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feature fusion framework
for the diagnosis of bladder
cancer grading
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and Jingang Hao2*

1Faculty of Information Engineering and Automation, Kunming University of Science and Technology,
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Kunming, China, 3School of Physics and Electronic Engineering, Yuxi Normal University, Yuxi, China
Background: Multi-parametric magnetic resonance imaging (MP-MRI) may

provide comprehensive information for graded diagnosis of bladder cancer

(BCa). Nevertheless, existing methods ignore the complex correlation between

these MRI sequences, failing to provide adequate information. Therefore, the

main objective of this study is to enhance feature fusion and extract

comprehensive features from MP-MRI using deep learning methods to achieve

an accurate diagnosis of BCa grading.

Methods: In this study, a self-attention-based MP-MRI feature fusion framework

(SMMF) is proposed to enhance the performance of the model by extracting and

fusing features of both T2-weighted imaging (T2WI) and dynamic contrast-

enhanced imaging (DCE) sequences. A new multiscale attention (MA) model is

designed to embed into the neural network (CNN) end to further extract rich

features from T2WI and DCE. Finally, a self-attention feature fusion strategy

(SAFF) was used to effectively capture and fuse the common and complementary

features of patients’ MP-MRIs.

Results: In a clinically collected sample of 138 BCa patients, the SMMF network

demonstrated superior performance compared to the existing deep learning-

based bladder cancer grading model, with accuracy, F1 value, and AUC values of

0.9488, 0.9426, and 0.9459, respectively.

Conclusion: Our proposed SMMF framework combined with MP-MRI

information can accurately predict the pathological grading of BCa and can

better assist physicians in diagnosing BCa.
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1 Introduction

Bladder cancer (BCa) is one of the highly prevalent malignant

tumors of the urinary system, and its incidence ranks ninth among

malignant tumors worldwide (1), among which urothelial cell

carcinoma (UCC) is the most common (2). UCC can be divided

into high-grade urothelial carcinoma (HGUC) and low-grade

urothelial carcinoma (LGUC) (3). HGUC and LGUC have different

disease recurrence factors and induce different treatment modalities.

For HGUC recurrence, influential factors include lymphovascular

infiltration, tumor size, focal prostatic urethral involvement, and

variant histology (4). Whereas, Mastroianni, Riccardo et al.

demonstrated that gender, multiple tumors, tumor diameter greater

than or equal to 3 cm, and European Organization for Research and

Treatment of Cancer (EORTC) risk group were significant predictors

of recurrence in patients with LGUC (5). The choice of treatment

depends largely on the infiltration of the primary tumor, and

pathological grading is an important factor in determining the

aggressiveness of BCa; most patients with muscle invasive bladder

cancer (MIBC) are HGUC, and non-muscle invasive bladder cancer

(NMIBC) are usually LGUC (6). The main treatment modality for

NMIBC is transurethral resection of bladder tumor (TURBT),

combined with bladder perfusion chemotherapy or bladder

perfusion immunotherapy depending on the postoperative situation

(7). However, the standard treatment for patients with MIBC is

radical cystectomy (RC) with pelvic lymph node dissection,

supplemented by a variety of therapies including chemotherapy,

radiotherapy, immunotherapy, and targeted therapies, depending

on the patient’s condition (8). Therefore, accurate assessment of

the pathological grading of bladder tumor tissue is important for

developing surgical strategies, predicting prognosis, and establishing

reasonable follow-up strategies.

Multi-parametric magnetic resonance imaging (MP-MRI) has

become a favorable medical diagnostic tool for the study of BCa

lesions (9). MP-MRI contains multiple sequences such as T2-

weighted imaging (T2WI), diffusion-weighted imaging (DWI),

apparent diffusion coefficient, (ADC), and dynamic contrast

enhancement (DCE). Each sequence captures specific features

related to BCa. To achieve a more comprehensive set of features,

researchers have explored the potential correlation between MP-

MRI as a means of enhancing the diagnosis of BCa. Currently, MP-

MRI has been shown to improve the assessment of BCa for staging

(10–12), adjuvant chemotherapy (13), and grading (9, 14, 15). For

instance, in a study by Zhang et al. (9), texture features were

extracted from DWI and ADC and then combined with a

Support Vector Machine (SVM) classifier to assess BCa grading.

Similarly, Wang et al. (14) extracted features from T2WI and DWI

to create distinct subsets of features, ultimately constructing a joint

model that exhibited high accuracy in BCa grading. Xu et al. (15)

utilized T2WI, DWI, and ADC to extract features and constructed

an optimal discriminant model for determining the degree of

muscle infiltration of BCa using the support vector machine with

recursive feature elimination (SVM-RFE) algorithm and the

synthetic minority oversampling technique (SMOTE). Although

the methods described above can be effective in the diagnosis of
Frontiers in Oncology 02
BCa, they require manual feature extraction and don’t effectively

utilize the information contained in MP-MRI.

Convolutional neural networks (CNNs), the conventional deep

learning framework, are progressively supplanting earlier machine

learning methods as the predominant tools for medical image

classification (16). For medical image classification, networks such

as deep residual network(ResNet) (17), extreme inception

(Xception) (18), and dense convolutional network (DenseNet)

(19), which perform well on natural image classification tasks, are

commonly used. Nonetheless, medical images encompass multiple

organs and intricate image textures, rendering it challenging for

CNN networks to swiftly extract relevant information for disease

diagnosis. To make CNNs focus on important region information, a

series of attention mechanisms have been proposed, such as

squeeze-and-excitation networks (SENet) (20), efficient channel

attention for deep convolutional neural networks (ECANet) (21),

Convolutional Attention Module(CBAM) (22), and so on. Distinct

from the above approaches, the self-attention mechanism reduces

the dependence on external information and is better at capturing

inter-feature correlations. Vaswani et al. (23) first proposed self-

attention and applied it to the field of natural language processing

(NLP). Borrowing ideas from NLP, self-attention-based vision

transformer (VIT) (24) and Swim_transformer (25) have been

well applied to image classification tasks. Wang et al. (26)

introduced a multi-stage fundus image classification model, which

combines CNN and an attention mechanism to enhance the

accuracy of fundus disease recognition.

