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Brain tumor classification is one of the most difficult tasks for clinical diagnosis

and treatment in medical image analysis. Any errors that occur throughout the

brain tumor diagnosis process may result in a shorter human life span.

Nevertheless, most currently used techniques ignore certain features that have

particular significance and relevance to the classification problem in favor of

extracting and choosing deep significance features. One important area of

research is the deep learning-based categorization of brain tumors using brain

magnetic resonance imaging (MRI). This paper proposes an automated deep

learning model and an optimal information fusion framework for classifying brain

tumor from MRI images. The dataset used in this work was imbalanced, a key

challenge for training selected networks. This imbalance in the training dataset

impacts the performance of deep learningmodels because it causes the classifier

performance to become biased in favor of the majority class. We designed a

sparse autoencoder network to generate new images that resolve the problem of

imbalance. After that, two pretrained neural networks were modified and the

hyperparameters were initialized using Bayesian optimization, which was later

utilized for the training process. After that, deep features were extracted from the

global average pooling layer. The extracted features contain few irrelevant

information; therefore, we proposed an improved Quantum Theory-based

Marine Predator Optimization algorithm (QTbMPA). The proposed QTbMPA

selects both networks’ best features and finally fuses using a serial-based

approach. The fused feature set is passed to neural network classifiers for the
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final classification. The proposed framework tested on an augmented Figshare

dataset and an improved accuracy of 99.80%, a sensitivity rate of 99.83%, a false

negative rate of 17%, and a precision rate of 99.83% is obtained. Comparison and

ablation study show the improvement in the accuracy of this work.
KEYWORDS

brain tumor, MRI, contrast enhancement, deep learning, hyperparameters optimization,
feature selection
1 Introduction

One of the deadliest brain disorders is a brain tumor, which

develops from an abnormal development of tissue inside the skull.

Primary and secondary forms can be distinguished among them. 70%

of cases of primary brain tumors only spread within the brain (1). In

contrast, secondary tumors start in an organ like the breast, kidney, or

lung before metastasizing to the brain (2). The World Health

Organization (WHO) divides malignant gliomas into two

categories: grade IV/IV tumors, which include glioblastoma

multiforme (GBM), and grade III/IV tumors, which include

anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic

oligoastrocytoma, and anaplastic ependymomas. With an incidence

rate of 3.19 cases per 100,000 person a year and a median age of 64,

GBM is the most prevalent malignant brain tumor. It makes up 80%

of all primary malignant CNS tumors and 45.2% of all malignant CNS

tumors. GBM is 1.5 times more common in men than in women, and

it is twice as common in white people as it is in black people (3).

Meningioma is the most common primary tumor of the central

nervous system, with 5/100,000 annual occurrence. Radiation

therapy and hormone use are risk factors. According to the

WHO’s 2016 histological criteria, the majority of meningiomas

are grade I benign tumors; however, up to 15% can be atypical and

2% can be anaplastic (4). Pituitary adenomas usually are benign

tumors that develop from unusual pituitary gland cell development.

They appear either by producing too much hormone or by putting

pressure on the surrounding structures, which causes less hormone

to be secreted. Prolactinomas, non-functioning adenomas,

adenomas that secrete growth hormone, and adenomas that

secrete adrenocorticotrophic hormones are the four primary

forms. Less frequent kinds include gonadotroph adenomas with

clinically significant luteinizing hormone, follicle-stimulating

hormone secretion, and thyroid-stimulating hormone-secreting

adenomas. Pituitary incidentalomas are a subtype that was

unintentionally found while undergoing brain MRI. They can be

divided into macroadenomas (bigger, accounting for roughly 40%

of occurrences) and microadenomas (less than 1 cm in diameter).

Macroadenomas can strain essential structures and regions like the

optic chiasm (5).

Gliomas and meningioma emerge from neuroglial and brain

membranes, respectively; both are the most frequent primary brain
02
cancers. Pituitary gland and nerve sheath tumors are also included

in this group. High-grade gliomas are a common form of malignant

tumor. Meningiomas are typically benign; however, they can

occasionally turn cancerous (6). Gliomas are more common in

men, whereas meningiomas are more common in women; other

brain cancers affect both sexes equally (7). Pituitary tumors,

whether benign or malignant, can have severe consequences due

to their location. Malignant tumors spread quickly, whereas benign

tumors develop slowly and are generally entirely eradicated through

surgery (8).

Radiologists and clinicians have substantial difficulties in

detecting brain tumors. Brain tumor images produced in medical

settings might be challenging to analyze. As a result, there is a need

for computer-aided procedures with increased early detection

accuracy. Currently, there is a lot of interest in using multimodal

images to classify brain tumors (9). Magnetic resonance imaging

(MRI) is frequently used to diagnose brain malignancies. A tumor

can be found via MRI, commonly used to identify brain tissues

based on their size, shape, or location (10). Figshare is a publicly

available MRI image-based brain tumor dataset containing 3,064

T1-weighted contrast-enhanced images. These are obtained from

233 patients. A total of 1,426 slices of glioma, 708 slices of

meningioma, and 930 slices of pituitary tumors are included in

said dataset (11, 12). A few sample images are shown in Figure 1.

In recent years, interest in computer vision has grown across

various fields of studies, from medical to industrial robotics.

