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Background: Pleomorphic adenoma (PA), often with the benign-like imaging

appearances similar to Warthin tumor (WT), however, is a potentially malignant

tumor with a high recurrence rate. It is worse that pathological fine-needle

aspiration cytology (FNAC) is difficult to distinguish PA and WT for inexperienced

pathologists. This study employed deep learning (DL) technology, which

effectively utilized ultrasound images, to provide a reliable approach for

discriminating PA from WT.

Methods: 488 surgically confirmed patients, including 266 with PA and 222 with

WT, were enrolled in this study. Two experienced ultrasound physicians

independently evaluated all images to differentiate between PA and WT. The

diagnostic performance of preoperative FNAC was also evaluated. During the DL

study, all ultrasound images were randomly divided into training (70%), validation

(20%), and test (10%) sets. Furthermore, ultrasound images that could not be

diagnosed by FNAC were also randomly allocated to training (60%), validation

(20%), and test (20%) sets. Five DL models were developed to classify ultrasound

images as PA or WT. The robustness of thesemodels was assessed using five-fold

cross-validation. The Gradient-weighted Class Activation Mapping (Grad-CAM)

technique was employed to visualize the region of interest in the DL models.

Results: In Grad-CAM analysis, the DL models accurately identified the mass as

the region of interest. The area under the receiver operating characteristic curve

(AUROC) of the two ultrasound physicians were 0.351 and 0.598, and FNAC

achieved an AUROC of only 0.721. Meanwhile, for DL models, the AUROC value

for discriminating between PA and WT in the test set was from 0.828 to 0.908.

ResNet50 demonstrated the optimal performance with an AUROC of 0.908, an

accuracy of 0.833, a sensitivity of 0.736, and a specificity of 0.904. In the test set

of cases that FNAC failed to provide a diagnosis, DenseNet121 demonstrated the
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optimal performance with an AUROC of 0.897, an accuracy of 0.806, a sensitivity

of 0.789, and a specificity of 0.824.

Conclusion: For the discrimination of PA and WT, DL models are superior to

ultrasound and FNAC, thereby facilitating surgeons in making informed decisions

regarding the most appropriate surgical approach.
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Introduction

Parotid gland is the largest of the three major salivary glands and

is also the most common site for the occurrence of salivary gland

tumors. The conventional belief is that the majority of primary

parotid tumors (75% - 85%) are benign, with pleomorphic

adenoma (PA) and Warthin tumor (WT) accounting for up to

93% of benign parotid tumors (1–4). However, PA is not so

innocent and harmless because carcinoma ex pleomorphic

adenoma (CXPA), a malignant salivary gland tumor typically

found in the parotid gland, arises from the “benign” tumor PA (5–

7). Early on, this tumor appears benign. Hence, more attention

should be paid to the accurate recognition of PA. In contrast, WT

is less invasive in nature with rare malignant transformation.

However, the differentiation of PA is challenging because both PA

and WT present as painless and slow-growing masses (8) and share

similar imaging features (9). Even worse, the accuracy of fine needle

aspiration cytology (FNAC) in identifying the pathological types of

PA and WT is relatively low as reported in the literature (10).

As a result of the difference in biological characteristics between

PA and WT, the treatment approaches for PA and WT are

fundamentally different. Typically, PA adopts extensive or partial

parotidectomy. In contrast, the current trend in managing WT is to

opt for extracapsular dissection, and even active surveillance is

considered (11–13). Therefore, precise differentiation between PA
02
and WT prior to the surgery is essential in tailoring

treatment decisions.

Ultrasound is the primary imaging modality for parotid gland

neoplasm. However, the imaging features of PA and WT often

overlap, making it challenging to establish a definitive distinction

based solely on sonographic features. For instance, PA and WT

patients commonly exhibit lobulated and cystic components in

ultrasound images (14) (Figures 1, 2). Consequently, relying solely

on the subjective expertise of radiologists may compromise accuracy

and efficiency (15, 16). FNAC is a widely accepted approach used for

preoperative assessment in determining pathological natures of

different tumors. However, for the differentiation of PA and WT,

FNACmay yield non-diagnostic or intermediate results as FNAC can

only observe cell types and morphology without comprehensively

describing the tissue morphology or their relationship with

surrounding tissues. Relying solely on FNAC is insufficient for

accurately diagnosing PA and WT (17–19). Therefore, developing a

reliable and objective discriminatory diagnostic method secondary to

imaging and FNAC is necessary to improve the diagnostic accuracy

for PA and WT.

