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Interpretable machine learning
model to predict surgical
difficulty in laparoscopic
resection for rectal cancer
Miao Yu †, Zihan Yuan †, Ruijie Li †, Bo Shi, Daiwei Wan*

and Xiaoqiang Dong*

Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
Background: Laparoscopic total mesorectal excision (LaTME) is standard surgical

methods for rectal cancer, and LaTME operation is a challenging procedure. This

study is intended to use machine learning to develop and validate prediction

models for surgical difficulty of LaTME in patients with rectal cancer and compare

these models’ performance.

Methods: We retrospectively collected the preoperative clinical and MRI

pelvimetry parameter of rectal cancer patients who underwent laparoscopic

total mesorectal resection from 2017 to 2022. The difficulty of LaTME was

defined according to the scoring criteria reported by Escal. Patients were

randomly divided into training group (80%) and test group (20%). We selected

independent influencing features using the least absolute shrinkage and

selection operator (LASSO) and multivariate logistic regression method. Adopt

synthetic minority oversampling technique (SMOTE) to alleviate the class

imbalance problem. Six machine learning model were developed: light

gradient boosting machine (LGBM); categorical boosting (CatBoost); extreme

gradient boost (XGBoost), logistic regression (LR); random forests (RF); multilayer

perceptron (MLP). The area under receiver operating characteristic curve

(AUROC), accuracy, sensitivity, specificity and F1 score were used to evaluate

the performance of the model. The Shapley Additive Explanations (SHAP) analysis

provided interpretation for the best machine learning model. Further decision

curve analysis (DCA) was used to evaluate the clinical manifestations of

the model.

Results: A total of 626 patients were included. LASSO regression analysis shows

that tumor height, prognostic nutrition index (PNI), pelvic inlet, pelvic outlet,

sacrococcygeal distance, mesorectal fat area and angle 5 (the angle between the

apex of the sacral angle and the lower edge of the pubic bone) are the predictor

variables of the machine learning model. In addition, the correlation heatmap

shows that there is no significant correlation between these seven variables.

When predicting the difficulty of LaTME surgery, the XGBoost model performed

best among the six machine learning models (AUROC=0.855). Based on the

decision curve analysis (DCA) results, the XGBoost model is also superior, and

feature importance analysis shows that tumor height is the most important

variable among the seven factors.
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Conclusions: This study developed an XGBoost model to predict the difficulty of

LaTME surgery. This model can help clinicians quickly and accurately predict the

difficulty of surgery and adopt individualized surgical methods.
KEYWORDS

rectal cancer, pelvimetry, surgical difficulty, prediction model, machine learning,
Shapley additive explanations
1 Introduction

According to the latest statistics, the incidence of colorectal

cancer in the world has ranked the third among malignant tumors,

and the mortality rate has ranked second, among which the

incidence of rectal cancer ranks eighth (1). To a large extent, it

has become a public health problem threatening human health.

Rectal cancer has a rate approaching that of colon cancer and is a

heavy health burden in the world. Since the introduction of total

mesorectal excision (TME) in the 1980s by Heald (2)et al., the

quality of TME directly affects the recurrence of local tumor and the

prognosis of patients. So TME has become the gold standard for

surgical treatment of rectal cancer. In the past two decades, with the

development of minimally invasive surgery, laparoscopic surgery

can be combined with classical surgery to achieve minimally

invasive. Compared with open surgery, laparoscopic total

mesorectal excision (LaTME) has the advantages of less invasive

nature, faster recovery and better visualization of surgical field (3,

4), so it has become one of the main surgical methods for rectal

cancer. Due to the fixed bony structure of pelvis and the limited

space for pelvic surgery, it is hardto keep a clear surgical field of

vision, identify accurate anatomical structures and perform accurate

rectal resection (5). So, In rectal cancer, especially in deep and

narrow pelvises, LaTME can be technically challenging. However,

open surgery can better expose the surgical field of vision and

accurately touch the extent of the tumor. Also, emerging techniques

such as transanal total mesorectal excision (TaTME) and robotic

surgery may help overcome the difficulties encountered during

LaTME (6–8). Therefore, early identification of difficult LaTME

surgery is necessary. Magnetic resonance imaging (MRI) has been

widely used in routine (9–11) preoperative evaluation in the

diagnosis and treatment of rectal cancer. It can not only clearly

show the pelvic anatomy and soft tissue structure around the

rectum, but also evaluate the depth of tumor invasion and

suspected lymphatic metastasis around the mesorectum. A recent

meta-analysis (12) shows that pelvic measurements based on MRI

pelvic measurements can predict the difficulty of TME surgery.

Therefore, MRI is a very useful tool in rectal cancer.

In recent years, artificial intelligence has developed rapidly,

especially machine learning has been widely used in many medical

fields because of its excellent performance (13, 14). Currently, there

are few reports on machine learning models predicting the difficulty
02
of LaTME surgery. In clinical practice, only some traditional

statistical tools like nomograms that predict surgical difficulty (15,

16).Therefore, the purpose of this study is to explore the risk factors

affecting the difficulty of LaTME surgery, to develop a preoperative,

non-invasive and quantitative accurate strategy, and to establish an

interpretable machine learning model to help clinicians choose

appropriate surgical approach.
2 Materials and methods

2.1 Study design and subjects

This retrospective study collected the data of rectal cancer

patients undergoing LaTME at The First Affiliated Hospital of

Soochow University from 2017 to 2022. Patient inclusion criteria

were as follows (1): colonoscopy showed that the distance from the

lower margin of the tumor to the anal margin was less than 15cm,

and it was confirmed as rectal adenocarcinoma by biopsy (2),

preoperative rectal MRI scan was performed in our hospital

within 15 days before surgical resection (3), execute LaTME

strictly according to the principle of TME.

The exclusion criteria were as follows (1): without rectal MRI in

our hospital (2), multiple primary cancer, secondary tumor,

recurrence, distant metastasis (3), underwent abdominoperineal

resection (APR) or other surgeries (e.g., Hartmann’s procedure,

emergency surgery, palliative surgery, multivisceral resection, or

lateral pelvic lymph node dissection) (4), history of previous pelvic

surgery (5), patients receiving neoadjuvant therapy. Moreover, all

rectal cancer operations are performed by an experienced

laparoscopic surgery team (the chief surgeon has more than ten

years of experience in laparoscopic surgery) to follow the TME

procedure. Some patients underwent ileostomy at the same time of

resection. In order to reduce the impact of this operation, the

operation time of these patients was recorded as the initial time

minus 15 minutes (17). When the entire operation cannot be

completed by laparoscopy, it should be changed to acombined

approach (transabdominal and transanal surgery).