Many deep learning algorithms have been applied to the field of

BCa classification. Jansen et al. (27) first used a U-Net segmentation

network to detect uroepithelial cells and then used pre-trained visual

geometry group (VGG16) to build a classification network to grade

UCC. This study demonstrates that the deep learning algorithm can

be used for the automated detection and grading of UCC. Since then,

more and more scholars have applied deep learning methods to the

diagnosis of BCa tumors. To overcome the overfitting problem

associated with training on small medical datasets, researchers have

used the ImageNet pre-training architecture to distinguish the degree

of BCa infiltration and the grading of BCa (28, 29). Garcia et al. (30)

introduced a deep clustering framework that employs an

unsupervised learning strategy for the hierarchical diagnosis of

histopathological images related to BCa, effectively reducing the

need for costly data tagging. Zhang et al. (31) pioneered the use of

3D CNN networks for predicting BCa muscle invasiveness. They

successfully extracted features using dense blocks and pyramidal

structures, capturing both local and global features. In addition, Liu

et al. (32) developed an end-to-end ResNet dual-objective prediction

model for BCa staging and grading. They applied superresolution and

nonlocal attention models to improve the quality of MRI images and

enhance the model’s ability to perceive features at greater distances.

Nevertheless, the studies on bladder cancer mentioned above are all

rooted in single MRI sequences or single-modality data, thus

overlooking the potential specific information offered by MP-MRI.

The fusion of complementary information frommultimodal data

can lead to more robust predictions (33). Based on the timing of

fusion, it can be categorized into three types: input-level fusion,
frontiersin.org
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feature-level fusion, and decision-level fusion (34). Figure 1A

demonstrates the input-level fusion strategy, which integrates

various modal images into a single dataset, allowing the neural

network to utilize all information from each image and preserve

the original features to the fullest extent. The potential of input-level

fusion has been shown in several studies to obtain comprehensive

features (35, 36). As shown in Figure 1B, feature-level fusion is a

simpler feature fusion method, which usually uses the “Concate” or

“Add” method to stitch together the feature maps extracted from

different neural network branches. These studies (37, 38) all fused

separately extracted dermoscopic and clinical image features in the

final stage of the network. Chen et al. (39) classified a mixture of

features extracted from different modal images and confirmed that

combining multimodal features led to better results. As shown in

Figure 1C, decision-level fusion completes classification

independently on different pattern data and fuses the recognition

results of multiple classifiers to make the global optimal decision.

Ilhan et al. (40) used deep features extracted by a single CNN

connected into a feature vector, which was then fed into the

classifier, and finally, a majority voting pattern was used to

combine the decisions of the classifier. Shachor et al. (41) set up a

gate network to dynamically combine each decision and

make predictions.

Every feature fusion method supplies distinct modalities of specific

information for disease diagnosis, yet each one exhibits varying degrees

of limitations. Input-level fusion requires a complex data preprocessing

process, which increases the difficulty of implementation and

debugging. Feature-level fusion usually leads to an increase of feature

dimensionality and an increase of computational resource
Frontiers in Oncology 03
requirements. In decision-level fusion, the outputs of each mode are

independent, lacking inter-modal correlations.

To address the aforementioned issue, this study introduces a self-

attention-based MP-MRI feature fusion framework (SMMF) for the

grading of BCa. In this framework: first, a plug-and-play multiscale

attention (MA) model is designed in this study, which is embedded at

the end of the neural network in the feature extraction phase to

further extract feature information of the expanded T2WI and DCE

images; second, a self-attention-based improved feature fusion

(SAFF) strategy is proposed, unlike the traditional feature fusion

strategy, which not only fuses common and specific features of MP-

MRI but also enhances the interaction between features, as shown in

Figure 1D; Finally, the accurate grading of BCa images is output after

two fully connected layers. The main contributions of this study are

as follows:
(1) A novel feature fusion framework called SMMF is proposed

to fill the gap of MP-MRI in BCa deep learning. The

method can fully extract and fuse MP-MRI features,

which improves the accuracy of BCa grading.

(2) A plug-and-play MA module is designed, which

incorporates InceptionV1 block, CBAM, and hopping

connections.MA deepens and widens the network to

further extract rich multi-scale features, which enhances

the model’s perceptual capability.

(3) A new feature fusion strategy SAFF is constructed, which can

effectively fuse the common features and complementary

features of MP-MRI and enhance the interactivity of

feature fusion.
A B

D

C

FIGURE 1

Multimodal feature fusion strategy: (A) Input-level fusion; (B) feature-level fusion; (C) decision-level fusion; (D)SAFF.
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2 Methods

To effectively fuse MP-MRI features, this study proposes a self-

attention-based MP-MRI feature fusion framework (SMMF), as

shown in Figure 2. The architecture includes four parts: data

preprocessing, feature extraction network, feature fusion, and

classifier. First, to make the input data more adaptable to the

model, center cropping and data expansion are used to enhance

the image quality. Then, two independent feature extractors are used

to extract image features from different sequences respectively, based

on which a multi-scale attention (MA) module is designed to further

extract high-level semantic features. Subsequently, to better capture

and fuse the common and complementary features of MP-MRI, the

self-attention feature fusion (SAFF) strategy is designed. Finally, a

two-layer classifier is used to output the classification results of LGUC

and HGUC. The details of the methodology are given below.
2.1 Self-attention-based MP-MRI feature
fusion framework

2.1.1 Data preprocessing
In order to make the input data more adaptable to the model,

preprocessing operations are performed on the data. Center cropping

and data expansion (random vertical flip, random horizontal flip,

luminance adjustment, and miscut transformation) are used to

enhance the image quality, the input image is X1,X2 ∈ RB�H�W�C ,

where X1 denotes T2WI, X2 denotes DCE, B is batchsize, H is the
Frontiers in Oncology 04
height of the image,W is the width of the image, and C is the number

of channels, and the size of the input image is united as [B=8,H=224,

W=224, C= 3].