Image-based deep learning (DL), as a potential solution, is

emerging to enhance the diagnostic capabilities for physicians

with promising results (15, 20). The utilization of DL models

presents significant advantages over physician diagnosis in

identifying challenging features, textures, and details, automatic
A B

FIGURE 1

The DL algorithm correctly classified (A) biopsy-PA nodule with a WT appearance as PA and (B) biopsy-WT nodule with a PA appearance as WT.
However, the sonographic features demonstrate similarities in the images, making it difficult to classify the two tumors by ultrasound physicians.
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feature learning, and effective depiction of complex structures (21).

However, the DL algorithms used for parotid gland tumors were

limited in the literature. Xia et al. successfully employed DL based

on MRI images to classify salivary gland tumors with an accuracy of

82% in their 2021 study. However, their research primarily focused

on differentiating between benign and malignant parotid gland

tumors (22). To the best of our knowledge, there is a lack of research

on utilizing DL approaches to differentiate PA from WT.

The objective of this study was to evaluate the feasibility of using

DL models to distinguish PA and WT with the ultimate expectation

that DL may furnish physicians with more dependable diagnostic

evidence and provide surgeons with accurate treatment decisions

and personalized clinical services.
Methods

Patients

With the ethical approval (No 050432-4-2018) of Fudan

University Shanghai Cancer Center, we retrospectively enrolled

496 patients who underwent parotid gland surgery between

January 2016 and December 2022, meeting the following

inclusion criteria: (1) histopathological diagnosis of PA or WT;

(2) ultrasonography examination of the parotid gland performed

within one month prior to the surgical procedure. Eight patients

were excluded for the following reasons: (1) simultaneous presence

of both PA and WT in the parotid gland (n=3); (2) absence of

corresponding two-dimensional ultrasonography image of the mass

(n=5). Finally, a total of 488 cases were included. When allocating

the research samples, randomization was conducted on the
Frontiers in Oncology 03
included patients to ensure the representativeness in model

training and evaluation. The patients were randomly assigned in a

ratio of 7:2:1, resulting in a training set comprising of 341 cases, a

validation set consisting of 97 cases, and a testing set containing

50 cases.

Special attention was given to cases with inconclusive or

erroneous FNAC results which were segregated into a distinct

group, named as the indeterminate group. The performance of

DL models for this group of patients was also evaluated. The

disparity in case numbers between PA (96 cases) and WT (14

cases) within the indeterminate group necessitated a random

selection of a specific number of cases from the remaining WT

data (82 cases), aiming to rectify this imbalance. Finally, the total

192 patients were randomly divided into three sets - a training set

(116 cases), a validation set (38 cases), and a testing set (38 cases) -

with ratios of 6:2:2 respectively to ensure stability in subsequent DL

models. Given the retrospective design, written informed consent

was waived without disclosing identifiable information.
Image acquisition and evaluation

US images of the PA and WT lesions were retrieved from the

image archive database of Fudan University Shanghai Cancer Center.

The latest US images of patients eligible for inclusion within one

month before the surgery were collected from various ultrasound

equipment models including GE V730 pro, Philips iU-22, Toshiba

SSA-790, and Siemens S2000 with the linear array probe (7-14 MHz).

All patients were supine during the examination, with their head and

neck fully exposed. When examining one side, the head was slightly

tilted to the opposite side, and after applying coupling agents, the
A B

DC

FIGURE 2

The DL algorithm correctly classified (A) biopsy-PA nodule with a well-known WT appearance, the lobulated borders (A) or the cystic components
(C), as PA. The sonographic features demonstrate similarities of the lobulated borders (A, PA), (B, WT), and the cystic components (C, PA), (D, WT).
The arrows indicate the lobulated borders of the masses, and the asterisks indicate the cystic components of the masses.
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probe lightly made contact with the skin. Continuous transverse,

longitudinal, and oblique scans were performed on the parotid gland

lesion area, and a multi-slice display was used to observe the lesion

and preserve high-quality two-dimensional images. All images were

downloaded in DICOM format at their original size and resolution.