Figure 1 shows a flowchart outlining patient enrollment and

study design. Finally, 626 rectal cancer patients who received

LaTME were randomly divided into training group (80%) and

test group (20%). The training group uses machine learning
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algorithm to train and optimize the models, and the test group is

used to test the prediction performance of these models.
2.2 Definition of surgical difficulty

We evaluate the difficulty of LaTME by intraoperative and

postoperative parameters. Because there are many differences

between eastern and western patients, we modify the standard of

surgical difficulty proposed by Escal (18) et al. Surgical difficulty

score: duration of surgery > 240 min (3 points),blood loss >200 ml

(1 point), conversion to laparotomy (3 points), postoperative

complications (grade II and III) (1 point), use of transanal

dissection (2 points), and postoperative hospital stay >12 days (2

points). And the patients were divided into two groups: low surgical

difficulty group (<6 points) and high surgical difficulty group (≥ 6

points). The postoperative complications was graded according to

the Clavien–Dindo classification (19). Grade II: Medical treatment

is required, including blood transfusion or total parenteral

nutrition. Grade III: surgical, endoscopic, or radiological

intervention is required.
Frontiers in Oncology 03
2.3 MRI pelvimetry and other variables

All rectal cancer patients underwent abdominal pelvic 3.0TMRI

examination within 15 days before surgery. The publicly available

software (3DSlicer, version 5.2.2) funded by the National Institutes

of Health was used for pelvic measurement and analysis (20). T2-

weighted imaging (T2WI) was used to measure pelvic

measurements, and all pelvic MR images were reviewed

retrospectively by an observer blinded to the patients ’

clinicopathological information. Specific measurement parameters

are shown in Figure 2. The measurements obtained are as follows

(21, 22):
1. Pelvic inlet: the distance from the median surface of the

superior symphysis pubis to the promontory;

2. Middle pelvis: the distance between the midpoint of the

lower margin of the symphysis pubis and the midpoint of

the anterior edge of the sacrococcygeal junction;

3. Pelvic outlet: the distance from the lower margin of the

symphysis pubis to the coccyx;

4. Interischial distance: the distance between the sciatic

spines on both sides.
FIGURE 1

Flowchart of patient selection and machine learning model development process. LR, logistic regression; LGBM, light gradient boosting machine;
CatBoost, categorical boosting; MLP, multilayer perceptron; RF, random forests; XGBoost, extreme gradient boost; SMOTE, synthetic minority
oversampling technique; SHAP, shape additive explanation.
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5. Intertuberous distance: the distance between the

innermost points of the ischial tuberosities;

6. Pubic symphysis height: the distance between the upper

and lower margins of the symphysis pubis;

7. Sacrococcygeal distance: the distance from the

promontory to the tip of the tailbone;

8. Internal diameter of sacrum and pubis: the distance from

the promontory to the inferior margin of pubis;

9. Mesorectal fat area: the mesentery and fatty area

surrounding the rectum at the tip of the fifth

sacral vertebra;

10. Sacrococcygeal–pubic angle: the angle between an

extension of the line forming the anteroposterior

diameter of the pelv ic inlet and that of the

anteroposterior diameter of the pelvic outlet the angle

between the extension of the anteroposterior diameter line

of the pelvic inlet and the extension of the anteroposterior

diameter line of the pelvic outlet;

11. Angle 1: the angle between the pubic symphysis, the upper

boundary of the promontory and the middle of the S3

vertebral body;
tiers in Oncology 04
12. Angle 2:the angle between the cape, the middle of the S3

vertebrae, and the tailbone;

13. Angle 3: the angle between the middle of the S3 vertebral

body, the coccyx and the lower edge of the pubic symphysis;

14. Angle 4: the angle between the coccyx, the upper and

lower borders of the pubic symphysis;

15. Angle 5: the angle between the superior and inferior

border lines of the pubic symphysis and the midpoint of

the superior border of the pubic symphysis and the line

between the sacral promontory;

16. Angle T1: the angle between the apex of the sacral angle

and the lower edge of the third sacrum;

17. Angle T2: the angle between the lower margin of the

tubercle of the third sacrum and the apex of the coccyx;

18. Angle T3: the angle between the apex of the tailbone and

the lower margin of the pubis;

19. Angle T4: the angle between the upper and lower borders

of the pubic symphysis with the lower border of the tumor

as the vertex;

20. Angle T5: the angle between the superior margin of the

pubis and the apex of the promontory.
B

C D

A

FIGURE 2

MRI T2 weighted image pelvimetry (A) Median sagittal position: (a) pelvic inlet, (b) middle pelvis, (c) pelvic outlet (d) Pubic symphysis height, (e)
sacrococcygeal distance, (f) Internal diameter of sacrum and pubis (1), Angle 1 (2), Angle 2 (3), Angle 3 (4), Angle 4 (5), Angle 5 (6), Sacrococcygeal–
pubic angle (B) Ischiatic tuberosity horizontal transverse position:(g) Intertuberous distance (C) Fifth sacral vertebral tip horizontal transverse position:
(h) mesorectal fat area, (i) Interischial distance (D) Median sagittal position: (T1) Angle T1, (T2) Angle T2, (T3) Angle T3, (T3) Angle T3, (T4) Angle T4,
(T5) Angle T5.
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In addition, we obtained the baseline characteristics of the

patients from the medical record: age, gender, BMI, albumin,

globulin, lymphocyte count and tumor height. Among them,

hematology nutritional indicators are added (23), and the

calculation is as follows: albumin to globulin ratio (AGR)=albumin/

globulin, prognostic nutrition index (PNI)=serum albumin (g/L)

+5*lymphocyte count (109/L). Blood samples were collected within

one week before surgery. We also collected the pathological stages of

the patients’ surgical specimens, and the tumors were staged

according to the 8th tumor-node-metastasis (TNM) classification

of the National Comprehensive Cancer Network (NCCN) and

American Joint Committee on Cancer (AJCC) (24).
2.4 Development and validation of
prediction models

In order to ensure the simplicity of our model, T-test, Mann-

Whitney U test and Chi-square test were carried out to screen the

variables with statistical differences between the high and low

surgical difficulty groups. Then we use the LASSO regression of

10-fold cross-validation to reduce the dimension. Finally, the

variables with non-zero coefficients are analyzed by multivariable

logistics regression to screen independent risk factors to build a

machine learning model. In our study, there was a serious

imbalance between the low surgical difficulty group and high

surgical difficulty group. Unbalanced data sets are frequently

encountered in medical research due to the disproportionate

number of non-patients compared to patients, leading to

diminished predictive performance (25). The Synthetic Minority

Oversampling Technique (SMOTE) is an efficient algorithm for

addressing class imbalances (26), employing k-neighbor synthesis

to focus on a limited number of classes and achieve a balanced

dataset (27), which has demonstrated commendable efficacy in

disease detection. So, we use the SMOTE to solve the problem of

data imbalance and reduce the over-fitting of the model. SMOTE

was only applied to our training group, and we did not oversample

the test set, thus maintaining the natural frequency of results.