2.1.2 Feature extraction
In the feature extraction part, two independent branching

networks are first used to extract feature information for T2WI

and DCE respectively, and a feature map of size [8,7,7,1024] is

obtained. Then, to further enhance the feature extraction capability

of the network, an MAmodule is designed at the end of the network

model, which is described in detail in Section 2.2 of this study.

2.1.3 Feature fusion
Since the self-attention module can only accept two-dimensional

feature vectors, the extracted T2WI andDCE features must undergo a

reshape operation before they can be spliced and input into the self-

attention module. The T2WI and DCE features are compressed to

[8,1,512], respectively, and are spliced with the class coding vectors

(cls_token) to obtain the multimodal feature vectors with the size of

[8,3,512]. The three-parameter matrix of self-attention, and the

obtained attention matrix are utilized to adjust the correlation

coefficients among modal features to better capture and fuse the

common and specific features of MP-MRI, and this module is

described in detail in Section 2.3 of this study.

2.1.4 Classifier
To mitigate gradient descent, two fully connected layers are

used to output classification results for LGUC and HGUC.
FIGURE 2

Self-attention-based MP-MRI feature fusion (SMMF) framework. CNN: extraction of underlying BCa features; multi-scale attention model (MA):
extraction of rich multi-scale features; Self-attention feature fusion model (SAFF): fusion of MP-MRI features.
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2.2 Multiscale attention module

Increasing the number of layers of CNN can improve the model

performance, but if the number of layers is too deep, it will lead to

parameter explosion and overfitting, which will reduce the final

performance. To further extract rich high-level features, a multi-

scale attention MA block incorporating InceptionV1 block, CBAM

attention mechanism, and jump connection techniques is proposed.

Its structure is shown in Figure 3A.

As can be seen in Figure 3A, the MA block is composed of two

1� 1 convolutions, a jump connection, and two IC blocks. The 1 � 1

convolution is used to reduce the number of output channels of the

CNN from 1024 to 512 to reduce the computational effort of the IC

block. The jump connection enables image feature reuse for combining

features in different paths, connecting low-level features with high-level

features, and helping the network to obtain comprehensive features. In

addition, it can effectively mitigate gradient disappearance, enhance

feature transfer and reuse, and reduce the number of parameters to

avoid possible information blocking in the residual structure. We use a

parallel structure in the MA block to combine two IC models, which

are newly constructed functional models used to extract multi-scale

information from BCa images in this study, by combining the

InceptionV1 block and the CBAM attention mechanism. As shown

in Figure 3B, the InceptionV1 block incorporates three different sizes of

convolutional kernels, namely 1� 1, 3� 3, and 5� 5, within the

same layer of the network. This enables the block to capture features of

varying sizes and enhances the model’s ability to perceive information

of different scales. On this basis, the introduction of CBAM can change

the way resources are allocated so that features with greater
Frontiers in Oncology 05
contribution can be extracted. As shown in Figure 3C, through the

combination of the channel attention (CAM) model and the spatial

attention (SAM)model, CBAM can consider both channel information

and spatial information of the featuremap to extract more accurate and

distinguishable features.
2.3 Self-attention feature fusion strategy

The core element of the self-attention structure is the self-

attention mechanism for establishing relationships between data

nodes (42). Regardless of the heterogeneity between nodes, the

relationship between them can be established by mapping them

into feature vectors. Therefore, MP-MRI can utilize the self-

attention structure to compute the correlation between the features

of different MRI sequences, responding to the common and specific

features among different sequences. As shown in Figure 1D, we

propose a self-attentive feature fusion strategy (SAFF) to enhance the

interaction between features by fusing commonality and specificity

features among MP-MRIs. SAFF serves as a bridge connecting the

T2WI and DCE features to achieve mutual compensation of the

information and improve classification accuracy.

First, the combination of CNN and self-attention is achieved

through a Reshape operation. A feature map of size [8,7,7,512] is

converted to a feature vector containing all information [8,512] by

global average pooling and the dimensionality is expanded to

[8,1,512] for input SAFF.

Second, the relevant attention scores for DCE and T2WI are

computed using self-attention, which provides an inter-modal
A

B

C

FIGURE 3

Multiscale attention (MA) module. (A) MA; (B) Inception; (C) Convolutional Attention Module(CBAM).
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specific feature representation. Where Wq, Wk, and Wv are the

parameter matrices used to generate queries, keys, and values,

respectively, which are updated by backpropagation of the network

during model training. The DCE and T2WI and the corresponding

class codes are spliced to obtain fused MP-MRI features with

dimensions [8,3,512]. The MP-MRI features are input into

Equation 1 to compute the attention matrix of Q and K between

different sequences to obtain the attention coefficient g(Xi) between

different sequences, and then input into the Softmax() function to

normalize the specificity feature values.

g(Xi) = Softmax
QXi

KT
Xiffiffiffi

d
p

 !
(1)

Then, to extract common features from different MRI

sequences, it is necessary to aggregate the MP-MRI feature

vectors. Multiplying the attention matrix with V results in

common features f (Xi) for various sequences via Equation 2.