Two experienced US physicians (Physicians A and B, with 5 and

10 years of clinical experience) independently identified PA and WT

using ultrasound images. The two physicians were mutually blinded;

neither knew previous radiological reports or patient clinical

information. The diagnostic agreement of the two physicians was

assessed using Cohen-Kappa coefficient. The performance of each

physician was evaluated with the postoperative pathology result as the

reference gold standard to determine the number of true positives,

false positives, true negatives, and false negatives of the two

physicians’ diagnoses. Based on these numbers, the sensitivity and

specificity of each physician were calculated. The receiver operating

characteristic (ROC) curve was plotted with sensitivity as the Y-axis

and 1-specificity as the X-axis. Performance indicators, including the

area under the ROC curve (AUROC), accuracy, sensitivity,

specificity, positive predictive value (PPV), and negative predictive

value (NPV), were used to evaluate the diagnostic performance of

the physicians.
Establishment of DL model and
data preprocessing

Another two experienced US physicians who did not participate

in the differentiation of PA and WT jointly selected the region of

interest (ROI) from ultrasound images. One of the physicians

outlined the ROI with the agreement of the other one. The ROI

was a rectangular area embracing the tumor mass and approximately

5mm normal tissues surrounding the mass. The ROI selection was

performed using the Labelme software developed by the

Massachusetts Institute of Technology based on the Python

framework (23). (https://sourceforge.net/projects/labelme/, accessed

on 20 February 2023).

The datasets underwent a standardized preprocessing workflow

prior to establishing the five DL models (refer to Figure 3). For the

training set, our preprocessing steps included resizing the image

dimensions to 256 pixels. Subsequently, horizontal flips were

applied on the images to enhance the generalization capability of

the models. Finally, we transformed and normalized the processed

images into tensors by setting each color channel’s mean and

standard deviation to predefined values.
DL model training

The DLmodel was established using Python as the programming

language and PyTorch as the platform. Five network architectures,

namely ResNet50, MobileNetV2, InceptionV1, DenseNet121, and

VGG16, were employed for image classification tasks. The pre-

trained models of these networks were utilized. To mitigate

overfitting risks, a five-fold cross-validation was implemented. For

each fold, the model underwent training on the training set and
Frontiers in Oncology 04
evaluation on the validation set. Following each training and

evaluation phase, the AUROC of the current fold in the validation

set was calculated. Once all folds had been trained and evaluated, the

average AUROCs of all folds were computed and plotted accordingly.

Finally, to assess performance on the indeterminate group, the model

was retrained using both training and validation data combined

before being evaluated on the test set with a ROC being plotted.
Assessment of DL models

The aim of this study was to develop a binary classification model

capable of effectively distinguishing PA and WT. Postoperative

pathology was used as the reference gold standard. The performance

of DLmodels were evaluated in terms of AUROC, accuracy, sensitivity,

specificity, PPV, NPV andMathew’s Correlation Coefficient (MCC) for

both the overall group and the indeterminate group.
DL model interpretation

In tumor classification tasks, it is crucial to identify the ROI in the

image that themodel primarily focuses on. This elucidates the decision-

making process of the DL model. Therefore, we employed Gradient-

weighted Class Activation Mapping (Grad-CAM), a visualization

technique used to highlight the ROI in an image, to ensure that our

DLmodel was based on the mass area (using ResNet50 as an example).

For this specific classification task, we selected ResNet50’s final

convolutional layer which typically encapsulates ample information

and captures complex features most effectively. The generated heatmap

is a two-dimensional tensor where each element represents its

corresponding pixel’s contribution to predicting outcomes. The “hot”

regions in the heatmap correspond to the areas used for outcome

prediction by the DL model.

The heatmap was eventually superimposed onto the original

image, resulting in a composite that effectively showcases the ROI.

This visualization technique enables accurate identification of

tumor boundaries and internal structures for classification

purposes. Moreover, the transparency inherent in this process

enhances the reliability of the model while providing valuable

feedback for further improvement and validation.
Statistical analysis

The clinical characteristics of all patients, including age, gender,

and maximum diameter of the tumor mass in the ultrasound, were

categorized based on the training set, validation set, and test set.