We use the data set after SMOTE to build six machine learning

prediction models, including light gradient boosting machine

(LGBM); categorical boosting (CatBoost); extreme gradient boost

(XGBoost), logistic regression (LR); random forests (RF); multilayer

perceptron (MLP). The subjects were randomly divided into training

group (80%) and test group (20%). The training group was used for

model development and hyperparameter tuning, the test group was

used for model evaluation verification, and we use grid search with

ten-fold cross-validation to find and determine optimal parameters

for machine learning algorithms. The grid search algorithm

systematically arranges and combines all possible parameter values,

subsequently substituting the results of each combination into the

model training process. The objective is to identify the optimal

parameter combination from the exhaustive set of possibilities. Use

discrimination and calibration to validate the model’s predictive

ability. The area under the receiver operating characteristic curve

(AUROC) represents a measure of discrimination, and the

performance of a model is evaluated through accuracy, sensitivity,
Frontiers in Oncology 05
specificity and F1 score. The Brier score and calibration curve were

employed for model calibration. The Brier score represents the

average squared deviation between the predicted outcome

probability and the true label. A lower Brier score indicates

superior model performance. The clinical effective rate and net

benefit were evaluated by decision curve analysis (DCA). The

Shapley Additive Interpretation (SHAP) is employed to directly

elucidate the impacts of significant variables on the model. SHAP,

a model interpretation technique grounded in cooperative game

theory (28), has recently demonstrated its efficacy in explicating

diverse machine learning models (29–31). Specifically, SHAP

assigns each feature with a Shapley value by classifying the model’s

output value. Intuitively, estimating the Shapley value for each feature

enables us to explicate its contribution to the outcome. The Shapley

value accurately reflects the influence of a feature in each sample and

facilitates a deeper understanding of whether it acts as a protective or

risk factor for the model. The SHAP summary chart is generated

from the Shapley value, the importance of the features is ranked, and

the SHAP force plot is constructed to analyze and interpret the

prediction results of a single sample.
2.5 Statistical analysis

All statistical analysis was carried out with IBM SPSS (version

26.0), R (version 4.2.3) and Python(version 3.10.0). The Shapiro-

Wilk test was utilized to assess the normality of the data.

Continuous data conforming to a normal distribution were

presented as mean and standard deviation (SD), while continuous

data deviating from a normal distribution were expressed as median

and interquartile range (IQR). Student’s t-test was employed for

comparing continuous data following a normal distribution,

whereas Mann-Whitney U test was used for comparing non-

normal distribution data. Disaggregated data were reported as

frequency (percentage), and comparisons between the two groups

were conducted using the c2 test or Fisher’s exact test (if the

theoretical frequency T < 5). A p-value less than 0.05 in bilateral

testing was considered statistically significant.
3 Results

3.1 Patient characteristics and
surgical outcomes

Table 1 shows the clinical features and MRI pelvimetry of all

participants. A total of 626 patients were included in this study, of

which the median age was 64 (56–71) years old. The majority of the

patients were male, accounting for 59.7% of the total. The median

height of tumor was 9 (7 ~ 12) cm. Among the indicators related to

the surgical difficulty, the probability that the median time of

operation, blood loss and postoperative hospital stay were 198.5

(160.0, 240.5) min, 100 (50, 200) ml and 10 (8, 12) days. Use of

transanal dissection, conversion to open procedure and morbidity

(grade II and III) were 21.6%, 27.3% and 29.7%, respectively. Other

indicators are shown in Table 1. Compared with the patients with low
frontiersin.org
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TABLE 1 Clinical features and MRI pelvimetry of all participants in different groups.

Variables Overall
(N=626)

Low surgical
Difficulty

group (N=516)

High surgical
Difficulty

group (N=110)

P

Baseline characteristics

Gender (%) 0.221

Male 374 (59.7%) 314 (60.85%) 60 (54.55%)

Female 252 (40.3%) 202 (39.15%) 50 (45.45%)

Age (median [IQR], year) 64 (56, 71) 64 (56,71) 64 (58,71) 0.647

BMI (median [IQR], kg/m²) 23.63 (21.54,25.52) 23.66 (21.61,24.02) 23.44 (21.06,25.27) 0.316

Tumor height
(median [IQR], cm)

9 (7,12) 10 (7,12) 7 (5,10) <0.001

Hematology nutritional indicators

AGR (median [IQR]) 1.52 (1.37,1.69) 1.51 (1.37,1.69) 1.59 (1.38,1.73) 0.248

PNI (mean [SD]) 49.5 (5.22) 49.81 (4.86) 48.00 (6.47) 0.006

Pathological stage

Pathological T stage (%) 0.115

T1 7 (1.12%) 5 (0.97%) 2 (1.82%)

T2 100 (15.97%) 75 (14.53%) 25 (22.73%)

T3 469 (74.92%) 396 (76.75%) 73 (66.36%)

T4 50 (7.99) 40 (7.75%) 10 (9.09%)

Pathological N stage (%) 0.115

N0 320 (51.12%) 255 (49.42%) 65 (59.09%)

N1 168 (26.84%) 145 (28.10%) 23 (20.91%)

N2 138 (22.04) 116 (22.48%) 22 (20%)

Pathological TNM stage (%) 0.838

I 79 (12.62%) 61 (11.82%) 18 (16.36%)

II 247 (39.46%) 209 (40.50%) 38 (34.55%)

III 300 (47.92%) 246 (47.67%) 54 (49.09%)

MRI pelvimetry

Pelvic inlet
(mean [SD], cm)

11.74 (1.07) 11.82 (1.05) 11.36 (1.08) <0.001

Middle pelvis
(mean [SD], cm)

12.55 (0.99) 12.57 (0.97) 12.49 (1.03) 0.444

Pelvic outlet
(mean [SD], cm)

8.78 (0.89) 8.83 (0.91) 8.53 (0.77) 0.001

Interischial distance (median [IQR], cm) 9.74 (8.92,10.66) 9.74 (8.98,10.60) 9.74 (8.70,10.80) 0.738

Intertuberous distance (median [IQR], cm) 9.97 (8.79,11.20) 9.98 (8.81,11.09) 9.94 (8.68,11.39) 0.904

Pubic symphysis height (median [IQR], cm) 4.74 (4.27,5.15) 4.71 (4.26, 5.14) 4.80 (4.28,5.18) 0.388

Sacrococcygeal distance (median [IQR], cm) 12.60 (11.66,13.37) 12.50 (11.58,13.26) 12.98 (11.99,13.66) <0.001

Internal diameter of sacrum and pubis (mean [SD], cm) 12.84 (1.14) 12.81 (1.13) 12.96 (1.15) 0.222

Mesorectal fat area (median [IQR], cm²) 16.65 (11.57,21.88) 16.3 (10.97,21.40) 18.08 (13.36,23.60) 0.001