Building upon this, the study further optimizes the common

features by incorporating some of the original features using a

short connection method. Here, q represents the coefficient for

preserving the relevance of the original features, and multiplying q
with V calculates the importance of the original features. This

transformation converts the common features from f (Xi) to h(Xi)

expression via Equation 3.

f (Xi) = Softmax
QXi

KT
Xiffiffiffi

d
p

 !
VXi

(2)

h(Xi) = VXi*q + f (Xi) (3)

Finally, the specific features and the common features are

spliced to complete the feature fusion of the two MRI sequences

via Equation 4.

p(Xi) = g(Xi) + h(Xi) (4)

SAFF dynamically focuses on the key features of MP-MRI and

adaptively adjusts the correlation coefficients to better fuse specific

features and common features to fuse different MP-MRI

sequence features.
3 Experimental results

3.1 Dataset

3.1.1 Patient selection
BCa patients admitted to the Second Affiliated Hospital of

Kunming Medical University from April 2019 to February 2021

were collected retrospectively. Studies involving human subjects

were reviewed and approved by the Ethics Committee and written

informed consent requirements for participation were waived by

the Ethics Committee. The ethics committee waived the

requirement of written informed consent for participation.

Inclusion criteria: (1) preoperative MRI examination with good

image quality; (2) no history of BCa treatment before the study; (3)

postoperative pathological confirmation of UCC (HGUC or
Frontiers in Oncology 06
LGUC); and (4) lesion diameter >0.5 cm to ensure accurate

manual outlining of the volume of interest (VOI). Exclusion

criteria: (1) patients with no or incomplete pathological data and

pathologically confirmed non-urothelial cell carcinoma; (2) patients

who did not undergo preoperative MRI or who underwent MRI

more than 2 weeks before surgery; (3) Any therapeutic intervention

for tumor progressions such as chemotherapy, radiotherapy, or

bacillus calmette–guérin (BCG) vaccine before treatment; (4)

Lesions<0.5 cm in diameter or prostrate growth making it

difficult to outline. After screening, the dataset consisted of 138

bladder patients, the majority of whom were male (76.1%); the

mean age was 65 years (age range 30-86). Of these patients, 76

(55.1%) had a tumor pathology grade of HGUC and 62 (44.9%) had

a tumor grade of LGUC. Among these patients, single tumors were

more or less 82 (59.4%) and multiple tumors were more or less 56

(40.6%). The demographic and histopathological characteristics of

the included patients are shown in Table 1.

3.1.2 MRI acquisition protocol
All BCa patients underwent MP-MRI using a 3.0 T MRI scanner

before biopsy, including DICOM images of T2WI and the DCE

arterial phase (images acquired within 40-60 s after contrast

injection). As shown in Figure 4, (I) (II) is the HGUC image of the

T2WI sequence; (III) (IV) is the LGUC image of the T2WI sequence;

(V) (VI) is the HGUC image of the DCE sequence; (VII) (VIII) is the

LGUC image of DCE sequence. T2WI can illustrate detailed

structural information of the lesion and bladder wall. The detrusor

muscle of bladder become banded with low signal, thus showing the

general outline of the bladder. the importance of DCE in assessing

tumor aggressiveness depends on the neovascularization of the

tumor. The more neovascularization, the higher the tumor stage

and grade.

3.1.3 Data preprocessing
The abdominal BCa data (DICOM format) of each patient were

imported into 3D Slicer (version 4.11.20210226) software. This

study was based onMR-MRI (T2WI and DCE), and the slice images
TABLE 1 Demographic and histopathological characteristics of
included patients.

Characteristics (n=138) Median (Min-Max)/n (%)

Age(years) 65 (30-86)

Gender 0.8782

Male 105 (76.1)

Female 33 (23.9)

Grading

HGUC 76 (55.1)

LGUC 62 (44.9)

Number of tumors

Single 82 (59.4)

Multiple 56 (40.6)
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in which the physician outlined the region of interest (ROI) were

selected to constitute the dataset. The number of thick T2WI slices

ranged from 15-24 (number of slices with ROI 1-3); the number of

DCE slices ranged from 65-70 (number of slices with ROI 1-5). The

dataset included 76 patients with HGUC (193 slices) and 62 patients

with LGUC (123 slices), totaling 316 slices. Since there were also a

large number of unrelated organs in the abdominal BCa images, we

performed a preprocessing operation of center cropping and

standardizing the image size to 224 x 224. The dataset was

divided into a train set, validation set, and test set according to

the ratio of 8:1:1, and subsequently, the same data augmentation

methods were used for them respectively, and the detailed

distribution of the data is shown in Table 2. 110 cases of the

training set (60 cases of HGUC, 50 cases of LGUC), 14 cases of the

validation set and (8 cases of HGUC, 6 cases of LGUC) test set of 14

cases (8 cases of HGUC, 6 cases of LGUC). The training set

contained slice images (155 HGUCs expanded to 743 and 99

LGUCs expanded to 665), the validation set contained slice

images (19 HGUCs expanded to 94 and 12 LGUCs expanded to

82), and the test set contained slice images (19 HGUCs expanded to

94 and 12 LGUCs expanded to 82).
3.2 Hyperparameter optimization

The implementation of this experiment is based on the TensorFlow

framework (version 2.4.0). Computer configuration parameters: 64-bit
Frontiers in Oncology 07
OS Windows 10, 32GB running memory, Core i9-11900K processor,

NVIDIA RTX 3060 GPU, 12GB video memory, python 3.6.