Quantitative variables were described using mean ± standard

deviation (Mean ± SD), while categorical variables were presented as

frequency distributions. Patients were stratified into two ordinal levels

according to age (≤50y and >50y) and maximum diameter (≤20mm

and >20mm). Chi-square test was utilized to compare these categorical

data among the three groups. Statistical analysis was conducted using

SPSS version 25.0 (SPSS Inc., Chicago, IL, USA). A two-tailed P value

less than 0.05 was considered statistically significant.
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Results

Patient characteristics

The study enrolled a total of 488 patients, with 266 (54.5%)

diagnosed with PA and 222 (45.5%) with WT. The age range of the

participants was between 14 and 82 years, with an average age of 52

years (SD: 13.8). Among them, there were 183 females and 305

males. The mean maximum diameter measured by ultrasound was

27.1 mm (SD:10.2). No statistically significant differences were

observed in terms of age, gender, and maximum diameter among

the three datasets in the two groups (P>0.05) (Tables 1, 2).

Table 3 shows the clinical characteristics and pathological

indicators of patients: 1) Malignant transformation occurred in

only 7 cases (2.7%) of PA patients and 1 case (0.5%) of WT patients.

2) Atypical hyperplasia was exhibited by 19 (7.1%) PA patients,

while only 1 (0.5%) WT patient presented with atypical hyperplasia.

3) Capsule invasion was observed in 21 cases (7.9%) of PA patients,

whereas no WT patient showed evidence of capsule invasion.
Frontiers in Oncology 05
Performance of US physicians and FNAC

The diagnostic performance of the US physicians and FNAC is

presented in Table 4. The average AUROC and accuracy for the two

US physicians were merely 0.475 and 0.576, indicating a limited

discriminatory ability. The Cohen-Kappa coefficients between the

two US physicians was 0.457 (p<0.05). FNAC demonstrated an

AUROC of 0.721, showcasing high specificity (0.932) but relatively

lower sensitivity (0.510).
Performance of DL models

Differentiation of PA and WT in all cases
The performance of the five DL models in distinguishing PA

and WT on the test set is presented in Table 5 and Figure 4. Among

these models, ResNet50 achieved the highest AUROC of 0.908,

followed by DenseNet121 with an AUROC of 0.892, InceptionV1

with an AUROC of 0.870, MobileNetV2 with an AUROC of 0.851,
FIGURE 3

Schematic illustration of the workflow of using DL to differentiate parotid PA and WT.
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and VGG16 with an AUROC of 0.828. Additionally, detailed

evaluation metrics including accuracy, sensitivity, specificity, PPV,

and NPV are provided for each model as shown in Table 5.

Differentiation of PA and WT in the
indeterminate group

Table 6 and Figure 5 show the performance of the five DL

models in distinguishing PA and WT for the indeterminate group.

DenseNet121 model exhibited the optimal performance: AUROC

(0.897), accuracy (0.806), sensitivity (0.789), specificity (0.824),

PPV (0.833), NPV (0.778), and MCC (0.612). Conversely, the

VGG16 model had the worst performance: AUROC (0.648),

accuracy (0.676), sensitivity (0.825), specificity (0.510), PPV

(0.653), NPV (0.722), and MCC (0.354).

Robustness and visualization of the DL models
The DL models demonstrated consistent performances in the

five-fold cross-validation results for distinguishing between PA and

WT, with AUROC values remaining stable across different models,

indicating no evidence of overfitting (Figure 6). This further

validates the robustness of the DL models. Similarly, in the five-

fold cross-validation results for the indeterminate group, the DL
Frontiers in Oncology 06
models also exhibited similar performances without any indications

of overfitting (Figure 7). Heatmaps generated using the RestNet50

model revealed that the ROI used in the DL model was primarily

within the mass area and the junction with parotid tissue, while

peripheral normal parotid tissue had a minor impact (Figure 8).
Discussion

In this study, we evaluated five DLmodels based on US images to

differentiate PA and WT. The five DL models presented comparable

good performances. Among these models, ResNet50 achieved the

highest AUROC, followed by DenseNet121, InceptionV1,

MobileNetV2, and VGG16 (0.828-0.908). These performances of all

DL models were superior to US physicians and FNAC. For the

indeterminate group that was inconclusive by FNAC, DLmodels also

provide acceptable results (AUROC:0.648-0.897).