Angle 1 (median [IQR], °) 116.1 (107.0,124.2) 116.1 (107.6,124.4) 116.8 (104.4,124.0) 0.463

(Continued)
F
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surgical difficulty, the patients in the high surgical difficulty group

had lower tumor height, lower PNI, shorter pelvic inlet, pelvic outlet,

longer sacrococcygeal distance, more mesorectal fat area and larger

angle 5 and sacrococcygeal-pubic angle. However, preliminary

analysis showed that there was no significant difference in gender,

age, BMI, AGR, pathological T stage, pathological N stage,

pathological TNM stage, middle pelvis, interischial distance,

Intertuberous distance, pubic symphysis height, internal diameter

of sacrum and pubis, angle 1, angle 2, angle 3, angle4 and tumor

related angle between the two groups.
3.2 The relationship between
clinicopathological factors and the
definition of surgical difficulty

The comparison of clinicopathological parameters of rectal

cancer patients with six definitions of surgical difficulty is shown

in Supplementary Table 1. Intertuberous distance had an

association with duration of surgery, an association mesorectal fat

area between and more estimated blood loss was found BMI PNI

pathological T stage internal diameter of sacrum and pubis had an
Frontiers in Oncology 07
association with conversion to open procedure, angle T1 angle T2

angle T3 had associations with morbidity and use of transanal

dissection, and there was an association of angle T4 with

postoperative hospital stay. Also pubic symphysis height angle 3

angle 5 can influence the morbidity, and tumor height pathological

TNM stageIII can affect use of transanal dissection. All the above

associations were statistically significant (all p < 0.05).
3.3 Feature selection

LASSO can compress variable coefficients to prevent over-

merging to solve serious collinearity problems (32). We use

LASSO regression analysis and ten-fold cross-validation to filter

variables. Use 1 standard error’s lambda to select seven variables

(Figure 3), including tumor height, PNI, pelvic inlet, pelvic outlet,

sacrococcygeal distance, mesorectal fat area and angle 5. In order to

further control the influence of confounding factors, the above

seven independent variables were analyzed by multivariate logistic

regression analysis (Table 2). We found that the above seven

variables are independent influencing factors for the difficulty of
TABLE 1 Continued

Variables Overall
(N=626)

Low surgical
Difficulty

group (N=516)

High surgical
Difficulty

group (N=110)

P

Angle 2 (mean [SD], °) 108.3 (10.9) 108.4 (10.9) 107.6 (11.2) 0.439

Angle 3 (median [IQR], °) 127.2 (122.2,132.8) 127.3 (122.7,133.2) 126.8 (120.5,131.9) 0.086

Angle 4 (median [IQR], °) 89.1 (82.6,96.4) 89.0 (82.2,96.0) 90 (83.2,97.7) 0.486

Angle 5 (median [IQR], °) 98.5 (93.7,103.8) 97.7 (93.5,103) 101 (95.8,109.5) <0.001

Sacrococcygeal–pubic angle(median [IQR], °) 46.9 (41.0,52.5) 46.4 (40.8,51.6) 49.0 (41.9,56.0) 0.008

Angle T1
(median [IQR], °)

53.9 (46.8,68.5) 54.2 (47.0,68.6) 53.0 (44.8,68.0) 0.342

Angle T2
(median [IQR], °)

79.9 (59.0,101.6) 81.0 (60.9,101.9) 72.8 (51.1,100.6) 0.089

Angle T3
(median [IQR], °)

112.1 (80.1,143.2) 110.4 (80.8,141.0) 114.8 (78.0,150.5) 0.380

Angle T4
(median [IQR], °)

27.0 (23.0,31.0) 27.0 (23.1,31.2) 26.0 (22.2,30.0) 0.134

Angle T5
(median [IQR], °)

72.6 (66.7,80.0) 72.6 (67.0,79.9) 72.6 (64.5,80.9) 0.690

Surgical difficulty

Duration of surgery
(median [IQR], min)

198.5 (160.0,240.5) 187 (153,221.5) 260 (222.3,291.5) <0.001

Blood loss
(median [IQR], ml)

100 (50,200) 100 (50,200) 150 (100,200) <0.001

Postoperative hospital stays (median [IQR], day) 10 (8,12) 9 (8,11) 13 (9,16.3) <0.001

Morbidity (grade II and III) (yes/no, %) 186/440 (29.7/70.3) 131/385 (25.4/74.6) 55/55 (50/50) <0.001

Use of transanal dissection (yes/no, %) 135/491 (21.6/78.4) 74/442 (14.3/85.7) 61/49 (55.5/44.5) <0.001

Conversion to open procedure (yes/no, %) 171/455 (27.3/72.7) 102/414 (19.8/80.2) 69/41 (62.7/37.3) <0.001
IQR, interquartile range; SD, standard deviation; BMI, body mass index; AGR, albumin to globulin ratio; PNI, prognostic nutrition index; The bold values P <0.05.
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LaTME surgery. The correlation heatmap (Figure 4) results show

that the correlations between variables are all less than 0.4, there is

no significant correlation between variables, and there is no

multicollinearity. Finally, tumor height, PNI, pelvic inlet, pelvic

outlet, sacrococcygeal distance, mesorectal fat area and angle 5 were

selected to be included in the machine learning model.
3.4 Performance of the machine learning
model and model interpretability

The data were randomly divided into a training group (80%, N =

500) and a test group (20%, N = 126) as shown in Supplementary

Table 2. There was no statistical difference in most predictive variables

between the training group and test group. In the training group, there

were 84 high-difficulty operations and 416 low-difficulty operations. In
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the test group, 26 patients underwent high-difficulty surgery and 100

patients underwent low-difficulty surgery. There is a serious imbalance.

After resampling the training set, SMOTE 416 cases of high difficulty

and 416 cases of low difficulty. The seven variables after feature

selection are used as predictor variables to build different prediction

models. The optimization model was ten-fold cross-validation on the

training data set, and the mesh search algorithm was used to find the

optimal parameters of the machine learning algorithm. The best

parameters of each model are shown in Supplementary Table 3. The

ability to validate previously established predictive models with test

queues. The results of AUROC, accuracy, sensitivity, specificity, F1

score and Brier score in the test set are shown in Table 3. From the

overall performance of each model, in terms of discrimination, as

shown in Figure 5, the AUROC of LGBMmodel is 0.848, the AUROC

of CatBoost model is 0.836, the AUROC of XGBoost model is 0.855,

the AUROC of RF model is 0.801, the AUROC of LR model is 0.828,
A B

FIGURE 3

Feature selection based on LASSO regression analysis(A) LASSO coefficient profiles of the 26 variables. (B) Selection of the optimal penalization
coefficient lambda in the LASSO model used ten-fold cross validation based on minimum criteria. The partial likelihood deviance is plotted against
log (lambda), where lambda is the tuning parameter. Red dots indicate average deviance values for each model with a given lambda, and partial
likelihood deviance values are shown, with error bars representing SE. Dotted vertical lines were drawn at the optimal values by using the minimum
criteria and the 1 SE of the minimum criteria (the 1-SE criteria).
FIGURE 4

Results of the correlation heatmap between all variables.
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and AUROC of MLP model is 0.835. The corresponding Brier score is

0.151, 0.117, 0.122, 0.121, 0.158 and 0.172 as shown in Figure 6.