The algorithm in this study uses an SGD optimizer to update

the parameters with a learning rate of 0.01, epochs set to 50, batch

size set to 8, and a loss function of cross-entropy loss, L1

regularization and early stopping training.
3.3 Choice of backbone model

To select the optimal backbone model, this study compared widely

used classification networks, including ResNet (17), Xception (18),

DenseNet121 (19), VIT (24), and Swin Transformer (25). MP-MRI

(DCE or T2WI) was input into the networks, and the results are

presented in Table 3. The experimental loss functions, optimizers, and

parameter settings were kept consistent.

As depicted in Table 3, both the T2WI and DCE sequences

demonstrated superior classification performance on the DenseNet121

network.When utilizing T2WI as input, themodel achieved anAccuracy

of 0.9147, F1 of 0.9073, and AUC of 0.9140. When DCE was used as

input, the model yielded an Accuracy of 0.8977, F1 of 0.8941, and AUC

of 0.8996. Figure 5 presents a histogram visualization of the classification

accuracy across the five models, conspicuously showcasing the consistent

superiority of the DenseNet121 model. These findings affirm that the

DenseNet121 network is the most suitable choice for BCa image

classification. Consequently, we have adopted this network as the

primary backbone model for initial feature extraction in our framework.
FIGURE 4

Images of BCa sample data.
TABLE 2 The data distribution.

Train set(n=110) Validation set(n=14) Test set(n=14)

HGUC
(n=60)

LGUC
(n=50)

HGUC
(n=8)

LGUC
(n=6)

HGUC
(n=8)

LGUC
(n=6)

Total
(n=138)

Original 155 99 19 12 19 12 316

Augmented 743 665 94 82 94 82 1760
fro
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3.4 Comparison of different MRI inputs

To validate the effectiveness of the SMMF framework proposed

in this study, different MRI inputs were fed into the network

framework, and the results are presented in Table 4.

As demonstrated in Table 4, the SMMF framework achieved

optimal performance across all classification evaluation metrics,

with an Accuracy of 0.9488, F1 of 0.9426, and AUC of 0.9459. The

integration of MP-MRI features through the SMMF framework

outperformed individual MRI sequence inputs, emphasizing the

effectiveness of the SMMF framework for feature fusion.

Furthermore, this study employed t-distributed stochastic

neighbor embedding (t-SNE) for visual validation of the SMMF

framework’s efficacy. As shown in Figure 6, this method intuitively

reveals that the SMMF framework exhibits high cohesion for

HGUC and LGUC, enhancing the separability of the test data.
3.5 10-fold cross verification

To better demonstrate the stability and generalization of the

proposed model in this study, we conducted experiments using 10-

fold cross-validation on a small medical dataset. The data is divided
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into 10 subsets, and one separate subset is used as the test data of the

model, and the corresponding evaluation index is calculated. Of the

remaining 9 subsets, 8 subsets are used for training and the

remaining subset is used for validation. Cross-validation was

repeated 10 times, and each subset was tested once. Detailed

results were shown in Table 4. As shown in Table 5, the variance

(Var) of Accuracy, F1 and AUC indicators are verified through 10-

fold cross-validation, and they are all relatively small as 0.0001,

0.0002 and 0.0002 respectively. Therefore, the model has better

stability and generalization.
3.6 Comparison of different feature
fusion strategies

The proposed SAFF model is compared with the three most

frequently used feature fusion strategies in Figure 1 (Figure 1A

input-level fusion, Figure 1B feature-level fusion, and Figure 1C

decision-level fusion). Table 2 shows the results of the comparison

of different feature fusion strategies. The confusion matrices for the

four feature fusion strategies are shown in Figures 7A–D, and the

specific classification results of HGUC and LGUC can be seen by

the following confusion matrices.
TABLE 3 Comparison of different classification models.

Model Dataset Accuracy F1 AUC

ResNet50
DCE 0.8352 0.8129 0.8310

T2WI 0.8806 0.8679 0.8782

Xception
DCE 0.8806 0.8662 0.8774

T2WI 0.9090 0.9024 0.9087

DenseNet121
DCE 0.8977 0.8941 0.8996

T2WI 0.9147 0.9079 0.9140

VIT
DCE 0.5739 0.6695 0.5964

T2WI 0.5682 0.3666 0.5490

Swin_transformer
DCE 0.6648 0.6427 0.6636

T2WI 0.7045 0.6579 0.6985
The bold values represent the best results of the experiment.
FIGURE 5

Classification Accuracy of Different MRI Inputs on Multiple Networks (Orange in T2WI, Blue in DCE).
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As seen in Table 6, the input-level fusion strategy has the lowest

classification accuracy at 0.8806. decision-level fusion can obtain better

results by weighting different modal branching networks, and the test

accuracy reaches 0.9318, which is second only to SAFF. all evaluation

indexes of SAFF are better than the above three strategies, and the

classification accuracy, F1 value, and AUC are 0.9488, 0.9426, and

0.9459, respectively. Through the comparison of the above experiments,

it is further verified that SAFF has a stronger capability of feature fusion.
3.7 Ablation experiments

As shown in Table 7, the following experiments were conducted to

validate the performance of Transfer Learning (TL) and the MA block

we designed. (I): Exclude TL, and use DenseNet121 as the baseline

model. (DenseNet121); (II): Introduce TL based on Experiment I.

(DenseNet121+ TL); (III): MA block is added to the use of TL

(DenseNet121+ TL+ MA). The following experiments are all

implemented on the MP-MRI (T2WI+DCE) dataset, and the

experimental parameters are set the same as the above experiments.