PA is the most common salivary gland tumor, accounting for

60% of these neoplasms. If untreated, 6.2% of PA may undergo

malignant transformation to CXPA (24). The incomplete resection

of the PA tumor mass may increase the risk of its transformation to

CXPA and recurrence (25). It was reported that the recurrence rate
TABLE 2 Comparison of clinical features between three datasets in the indeterminate group.

Training set (n=116) Validation set (n=38) Test set
(n=38)

P value

Age 0.923

≤50 43 13 13

>50 73 25 25

Gender 0.073

Male 80 20 29

Female 36 18 9

Maximum diameter 0.293

≤20 33 13 7

>20 83 25 31
TABLE 1 Comparison of clinical features between three datasets in all cases.

Training set (n=341) Validation set (n=97) Test set
(n=50)

P value

Age 0.078

≤50 149 30 20

>50 192 67 30

Gender 0.864

Male 212 60 33

Female 129 37 17

Maximum diameter 0.374

≤20 94 20 14

>20 247 77 36
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ranges between 20%-45% following tumor enucleation and 3.4%-

6.8% after partial or complete superficial parotidectomy (26–30).

The increased recurrence rate may be attributed to the tumor’s

growth pattern, which progressively expands and infiltrates the

surrounding tissue, ultimately breaching its encapsulation and
Frontiers in Oncology 07
giving rise to satellite nodules. Moreover, there is an elevated risk

for malignant transformation in PA with the prolonged observation

time. One observational research suggests that the incidence rate for

malignant transformation in PA is 1.5% at 5 years and rises to 9.5%

at 15 years after the surgery (9). On the contrary, WT presented

lower recurrence rate. A study conducted at Johns Hopkins

University reported a lower recurrence rate (4.2%) and malignant

transformation rate (1%) in WT (31). Some researchers have even

hypothesized that WT may not represent a genuine neoplasm but

rather an inflammatory or delayed hypersensitivity reaction (32).

Our results reinforced the biological and behavioral disparities

between PA and WT. We found that 7 PA cases (2.7%) experienced

malignant transformations compared to only 1 WT case (0.5%).

This indicated that PA carries a higher risk for malignant

transformation than WT, which accords with the behavior of

CXPA. Meanwhile, atypical hyperplasia was observed in 19 PA

cases (7.1%) and 1 WT case (0.5%). Involvement of capsule

occurred in 21 PA cases (7.9%), while no instances were observed

among PT cases. This emphasizes the infiltrative nature of PA

towards adjacent structures, which sharply contrasts with the

benign characteristics of WT. The variations in malignant

transformation, atypical hyperplasia, and capsule invasion

underscore the significance of accurately diagnosing PA and WT.

Ultrasound is the preferred modality for distinguishing between

PA and WT due to its advantages of high resolution, non-ionizing

radiation, and cost-effectiveness. However, accurately differentiating

these two tumors based on sonographic characteristics such as

multifocality, morphology, internal cystic changes, and tumor

vascularity remains a challenging task (12, 14, 33). Our study

revealed that the average diagnostic accuracy of the two US

physicians was only 57.6%, which aligns with previous research

findings (34, 35). Meanwhile, the diagnostic agreement between the

two physicians was low with the Cohen-Kappa coefficient of 0.457.
TABLE 4 The diagnostic performance of two physicians and FNAC.

AUROC Accuracy Sensitivity Specificity PPV NPV

Physician A 0.351 0.545 0.320 0.617 0.569 0.500

Physician B 0.598 0.606 0.695 0.500 0.625 0.578

FNAC 0.721 0.699 0.510 0.932 1.000 1.000
FNAC, Fine Needle Aspiration cytology; AUROC, Area Under the Receiver Operating Characteristic; PPV, Positive Predictive Value; NPV, Negative Predictive Value.
TABLE 3 Patient and tumor characteristics.