Decision curve analysis (DCA) showed that XGBoost model showed

better clinical than other models before the threshold probabilities of

0.6(Figure 7). The XGBoost algorithm is selected to construct the

prediction model after a comprehensive comparison.

By calculating the contribution of each variable to the

prediction, the results of the XGBoost model are interpreted

using SHAP. The SHAP summary chart and importance matrix

diagram of the XGBoost model is shown in Figure 7. The SHAP

summary plot (Figure 8A) is based on estimates, with each patient

having a data point for each feature. Red indicates higher values

while blue represents lower values of the same. The horizontal axis

shows the SHAP value, and larger shapes indicate features that have

a higher predictive value for surgical difficulty in a given sample.

The importance bar chart (Figure 8B) displays the significance of

each variable in predicting surgery difficulty. To sum up, the

features in descending order of importance are: tumor height,

pelvic inlet, sacrococcygeal distance, angle 5, PNI, mesorectal fat

area and pelvic outlet.

Applying predictive model SHAP force plot can effectively clarify

and explain model predictions for individual patients. The SHAP

force plot for the XGBoost model is shown in Figures 8C, D. SHAP

values represent the relevant predictive features of individual patients

and the contribution of each feature to the prediction of the difficulty

of LaTME surgery. Red indicates high surgical difficulty

characteristics; blue indicates low surgical difficulty characteristics.

The length of the arrow helps to achieve the size of the predicted

effect. The longer the arrow, the greater the effect. Figure 8C shows a

rectal cancer patient whose tumor height is 5.0cm, PNI is 39.1, angle 5

is 101.0°, pelvic inlet is 13.39cm, pelvic outlet is 7.62cm,mesorectal fat

area is 14.44cm2 and sacrococcygeal distance is 13.40cm, with a

Shapley value of 5.00(>base value). Figure 8D shows a rectal cancer

patient whose tumor height is 5.0cm, PNI is 54.05, angle 5 is 97.3°,

pelvic inlet is 12.18cm, pelvic outlet is 8.73cm and sacrococcygeal

distance is 13.28cm, with a Shapley value of -2.94 (<base value). The

advantage of this force plot is that it gives a clear combination of

parameters that contribute greatly to the model.
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4 Discussion

In our study, an accurate model was developed to predict the

difficulty of rectal cancer surgery, and six machine learning

prediction models were developed and evaluated. The prediction

performance of XGBoost model is generally the best, AUC (0.855),

F1 score (0.583), accuracy (0.841), sensitivity (0.538), specificity

(0.92). However, LGBM has the highest specificity (0.93), LR has the

highest sensitivity (0.731), and MLP has the highest F1 score

(0.590). Seven core predictors of the difficulty of rectal surgery

were determined by LASSO method, ten-fold cross-validation and

multivariable logistic regression. The smaller the value of tumor

height, PNI, pelvic inlet and pelvic outlet is, the higher the difficulty

of operation is, while the higher the value of sacrococcygeal

distance, mesorectal fat area and angle 5 is, the more difficult the

operation is. Therefore, this study may be helpful to identify

patients at risk of difficulty in operation. SHAP found that tumor

height, pelvic inlet, sacrococcygeal distance, angle 5, PNI,

mesorectal fat area and pelvic outlet, were ranked in order of

importance related to surgical difficulty of LaTME.

It is well known that laparoscopic surgery for rectal cancer is

considered technically difficult. Recent studies have shown that a

variety of factors related to the difficulty of LaTME surgery, including

doctors’ surgical skills, previous abdominal surgery history,

preoperative radiotherapy, tumor height, body mass index (BMI),

pelvic size, preoperative nutritional status and other factors can affect

the difficulty of laparoscopic surgery (18, 23, 33–36). Actually, the

definition of the difficulty of rectal surgery is actually vague. The

definition of surgical difficulty should be a representative parameter,

which can represent the factors related to the surgical results. In our

study, we adopted the surgical difficulty classification criteria

proposed by Escal (18) et al.: duration of surgery, estimated blood

loss, conversion to open procedure, morbidity (grade II and III), use

of transanal dissection and postoperative hospital stay, and slightly

modified them. It makes sense to include both surgical and

postoperative parameters in the criteria, as impaired surgical

quality and variable postoperative course may increase local

recurrence and impaired survival (37).
TABLE 2 Based on the coefficients and Lambda.1se values of the LASSO regression, multivariable logistics regression to validate the validity of
each variable.

Variables

LASSO regression Multivariable logistics regression

Coefficients Lambda.1se OR (95%CI) P

Tumor height -0.20860369 0.02837605 0.656 (0.588-0.733) <0.001

PNI -0.03522676 0.916 (0.874-0.960) <0.001

Pelvic inlet -0.48595986 0.351 (0.264-0.467) <0.001

Pelvic outlet -0.09046064 0.730 (0.547-0.975) 0.033

Sacrococcygeal distance 0.2097511 1.686 (1.346-2.112) <0.001

Mesorectal fat area 0.01126133 1.041 (1.003-1.081) 0.035

Angle 5 0.02102902 1.043 (1.021-1.064) <0.001
Coefficients, coefficients of each variable in LASSO regression; Lambda.1se, among all lambda values, the lambda value of the simplest model within a variance of the mean value of the minimum
target parameter is obtained; OR, odds ratio; CI; confidence interval; PNI, prognostic nutrition index.
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In our study, tumor height was the most important factor for

surgical difficulty in LaTME, and this result is consistent with

previous studies (38). Tumor height is one of the main factors in

selecting surgical methods. The lower the tumor location, the more

difficult transabdominal surgery is, and the more likely the surgeon

is to choose laparoscopically assisted transsphincter plane ultra-low

anterior rectal resection (35). In our study, univariable logistic

regression showed that tumor height was associated with use of

transanal dissection (P=0.009). The closer the tumor is to the anal

verge, the greater the extent of dissection and exposure, and the

more difficult the operation.