Additionally, the confusion matrices of three different deep learning

methods are shown in Figures 8A–C, and the ROC curves of the three

methods are shown in Figure 8D to show the classification

performance. As can be seen in Table 6, training with the TL

method results in better classification performance with an accuracy

improvement of about 10%, which illustrates the effectiveness of the TL

approach. By training the model using the ImageNet dataset, the model

is given a suitable initialization parameter, which speeds up the

convergence of the model and improves the accuracy of the model
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classification. Secondly, based on the use of the TL method, the MA

block is introduced and the average accuracy is improved by 2.27% on

the DenseNet121 model, which proves that the algorithm proposed in

this study can better extract BCa features and improve the classification

accuracy. From Figure 8C, we can see that the introduction of the MA

block has better recognition ability for both positive and negative

samples, which is better than the first two methods.
3.8 Comparison with related work

To demonstrate the superiority of the proposed MP-MRI

feature fusion framework in BCa diagnosis, we compared the

results for the same diagnostic task with other methods (28, 32).

The results in Table 8 demonstrate that our framework

outperformed the others in all evaluation metrics for BCa grading

diagnosis. This further substantiates the advantage of the proposed

SMMF framework in BCa diagnosis.
4 Discussion

To be able to effectively utilize MP-MRI features for BCa

grading, this study proposes a self-attention-based MP-MRI

feature fusion framework (SMMF). We conducted experiments

on the MP-MRI dataset of BCa and discussed the results based

on the above experiments.

As shown in Table 3, this study conducted experiments on three

classic CNN networks and two Transformer networks with broader

receptive fields for comparison. The results indicate that the

DenseNet121 network exhibited the best performance, while the

classification performance on the Transformer networks was

relatively poorer. This discrepancy can be attributed to the fact

that, in contrast to other CNN networks, DenseNet121 employs a

more aggressive dense connectivity mechanism, establishing dense

connections between all layers in the CNN, facilitating feature reuse

through channel-wise connections, and maximizing the utilization

of information contained in both shallow and deep feature maps,
TABLE 4 Comparison of different MRI inputs.

Dataset Accuracy F1 AUC

DCE 0.9034 0.8957 0.9026

T2WI 0.9204 0.9125 0.9185

T2WI+DCE 0.9488 0.9426 0.9459
The bold values represent the best results of the experiment.
A B C

FIGURE 6

Separability of two MRI sequences data (A) original test set separability of T2WI sequences; (B) original test set separability of DCE sequences; (C)
test set separability after SMMF framework classification; blue dots represent HGUC and orange dots represent LGUC.
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thereby achieving superior classification performance. However,

when compared to CNN networks, Transformer networks, while

capable of learning global information more effectively, often

require larger training datasets, which is why their performance
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tends to be less favorable on small-sample datasets such as

medical datasets.

Furthermore, we validated the proposed SMMF framework under

different MRI inputs. The results in Table 4 demonstrate that
TABLE 5 The result of 10-fold cross-validation.

Fold Accuracy F1 AUC

1 0.9545 0.9518 0.9544

2 0.9375 0.9356 0.9389

3 0.9261 0.9182 0.9236

4 0.9432 0.9405 0.9436

5 0.9318 0.9250 0.9297

6 0.9261 0.9231 0.9269

7 0.9375 0.9378 0.9409

8 0.9375 0.9333 0.9370

9 0.9602 0.9570 0.9591

10 0.9204 0.9102 0.9170

Mean 0.9375 0.9332 0.9371

Var 0.0001 0.0002 0.0002
The bold values represent the best results of the experiment.
A B

DC

FIGURE 7

Confusion matrix of different feature fusion strategies. (A) Input-level fusion; (B) Feature-level fusion; (C) Decision-level fusion; (D) SAFF.
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simultaneous input of T2WI and DCE sequence data into the SMMF

framework outperforms single-sequence input. The reasons for this

improved performance are as follows: Firstly, different MRI sequence

images exhibit varying sensitivities to BCa and can provide

complementary information. T2WI can offer detailed information

about lesion areas and bladder wall structures, while DCE can depict

tumor staging and grading by illustrating the degree of tumor

angiogenesis (43). Secondly, our proposed SMMF framework, based

on robust feature extraction networks and feature fusion strategies,

effectively extracts and fuses common and complementary features

between MP-MRI, thus enhancing the model’s classification

performance. To further validate the stability and generalization of

the model on the small medical dataset, we conducted 10-fold cross-

validation for verification. The experimental results in Table 5

demonstrate that the model not only exhibits good classification

performance but also demonstrates strong stability and generalization.

Additionally, this study further compared three widely used

feature fusion strategies in existing research, namely input-level

fusion, feature-level fusion, and decision-level fusion. As shown in

Table 6, the proposed method achieves competitive results. The

input-level fusion strategy has the lowest classification accuracy of

0.8806. The method fuses different MRI sequences into one dataset,

which expands the sample size but the output feature maps contain

a large amount of redundant information. At the same time, the

method did not pay sufficient attention to the contributing large

features, which led to poor classification results. Feature-level fusion

is performed for DCE and T2WI respectively, and the features are

directly stitched together using the “Concate” operation. However,

the feature extraction process of the two MRI sequences is

independent and lacks interactivity, which leads to limited

characterization capability of feature extraction. Decision-level

fusion obtained better results by weighting the branching network

of different MRI sequences, but the outputs of decision-level fusion

were independent of each other, ignoring the complex correlation

between different modalities. Different from the above three feature

fusion strategies, SAFF first rightly focuses on two sequence image

features, T2WI and DCE, through a self-attentive mechanism, and
Frontiers in Oncology 11
then interactively fuses the common and specific features of both to

obtain the best classification performance on BCa data.