PA (n=266) WT (n=222) %

Age

≤50 177 20 40.4

>50 89 202 59.6

Gender

Male 93 212 62.5

Female 173 10 37.5

Maximum diameter

≤20 102 26 26.2

>20 164 196 73.8

Malignant transformation

yes 7 1 1.6

no 259 221 98.4

Atypical hyperplasia

yes 19 1 4.1

no 247 221 95.9

Invasion of the capsule

yes 21 0 4.3

no 245 222 95.7
TABLE 5 Performance evaluation of DL models in differentiating PA and WT for all cases.

Models AUROC Accuracy Sensitivity Specificity PPV NPV MCC

ResNet50 0.908 0.833 0.736 0.904 0.848 0.825 0.656

MobileNetV2 0.851 0.778 0.830 0.740 0.698 0.857 0.563

InceptionV1 0.870 0.762 0.849 0.700 0.672 0.864 0.542

DenseNet121 0.892 0.802 0.698 0.877 0.804 0.800 0.589

VGG16 0.828 0.722 0.792 0.671 0.636 0.817 0.458
PA, pleomorphic adenoma; WT, Warthin tumor; AUROC, Area Under the Receiver Operating Characteristic; PPV, Positive Predictive Value; NPV, Negative Predictive Value; MCC, Mathew’s
Correlation Coefficient.
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The low diagnostic agreement and accuracy of US physicians verified

the limitation of differentiating PA and WT by naked eyes.

In this study, FNAC demonstrated a diagnostic accuracy of only

0.699. The sensitivity was 0.510, while specificity was determined to

be 0.932; PPV and NPV were reported as equal to one, respectively.

These results indicate that FNAC has a high rate of false-negative

diagnoses but a low rate of false-positive diagnoses in identifying PA

and WT in this particular study which was consistent with existing

literature reports (17, 19). This can be explained by the fact that an

accurate diagnosis of PA and WT relies on evaluating cell

arrangement and growth patterns which are not adequately

represented in FNAC samples. Moreover, the absence of clear

guidelines for reporting and interpreting FNAC results poses

challenges for pathologists in making definitive diagnoses (17–19).

DL, as an important branch of artificial intelligence algorithms,

was initially proposed by Hinton in 2006. It involves training a

multi-layered deep network structure using specific samples. DL

models have the capability to detect unique textures that may pose

challenges for human visual perception and accurately quantify

image features, thereby reducing subjective interpretation (21, 36).

In comparison to traditional machine learning methods reliant on

feature extraction, DL offers several advantages. Firstly, it

automatically amalgamates low-level features to form high-level

abstract features, eliminating human subjectivity. Secondly, DL

models eliminate the need for imaging physicians to precisely
Frontiers in Oncology 08
delineate tumor margins, thus minimizing inter-operator

differences in identifying regions of interest (ROI). Thirdly, DL

models effectively integrate tumor image information with clinical

data, providing a more precise foundation for clinical decision-

making (37).

Each of the five DL models utilized in our study possesses

distinct characteristics. ResNet50 employs residual connections to

address the issue of vanishing and exploding gradients, utilizing

“residual learning” (38). MobileNetV2 is a lightweight network

suitable for mobile and embedded devices, employing Depthwise

Separable Convolution to reduce complexity and size (39).

InceptionV1 incorporates “Inception modules” with parallel

convolutional kernels to capture features at various scales (40).

DenseNet121 enhances gradient propagation and feature reuse

while reducing parameters by connecting each layer to all

previous layers through feature map concatenation (41). VGG16

follows a regular structure that utilizes al kernels and 2×2 maximum

pooling layers (42).

This is the first study in the literature that using ultrasound

images-based DL algorithms to differentiate PA and WT. The

comparable performances exhibited by the five DL models

accurately distinguish PA from WT lesions while precisely

identifying the tumor mass as the ROI, thereby rendering our

results robust and promising. In the future, more related studies
FIGURE 4

ROC for the five DL models in the test set of all cases.
TABLE 6 Performance evaluation of DL models in differentiating PA and WT for the indeterminate group.