Our research shows that pelvic anatomy is the independent

influencing factor affecting the difficulty of laparoscopic rectal

cancer surgery. Pelvic measurement was originally used to

evaluate the possibility of successful vaginal delivery (39). With

the continuous development of laparoscopic technology, many

colorectal experts are more and more interested in pelvic

measurement in recent years. Pelvic measurement has been used

to evaluate the difficulty of rectal cancer surgery, but the

relationship between quantitative pelvic measurement and

surgical difficulty has not been determined (18, 40–42), and even

some studies have found that there is no relationship between

pelvimetry and surgical difficulty (5, 43, 44). However, there are also
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some differences between our research and theirs. For example,

Ogiso (5) et al. studied patients undergoing laparoscopic resection

of rectal cancer, and the results showed that there was no

correlation between pelvic parameter and operation time, but

their study was based on only 50 cases. 626 patients who

underwent laparoscopic rectal surgery were included in our study,

and we used 20 pelvic measurement parameters based on MRI,

including 8 longitudes, 11 angles, and 1 region. Multivariate logistic

regression showed that pelvic inlet, pelvic outlet and sacrococcygeal

distance were independent influencing factors for the difficulty of

LaTME. This is partially consistent with previous findings.

Multivariate analysis by Zhou (45) et al. showed that BMI, tumor

height, lymph node metastasis, pelvic inlet, pelvic outlet, superior

and inferior diameter of pubis, depth of sacrococcyx curvature,

sacrococcyx-pubic angle and distance from pubic bone to coccyx

were the main factors affecting operation time. By studying patients

with rectal cancer receiving TaTME, Ferko (46) et al. found that the

sharper the Angle 5, the more difficult the operation, and the worse

the quality of TME. This is contrary to our results and may be due

to different definitions of surgical difficulty and surgical methods.

Laparoscopic surgery differs from other surgical techniques in its

ability to access the pelvis, providing a multi-angle surgical field of

view that is not achievable with open surgery. However,

laparoscopic rectal cancer surgery presents greater challenges due

to the deep anatomical position of the rectum within a narrow

funnel-shaped pelvis, intricate surrounding tissue, and limited

surgical space. Moreover, this procedure necessitates the use of

rigid long-handled endoscopic instruments for complex operations

such as cutting, separation, hemostasis, and anastomosis. These

instruments differ significantly from traditional manual techniques

and lack tactile feedback. Consequently, our study found that the

narrow pelvic entrance and outlet, increased pelvic depth, and

larger angle5 pose difficulties in terms of visual field visibility,

accessibility to the operating area for LaTME in rectal cancer

cases (47, 48), thereby increasing surgical complexity.

PNI is a protective factor to predict the difficulty of LaTME. The

nutritional status of patients before operation is usually considered

to be closely related to postoperative complications, such as

postoperative anastomotic fistula, intestinal obstruction, ascites

and so on (48, 49). In our study, PNI is related to conversion to

open procedure, and low preoperative PNI is independently related

to high difficulty of rectal surgery. However, Sun (23) et al. included

294 patients with locally advanced rectal cancer who underwent

LaTME after preoperative radiotherapy and chemotherapy. It was
FIGURE 5

Evaluation of the six machine learning models based on the AUC of
the ROC curve in validation set. AUC, area under the curve; ROC,
receiver operating characteristic.
TABLE 3 Performance of predictive models generated by five machine learning models.

Model AUROC Accuracy Sensitivity Specificity F1 score

LGBM 0.848 0.841 0.500 0.93 0.565

XGBoost 0.855 0.841 0.538 0.92 0.583

CatBoost 0.84 0.817 0.423 0.92 0.489

LR 0.828 0.770 0.731 0.78 0.567

RF 0.820 0.817 0.423 0.92 0.489

MLP 0.835 0.802 0.692 0.83 0.590
fr
ontiersin.org

https://doi.org/10.3389/fonc.2024.1337219
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2024.1337219
found that preoperative AGR can predict the difficulty of rectal

surgery after preoperative radiotherapy and chemotherapy. The

difference is that the patients with preoperative radiotherapy and

chemotherapy were excluded from our study. The PNI=49.5 ± 5.22

and AGR=1.52 (1.37~1.69) in our study were higher than those in

their study PNI=46.0 ± 6.4 and AGR=1.3 ± 0.2. Therefore,

preoperative radiotherapy and chemotherapy will damage the

nutritional status of patients with rectal cancer. Often

malnutrition and preoperative radiotherapy and chemotherapy

are easy to cause tissue edema, fibrosis, extensive fog and exudate

(47), which hinder tissue anatomy and increase the difficulty of

operation. Unfortunately, it is not clear whether nutritional status

will lead to different tissue responses to radiotherapy and
Frontiers in Oncology 11
chemotherapy. In addition, the mechanism of nutritional status

predict ing the difficulty of operat ion remains to be

further discussed.

The current findings indicate that mesorectal fat area is

considered an independent risk factor for surgical difficulty. In

general, obesity can make rectal surgery more difficult (50, 51). The

main reasons for these difficulties are dissection difficulties caused

by the reduced relative space in the abdomen due to obesity,

exposure problems (bowel layering, mesorectal volume) and the

thickness of adipose tissue. In addition, the bulky mesentery is

prone to tearing and bleeding. Lacerations resulting from

mesenteric traction may result in unacceptable bleeding and thus

clutter the surgical field. Unclear anatomy, intraoperative bleeding,
FIGURE 7

DCA analysis was performed to evaluate the clinical usefulness. The y-axis indicated the net benefit; the x-axis indicated the threshold probability.
The solid yellow line shows the net benefit rate of the XGBoost forecast model. Within a certain threshold range, the XGBoost model has a higher
net benefit. DCA, Decision curve analysis.
FIGURE 6

Calibration curves of five machine learning models in the validation set.
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intra-abdominal adhesions and intestinal perforation are common

reasons for conversion to open surgery in obese patients (52). In

addition, a recent meta-analysis (53) suggested that the incidence of

anastomotic leakage, pulmonary events, and postoperative

intestinal obstruction was significantly higher in the obese group,

but this did not directly affect pathological safety. BMI represents

the most common index describing overall obesity, and multiple

studies have confirmed the negative impact of BMI on rectal surgery

(5, 45, 54, 55). However, in our study, BMI was closely related to

conversion to open procedure (p=0.037) and had no significant

impact on surgical difficulty. This is because BMI may not

accurately reflect changes in visceral fat distribution or overall

obesity in the body. According to research, BMI is less sensitive,

and for any given BMI value, there are large age, race, and gender

differences in body fat percentage. For example, at the same BMI,

Asians have higher body fat percentages than Caucasians (56).

Therefore, BMI does not reflect the impact of obesity on

laparoscopic rectal surgery, and mesorectal fat area may be a

better indicator of the difficulty of laparoscopic rectal surgery.

Our research shows that the method of machine learning is

feasible and has high accuracy. At present, because most prediction

tools are developed in a linear and cumulative manner based on the

interaction of variables (57), their clinical applicability is limited

and their predictive ability is poor. However, the surgical

complexity of LaTME is multifactorial, and the relationship

between surgical difficulty and influencing factors is not entirely

linear. In recent years, machine learning algorithms have been

extensively utilized in the field of medicine and have emerged as

a powerful tool for addressing numerous clinical predictions.