The better classification performance achieved in this study cannot be

achieved without the contribution of the MA block, which makes up for

the shortcomings of the CNN and further deepens and broadens the

neural network. As can be seen from Table 7, although DenseNet121 can

achieve a certain classification accuracy, it cannot increase the number of

convolutional layersmuch due to the limitation of the videomemory of the

device. However, the MA block extracts higher-level multiscale features

through the Inception model, which enriches the features extracted by the

network. In addition, the CBAM model connects the channel attention

and spatial attention mechanisms, enabling the network to focus on

features and spatial locations, thus improving the model’s accuracy.

Finally, in Table 8, we compared the method proposed in this

study with the existing deep learning-based BCa grading method

(28, 32). All of the aforementioned methods conducted experiments

using single-sequence MRI or single-modality data. Due to the

inconsistency of the datasets, such comparisons are unfair.

Nevertheless, the MP-MRI fusion approach consistently achieved

the best classification results, offering valuable insights for future

research in the domain of bladder cancer grading and diagnosis.

This underscores the significance of MP-MRI as a pivotal avenue

for future studies in bladder cancer grading and diagnosis.

There are some limitations in this study: first, the sample size in

this study is relatively small and the amount of data used for training

on the BCa dataset is limited. Second, the SMMF framework

proposed in this study was specifically designed for the BCa dataset

and was not validated on other datasets. Third, only T2WI and DCE

data were used in this study, and other combinations of MRI

sequences were not explored, and it cannot be concluded that the

combination of T2WI and DCE is the optimal combination.
5 Conclusions

This study proposes a self-attention-based MP-MRI fusion

framework (SMMF) that integrates DCE and T2WI image
TABLE 6 Comparison results of feature fusion strategies.

Model Accuracy F1 AUC

Input-level fusion 0.8806 0.8799 0.8844

Feature-level fusion 0.9090 0.8987 0.9063

Decision-level fusion 0.9318 0.9268 0.9360

SAFF 0.9488 0.9426 0.9459
The bold values represent the best results of the experiment.
TABLE 7 Comparison of different deep learning methods.

Model Accuracy F1 AUC

DenseNet121 0.8238 0.8287 0.8297

DenseNet121+ TL 0.9261 0.9182 0.9238

DenseNet121+ TL+ MA(Ours) 0.9488 0.9426 0.9459
The bold values represent the best results of the experiment.
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features for the classification of BCa. The framework mainly

consists of a feature extraction network and a feature fusion

network. The former further extracts richer multi-scale features

by embedding the MA block at the end of the network; the latter

uses self-attention to adjust the proportion of different sequences in

the feature fusion, thus improving the performance of the model.

The experimental results show that the SMMF framework can

effectively extract and fuse T2WI and DCE features by combining

data enhancement, MA block, and SAFF model, and the

classification accuracy, F1 score, and AUC are 0.9488, 0.9426, and
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0.9459, respectively, which are better than other comparative CNN

classification models. SMMF framework can provide more

comprehensive information to achieve accurate prediction of BCa

pathological grading and better assist physicians in BCa diagnosis.
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TABLE 8 Comparison with related research methods.

Method T2WI DCE

Accuracy F1 AUC Accuracy F1 AUC

Ali et al.
(2021)
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Liu et al.
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3. Netto GJ, Amin MB, Berney DM, Compérat EM, Gill AJ, Hartmann A, et al. The
2022 world health organization classification of tumors of the urinary system and male
genital organs—part b: prostate and urinary tract tumors. Eur Urol. (2022) 82:469–82.
doi: 10.1016/j.eururo.2022.07.002

4. Reisz PA, Laviana AA, Chang SS. Management of high-grade t1 urothelial
carcinoma. Curr Urol Rep. (2018) 19:1–9. doi: 10.1007/s11934-018-0850-8

5. Mastroianni R, Brassetti A, Krajewski W, Zdrojowy R, Al Salhi Y, Anceschi U,
et al. Assessing the impact of the absence of detrusor muscle in ta low-grade urothelial
carcinoma of the bladder on recurrence-free survival. Eur Urol Focus. (2021) 7:1324–
31. doi: 10.1016/j.euf.2020.08.007

6. Linton KD, Rosario DJ, Thomas F, Rubin N, Goepel JR, Abbod MF, et al. Disease
specific mortality in patients with low risk bladder cancer and the impact of cystoscopic
surveillance. J Urol. (2013) 189:828–33. doi: 10.1016/j.juro.2012.09.084

7. Nielsen ME, Smith AB, Pruthi RS, Guzzo TJ, Amiel G, Shore N, et al. Reported use
of intravesical therapy for non-muscle-invasive bladder cancer (NMIBC): results from
the bladder cancer advocacy network (BCAN) survey. BJU Int. (2012) 110:967–72.
doi: 10.1111/j.1464-410X.2012.11060.x

8. Fedeli U, Fedewa SA, Ward EM. Treatment of muscle invasive bladder cancer:
evidence from the national cancer database, 2003 to 2007. J Urol. (2011) 185:72–8.
doi: 10.1016/j.juro.2010.09.015

9. Zhang X, Xu X, Tian Q, Li B, Wu Y, Yang Z, et al. Radiomics assessment of
bladder cancer grade using texture features from diffusion-weighted imaging. J Magn
Reson Imaging. (2017) 46:1281–8. doi: 10.1002/jmri.25669

10. Panebianco V, Narumi Y, Altun E, Bochner BH, Efstathiou JA, Hafeez S, et al.
Multiparametric magnetic resonance imaging for bladder cancer: development of vi-
rads (vesical imaging-reporting and data system). Eur Urol. (2018) 74:294–306.
doi: 10.1016/j.eururo.2018.04.029

