory-efficient mechanism

for higher performance.
5 Conclusions

In this work, we evaluated a deep-learning model for 3D voxel-

by-voxel dose prediction. It is capable of producing accurate dose

distribution of VMAT plans for multiple brain metastases. As an

improvement over the single U-Net or ResNet, it is a powerful

model that can automatically correlate ROI voxel with dose voxel to

achieve high-precise 3D dose prediction. The predicted results can

be used to improve current treatment planning design, plan quality,

and efficiency.
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FIGURE 5

The comparison of the clinical and predicted dose maps for two cases.
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