Machine learning algorithms can effectively overcome the
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limitations of traditional methods and serve as a more accurate

and non-linear approach to predicting patient prognosis (58, 59). In

fact, previous studies have developed models that use machine

learning techniques to predict the difficulty of rectal cancer surgery.

For example, Lv (60)et al. established a blood loss and resection

duration (BLADE) scoring system, and used RF algorithm to

establish a preoperative prediction model of BLADE score. Our

research focuses on early identification of predictors that affect the

difficulty of LaTME surgery. In addition, many machine learning

models are black-box models, lack of variable relationship analysis

in clinical application, and this problem also exists in our model.

Therefore, we introduce SHAP to explain the output prediction

model, which provides a convincing explanation for the

relationship between nonlinear variables (61). As an interpretable

omnipotent method of the model, SHAP can be used for global and

local interpretation. SHAP analysis can guide clinicians to pay

attention to target variables in patients with high surgical

difficulty, which is more beneficial to the evaluation of patients

before operation.

The results of the current study have several clinical

implications. First, for patients with poor preoperative nutritional

status, the patient’s albumin level should be improved first before

LaTME is performed. Second, for patients with rectal cancer in a

difficult pelvis, it can help improve patient-physician

communication by informing patients of possible perioperative

risks and complications and selecting an appropriate surgical

approach (e.g., open, laparoscopic, robotic, or transanal

Operation). Finally, early career surgeons can select appropriate

cases during the learning process, and patients with difficult pelvises

can be referred to more specialized doctors and experienced
B

C

D

A

FIGURE 8

Feature importance SHAP summary chart and bar chart. (A) The left dot plot represents the direction of contribution of each value of each variable,
with red representing larger values and blue representing lower values of each variable. (B) The bars on the right represent the importance of the
variables and their overall contribution to the model predictions. (C, D) SHAP scores explain the predicted risk of osteoporosis in two subjects.
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surgeons to improve surgical quality and minimize the risk of

complications and adverse consequences due to lack of

experience. Other surgeons can collect clinicopathological and

MRI pelvimetry from their patients and input them into our

XGBoost machine learning models to get accurate clinical

predictions. The SHAP force plot can be output to show the

influence of each variable on the difficulty of LaTME surgery.

This study has some limitations. On the one hand, this is a

single-center retrospective study, there is inevitable selection bias,

difficult surgical risk factors and predictive models can be widely

used in patients with rectal cancer, need to be further studied and

verified. On the other hand, this study did not explore the survival

and prognosis of the two groups of patients, and the data are

limited. Therefore, it is necessary to conduct prospective

randomized studies with larger samples and longer follow-up

periods to simulate the interaction between variables. In addition,

we only use 2D MRI pelvic measurements, excluding 3D features.

3D pelvic measurements should be further evaluated to better

explore the relat ionship between pelvic features and

surgical difficulty.
5 Conclusion

In our study, we developed a model based on the XGBoost

machine learning algorithm to predict the surgical difficulty of

LaTME. The model has good prediction accuracy and clinical

practicability, which is helpful for surgeons to identify patients

with high surgical difficulty as early as possible. The model identifies

tumor height, PNI, pelvic inlet, pelvic outlet, sacrococcygeal

distance, mesorectal fat area and angle 5 as independent

influencing factors.
Author contributions

MY: Writing – original draft, Data curation, Software,

Validation, Methodology. ZY: Conceptualization, Investigation,

Writing – original draft, Data curation, Validation. RL: Data

curation, Investigation, Writing – original draft. BS: Data
Frontiers in Oncology 13
curation, Methodology, Writing – original draft. DW:

Conceptualization, Supervision, Validation, Writing – review &

editing, Visualization. XD: Conceptualization, Resources,

Supervision, Validation, Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Acknowledgments

We are grateful to the authors of the primary study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2024.1337219/

full#supplementary-material
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA: Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/
caac.21660

2. Heald RJ, Husband EM, Ryall RD. The mesorectum in rectal cancer surgery–the
clue to pelvic recurrence? Br J Surg (1982) 69(10):613–6. doi: 10.1002/bjs.1800691019

3. Fleshman J, Branda ME, Sargent DJ, Boller AM, George VV, Abbas MA, et al.
Disease-free survival and local recurrence for laparoscopic resection compared with
open resection of stage ii to iii rectal cancer: follow-up results of the acosog Z6051
randomized controlled trial. Ann Surg (2019) 269(4):589–95. doi: 10.1097/
sla.0000000000003002

4. Stevenson ARL, Solomon MJ, Brown CSB, Lumley JW, Hewett P, Clouston AD,
et al. Disease-free survival and local recurrence after laparoscopic-assisted resection or
open resection for rectal cancer: the australasian laparoscopic cancer of the rectum
randomized clinical trial. Ann Surg (2019) 269(4):596–602. doi: 10.1097/
sla.0000000000003021
5. Ogiso S, Yamaguchi T, Hata H, Fukuda M, Ikai I, Yamato T, et al. Evaluation of

factors affecting the difficulty of laparoscopic anterior resection for rectal cancer:
"Narrow pelvis" Is not a contraindication. Surg endoscopy (2011) 25(6):1907–12.
doi: 10.1007/s00464-010-1485-0

6. Dayal S, Battersby N, Cecil T. Evolution of surgical treatment for rectal cancer: A
review. J gastrointestinal Surg (2017) 21(7):1166–73. doi: 10.1007/s11605-017-3427-9

7. Deijen CL, Velthuis S, Tsai A, Mavroveli S, de Lange-de Klerk ES, Sietses C, et al.
Color iii: A multicentre randomised clinical trial comparing transanal tme versus
laparoscopic tme for mid and low rectal cancer. Surg endoscopy (2016) 30(8):3210–5.
doi: 10.1007/s00464-015-4615-x

8. Carmichael H, Sylla P. Evolution of transanal total mesorectal excision. Clinics
colon rectal Surg (2020) 33(3):113–27. doi: 10.1055/s-0039-3402773
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2024.1337219/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2024.1337219/full#supplementary-material
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1002/bjs.1800691019
https://doi.org/10.1097/sla.0000000000003002
https://doi.org/10.1097/sla.0000000000003002
https://doi.org/10.1097/sla.0000000000003021
https://doi.org/10.1097/sla.0000000000003021
https://doi.org/10.1007/s00464-010-1485-0
https://doi.org/10.1007/s11605-017-3427-9
https://doi.org/10.1007/s00464-015-4615-x
https://doi.org/10.1055/s-0039-3402773
https://doi.org/10.3389/fonc.2024.1337219
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2024.1337219
9. Gollub MJ, Lall C, Lalwani N, Rosenthal MH. Current controversy, confusion,
and imprecision in the use and interpretation of rectal mri. Abdominal Radiol (New
York) (2019) 44(11):3549–58. doi: 10.1007/s00261-019-01996-3