Models AUROC Accuracy Sensitivity Specificity PPV NPV MCC

ResNet50 0.821 0.722 0.701 0.745 0.755 0.691 0.446

MobileNetV2 0.848 0.750 0.842 0.647 0.727 0.786 0.501

InceptionV1 0.783 0.713 0.684 0.745 0.750 0.679 0.429

DenseNet121 0.897 0.806 0.789 0.824 0.833 0.778 0.612

VGG16 0.648 0.676 0.825 0.510 0.653 0.722 0.354
PA, pleomorphic adenoma; WT, Warthin tumor; AUROC, Area Under the Receiver Operating Characteristic; PPV, Positive Predictive Value; NPV, Negative Predictive Value; MCC, Mathew’s
Correlation Coefficient.
FIGURE 5

ROC for the five DL models in the test set of the
inderterminate group.
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are warranted to reinforce our findings. The potential of ResNet50

model as the best DL model for differentiating PA and WT at US is

also warranted for further validation.

There are several limitations in our study. Firstly, the data were

retrospectively collected from various US instruments and

physicians, which may introduce variability. Secondly, due to

different evaluation methods, we did not statistically compare the

performance between physicians and DLmodels. Thirdly, our study

only focused on PA and WT; therefore, this model may not be

applicable to all benign parotid tumors. Nevertheless, these two

types of tumors account for approximately 93% of such cases.
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Finally, since all our data came from a single center without external

validation, we plan to collaborate with multiple centers to address

these limitations and enhance the practicality as well as the

generalizability of DL models.
Conclusion

DLmodels based on ultrasound images can differentiate PA and

WT in parotid gland tumors with reliable results. They provided a

feasible supplementary approach for preoperative diagnosis of PA
A B

D E

C

FIGURE 6

The performances of five-fold cross-validation in all DL models for all cases: (A) the ResNet50 model; (B) the MobileNetV2 model; (C) the
InceptionV1 model; (D) the DenseNet121 model; (E) the VGG16 model.
A B

D E

C

FIGURE 7

The performances of five-fold cross-validation in DL models for the inderteminate group: (A) the ResNet50 model; (B) the MobileNetV2 model; (C)
the InceptionV1 model; (D) the DenseNet121 model; (E) the VGG16 model.
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and WT secondary to imaging and FNAC. This will thereafter

provide valuable information for surgeons to select appropriate

surgical interventions. Future multicenter studies are expected to

yield more robust results.
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aspiration cytology (FNAC): is it useful in preoperative diagnosis of parotid gland
lesions? Acta Chir Belg. (2017) 117:110–4. doi: 10.1080/00015458.2016.1262491

9. Cantisani V, David E, Sidhu PS, Sacconi B, Greco A, Pandolfi F, et al. Parotid
gland lesions: multiparametric ultrasound and MRI features. Ultraschall Med. (2016)
37:454–71. doi: 10.1055/s-0042-109171

10. So T, Sahovaler A, Nichols A, Fung K, Yoo J, Weir MM, et al. Utility of clinical
features with fine needle aspiration biopsy for diagnosis of Warthin tumor. J
Otolaryngol Head Neck Surg. (2019) 48:41. doi: 10.1186/s40463-019-0366-3

11. Psychogios G, Bohr C, Constantinidis J, Canis M, Vander Poorten V, Plzak J ,
et al. Review of surgical techniques and guide for decision making in the treatment of
benign parotid tumors. Eur Arch Otorhinolaryngol. (2021) 278:15–29. doi: 10.1007/
s00405-020-06250-x

12. Rong X, Zhu Q, Ji H, Li J, Huang H. Differentiation of pleomorphic adenoma
and Warthin's tumor of the parotid gland: ultrasonographic features. Acta Radiol.
(2014) 55:1203–9. doi: 10.1177/0284185113515865

13. Kanatas A, Ho MWS, Mücke T. Current thinking about the management of
recurrent pleomorphic adenoma of the parotid: a structured review. Br J Oral
Maxillofac Surg. (2018) 56:243–8. doi: 10.1016/j.bjoms.2018.01.021

14. Zajkowski P, Jakubowski W, Białek EJ, Wysocki M, Osmólski A, Serafin-Król M.
Pleomorphic adenoma and adenolymphoma in ultrasonography. Eur J Ultrasound.
(2000) 12:23–9. doi: 10.1016/S0929-8266(00)00096-3
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