11. van der Pol CB, Shinagare AB, Tirumani SH, Preston MA, Vangel MG,
Silverman SG. Bladder cancer local staging: multiparametric mri performance
following transurethral resection. Abdom Radiol (NY). (2018) 43:2412–23.
doi: 10.1007/s00261-017-1449-0

12. Juri H, Narumi Y, Panebianco V, Osuga K. Staging of bladder cancer with
multiparametric mri. Br J Radiol. (2020) 93:20200116. doi: 10.1259/bjr.20200116
13. Panebianco V, Briganti A, Boellaard TN, Catto J, Comperat E, Efstathiou J, et al.
Clinical application of bladder mri and the vesical imaging-reporting and data system.
Nat Rev Urol. (2023) 15:1–9. doi: 10.1038/s41585-023-00830-2

14. Wang H, Hu D, Yao H, Chen M, Li S, Chen H, et al. Radiomics analysis of
multiparametric mri for the preoperative evaluation of pathological grade in bladder
cancer tumors. Eur Radiol. (2019) 29:6182–90. doi: 10.1007/s00330-019-06222-8

15. Xu X, Zhang X, Tian Q, Wang H, Cui LB, Li S, et al. Quantitative identification of
nonmuscle-invasive and muscle-invasive bladder carcinomas: a multiparametric mri
radiomics analysis. J Magn Reson Imaging. (2019) 49:1489–98. doi: 10.1002/jmri.26327

16. Bir P, Balas VE. A review on medical image analysis with convolutional neural
networks, in: 2020 IEEE International Conference on Computing, Power and
Communication Technologies (GUCON), Greater Noida, India, October 2-4, 2020. (2020).

17. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition, in:
Proceedings of the IEEE conference on computer vision and pattern recognition, Las
Vegas, NV, USA, June 27-30, 2016. (2016).

18. Chollet F. Xception: deep learning with depthwise separable convolutions, in:
Proceedings of the IEEE conference on computer vision and pattern recognition,
Honolulu, HI, USA, July 21-26, 2017. (2017).

19. Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected
convolutional networks, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, Honolulu, HI, USA, July 21-26, 2017. (2017).

20. Hu J, Shen L, Sun G. Squeeze-and-excitation networks, in: Proceedings of the IEEE
conference on computer vision and pattern recognition, Salt Lake City, UT, USA, June 18-
22, 2018. (2018).

21. Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q. Eca-net: efficient channel attention
for deep convolutional neural networks, in: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, Seattle, WA, USA, June 13-19, 2020. (2020).

22. Woo S, Park J, Lee J, Kweon IS. Cbam: convolutional block attention module, in:
Proceedings of the European conference on computer vision (ECCV), Munich, Germany,
September 8-14, 2018. (2018).

23. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is
all you need. Adv Neural Inf Process Syst. (2017) 30:21–5. doi: 10.48550/arXiv.1706.03762

24. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T,
et al. An image is worth 16x16 words: transformers for image recognition at scale, in:
International conference on learning representations(ICLR), , Montreal, QC, Canada,
October 10-17, 2021 (2020). doi: 10.48550/arXiv.2010.11929

25. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. Swin transformer: hierarchical
vision transformer using shifted windows, in: Proceedings of the IEEE/CVF
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2024.1337186/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2024.1337186/full#supplementary-material
https://doi.org/10.1016/j.eururo.2016.06.010
https://doi.org/10.1016/j.eururo.2016.05.041
https://doi.org/10.1016/j.eururo.2022.07.002
https://doi.org/10.1007/s11934-018-0850-8
https://doi.org/10.1016/j.euf.2020.08.007
https://doi.org/10.1016/j.juro.2012.09.084
https://doi.org/10.1111/j.1464-410X.2012.11060.x
https://doi.org/10.1016/j.juro.2010.09.015
https://doi.org/10.1002/jmri.25669
https://doi.org/10.1016/j.eururo.2018.04.029
https://doi.org/10.1007/s00261-017-1449-0
https://doi.org/10.1259/bjr.20200116
https://doi.org/10.1038/s41585-023-00830-2
https://doi.org/10.1007/s00330-019-06222-8
https://doi.org/10.1002/jmri.26327
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.3389/fonc.2024.1337186
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tao et al. 10.3389/fonc.2024.1337186
international conference on computer vision, Montreal, QC, Canada, October 10-17,
2021. (2021).

26. Wang K, Xu C, Li G, Zhang Y, Zheng Y, Sun C. Combining convolutional neural
networks and self-attention for fundus diseases identification. Sci Rep. (2023) 13:76.
doi: 10.1038/s41598-022-27358-6

27. Jansen I, Lucas M, Bosschieter J, de Boer OJ, Meijer SL, van Leeuwen TG, et al.
Automated detection and grading of non–muscle-invasive urothelial cell carcinoma of
the bladder. Am J Pathol. (2020) 190:1483–90. doi: 10.1016/j.ajpath.2020.03.013

28. Ali N, Bolenz C, Todenhöfer T, Stenzel A, Deetmar P, Kriegmair M, et al. Deep
learning-based classification of blue light cystoscopy imaging during transurethral
resection of bladder tumors. Sci Rep. (2021) 11:11629. doi: 10.1038/s41598-021-91081-x

29. Yang Y, Zou X, Wang Y, Ma X. Application of deep learning as a noninvasive
tool to differentiate muscle-invasive bladder cancer and non–muscle-invasive bladder
cancer with ct. Eur J Radiol. (2021) 139:109666. doi: 10.1016/j.ejrad.2021.109666
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