10. Horvat N, Carlos Tavares Rocha C, Clemente Oliveira B, Petkovska I, Gollub MJ.
Mri of rectal cancer: tumor staging, imaging techniques, and management.
Radiographics Rev Publ Radiological Soc North America Inc (2019) 39(2):367–87.
doi: 10.1148/rg.2019180114

11. Kaur H, Choi H, You YN, Rauch GM, Jensen CT, Hou P, et al. Mr imaging for
preoperative evaluation of primary rectal cancer: practical considerations.
Radiographics Rev Publ Radiological Soc North America Inc (2012) 32(2):389–409.
doi: 10.1148/rg.322115122

12. Hong JS, Brown KGM, Waller J, Young CJ, Solomon MJ. The role of mri
pelvimetry in predicting technical difficulty and outcomes of open and minimally
invasive total mesorectal excision: A systematic review. Techniques coloproctology
(2020) 24(10):991–1000. doi: 10.1007/s10151-020-02274-x

13. Schena FP, Anelli VW, Trotta J, Di Noia T, Manno C, Tripepi G, et al.
Development and testing of an artificial intelligence tool for predicting end-stage
kidney disease in patients with immunoglobulin a nephropathy. Kidney Int (2021) 99
(5):1179–88. doi: 10.1016/j.kint.2020.07.046

14. Yamashita R, Long J, Longacre T, Peng L, Berry G, Martin B, et al. Deep learning
model for the prediction of microsatellite instability in colorectal cancer: A diagnostic
study. Lancet Oncol (2021) 22(1):132–41. doi: 10.1016/s1470-2045(20)30535-0

15. Balachandran VP, Gonen M, Smith JJ, DeMatteo RP. Nomograms in oncology:
more than meets the eye. Lancet Oncol (2015) 16(4):e173–80. doi: 10.1016/s1470-2045
(14)71116-7

16. Yuan Y, Tong D, Liu M, Lu H, Shen F, Shi X. An mri-based pelvimetry
nomogram for predicting surgical difficulty of transabdominal resection in patients
with middle and low rectal cancer. Front Oncol (2022) 12:882300. doi: 10.3389/
fonc.2022.882300

17. Teng W, Liu J, Chen M, Zang W, Wu A. Bmi and pelvimetry help to predict the
duration of laparoscopic resection for low and middle rectal cancer. BMC Surg (2022)
22(1):402. doi: 10.1186/s12893-022-01840-4

18. Escal L, Nougaret S, Guiu B, Bertrand MM, de Forges H, Tetreau R, et al. Mri-
based score to predict surgical difficulty in patients with rectal cancer. Br J Surg (2018)
105(1):140–6. doi: 10.1002/bjs.10642

19. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: A
new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann
Surg (2004) 240(2):205–13. doi: 10.1097/01.sla.0000133083.54934.ae

20. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al.
3d slicer as an image computing platform for the quantitative imaging network.
Magnetic resonance Imaging (2012) 30(9):1323–41. doi: 10.1016/j.mri.2012.05.001

21. Zhang Q, Wei J, Chen H. Advances in pelvic imaging parameters predicting
surgical difficulty in rectal cancer. World J Surg Oncol (2023) 21(1):64. doi: 10.1186/
s12957-023-02933-x

22. Yang Z, Chunhua G, Huayan Y, Jianguo Y, Yong C. Anatomical basis for the
choice of laparoscopic surgery for low rectal cancer through the pelvic imaging data-a
cohort study. World J Surg Oncol (2018) 16(1):199. doi: 10.1186/s12957-018-1498-z

23. Sun Y, Chen J, Ye C, Lin H, Lu X, Huang Y, et al. Pelvimetric and nutritional
factors predicting surgical difficulty in laparoscopic resection for rectal cancer following
preoperative chemoradiotherapy. World J Surg (2021) 45(7):2261–9. doi: 10.1007/
s00268-021-06080-w

24. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK,
et al. The eighth edition ajcc cancer staging manual: continuing to build a bridge from a
population-based to a more "Personalized" Approach to cancer staging. CA: Cancer J
Clin (2017) 67(2):93–9. doi: 10.3322/caac.21388

25. Geetha R, Sivasubramanian S, Kaliappan M, Vimal S, Annamalai S. Cervical
cancer identification with synthetic minority oversampling technique and pca analysis
using random forest classifier. J Med Syst (2019) 43(9):286. doi: 10.1007/s10916-019-
1402-6

26. Chen PN, Lee CC, Liang CM, Pao SI, Huang KH, Lin KF. General deep learning
model for detecting diabetic retinopathy. BMC Bioinf (2021) 22(Suppl 5):84.
doi: 10.1186/s12859-021-04005-x

27. Wang K, Tian J, Zheng C, Yang H, Ren J, Li C, et al. Improving risk identification
of adverse outcomes in chronic heart failure using smote+Enn and machine learning.
Risk Manage healthcare Policy (2021) 14:2453–63. doi: 10.2147/rmhp.S310295

28. Roth AE. Lloyd shapley (1923-2016). Nature (2016) 532(7598):178. doi: 10.1038/
532178a

29. Li W, Song Y, Chen K, Ying J, Zheng Z, Qiao S, et al. Predictive model and risk
analysis for diabetic retinopathy using machine learning: A retrospective cohort study
in China. BMJ Open (2021) 11(11):e050989. doi: 10.1136/bmjopen-2021-050989

30. Ogami C, Tsuji Y, Seki H, Kawano H, To H, Matsumoto Y, et al. An artificial
neural network-pharmacokinetic model and its interpretation using shapley additive
explanations. CPT: pharmacometrics Syst Pharmacol (2021) 10(7):760–8. doi: 10.1002/
psp4.12643
31. Zheng P, Yu Z, Li L, Liu S, Lou Y, Hao X, et al. Predicting blood concentration of

tacrolimus in patients with autoimmune diseases using machine learning techniques
based on real-world evidence. Front Pharmacol (2021) 12:727245. doi: 10.3389/
fphar.2021.727245
Frontiers in Oncology 14
32. Sauerbrei W, Royston P, Binder H. Selection of important variables and
determination of functional form for continuous predictors in multivariable model
building. Stat Med (2007) 26(30):5512–28. doi: 10.1002/sim.3148

33. Akiyoshi T, Kuroyanagi H, Oya M, Konishi T, Fukuda M, Fujimoto Y, et al.
Factors affecting the difficulty of laparoscopic total mesorectal excision with double
stapling technique anastomosis for low rectal cancer. Surgery (2009) 146(3):483–9.
doi: 10.1016/j.surg.2009.03.030
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