Computer science and advances in image processing techniques

have greatly aided computer vision (13). Deep learning is a diverse

set of techniques that includes neural networks, hierarchical

probabilistic models, and a wide range of unsupervised and

supervised feature learning algorithms. Deep learning approaches

have recently gained popularity because of their ability to beat prior

state-of-the-art techniques in various tasks and the amount of

complex data from various sources (e.g., visual, auditory, medical,

social, and sensor) (14). Deep learning has made significant

advances in a wide range of computer vision tasks, including

object recognition (15), motion tracking (16), and medical image

classification and detection (17, 18). Classification of brain tumors

for medical specialists is an important field where computer vision

and deep learning techniques work together and bring prosperity to

patients with non-invasive diagnosis of brain tumors using MRI.
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1.1 Aims and objectives

Image acquisition from MRI has loss of information that leads

to improper feature visibility. A technique is required to employ

that can enhance the contrast of MRI images so that loss of

information during the acquisition process can be minimized.

Hence, feature visibility can be improved and classification

problems can be addressed, which has a close relationship with

feature visibility. In order to address classification problems for MRI

images of brain tumors, there is an immense need to introduce a

technique using state-of-the-art deep learning methods. In a quest

to fulfill this need, a deep learning technique should acquire brain

tumor MRI images from publically available benchmark datasets.

The selected dataset explained in a related section of this

manuscript has significant imbalance classes, so it is important to

incorporate a data augmentation technique that can gracefully fill

the gap of imbalanced dataset classes. After enhancement of

contrast and data augmentation steps, lightweight pretrained deep

leaning models need to be deployed and modified based on the low

complexity for training of the balanced dataset. Optimization of

hyperparameters to train deep learning models is required to select

the optimal combination of values for model training on the

selected dataset. Extracted features can be optimized using some
Frontiers in Oncology 03
optimization algorithms and then be fused together. Feature fusion

greatly impacts the overall classification accuracy. The subsequent

section presents the major challenges in order to develop an aimed

technique and contribution to address these challenges in

proposed work.
1.2 Major challenges and contributions

This imbalance in the training dataset impacts the performance

of deep learning models because it causes the classifier performance

to become biased in favor of the majority class. The authors tried to

resolve this issue by using few traditional techniques such as flip

image and rotate image, and few of the authors performed contrast

enhancement. However, these techniques are not enough, and the

images are highly duplicated. Therefore, it is essential to address this

challenge by employing some of the latest techniques, such as GAN

and encoders. Still, most currently used feature selection techniques

ignore certain features that have particular significance and relevance

to the classification problem in favor of extracting and choosing deep

significance features. We proposed a hybrid deep learning framework

with BO and QTbMPA feature selection algorithms to address these

challenges. Our major contributions are listed below.
FIGURE 1

Sample MRI images of brain Meningioma, glioma, and pituitary tumors.
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▪ Sparse Autoencoder architecture was proposed for the

generation of new images based on the training data for

the augmentation process.

▪ Two lightweight pretrained deep learning models were fine-

tuned based on the additional layers and removal of pooling

layers. The models were trained from scratch on an

augmented dataset.

▪ A Bayesian optimization technique was implemented to

initialize the hyperparameters of the fine-tuned deep

models for improved learning.

▪ An efficient Quantum Theory-based Marine Predator

Optimization algorithm was proposed for the selection of

best features for the final classification.

▪ A detailed ablation study was performed on the proposed

framework for the validation of the proposed framework.
2 Literature review

A wide range of classification approaches have been introduced for

the Figshare dataset. Several techniques have been introduced in the

literature for the classification of brain tumor from MRI images.

Researchers used deep learning models for the feature extraction and

later performed classification using Softmax and machine learning

classifiers. A novel deep transfer learning-based model was identified

by Alanazi et al. (19). It entails creating several convolutional neural

network models and then utilizing transfer learning to repurpose a 22-

layer model for subclass classification. The proposed model achieved

95.75% accuracy on three classes of the Figshare dataset. Moreover, the

technique was also validated for an unseen dataset and achieved an

accuracy of 96.89%. Another DeepTumorNet hybrid deep

learning model was suggested by Raza et al. (20). The last five

layers of GoogleNet were eliminated while creating the hybrid

DeepTumorNet technique, and 15 new layers were added. They used

the feature map’s leaky ReLU activation function to make the model

more expressive. The suggested model was evaluated on the Figshare

dataset and achieved 99.67% accuracy. Tummala et al. (21) used

ensemble-oriented vision transformer-based pretrained models to

classify the modalities of the Figshare dataset. An ensemble of B/16,

B/32, L/16, and L/32 was used. The selected approach achieved an

overall accuracy of 98.70%. Attention mechanism, patch-oriented

input, and token embedding are techniques used in vision

transformers, which make them more computationally expensive,

and processing requires a tensor processing unit (TPU) environment.

Another work by Polat et al. (22) introduced a novel divergence-

based feature extractor which is used for classification by decreasing

weights for deep neural networks. The achieved accuracy was 99.18%.

They have reduced the input image dimensions considerably (i : e :,  

512�   512   to   128  �   128), which can result in loss of spatial

information. Loss of information at the input level can result in

compromised accuracy. A technique that uses a multilevel attention

network (MANet) (23) was suggested by Shaik et al. in which the

model has an attentionmechanismwith several tiers of attention blocks

and can concentrate on crucial spatial and category-specific properties.
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Prioritizing tumor details in the image is done by the first attention

block, and the second attention layer is highlighted by the tumor-

specific descriptors using ConvLSTM. MRI images are represented as

input to the model using pretrained features from the XCeption

network. The resultant accuracy of 96.51 for the Figshare dataset was

obtained. In the presented technique, only those glioma images with

tumor in it will be classified. A CNN-based approach was created by

Haq et al. (24); they performed classification as well as segmentation. A

classification accuracy of 98% was achieved. The proposed algorithm

has a long running time and needs an improvement to reduce the

running time. In another technique, Rahman et al. (25) implemented a

Parallel Deep Convolutional Neural Network (PDCNN) technique. It

operates in two concurrent stages to capture both global and local

features. The model includes dropout regularization and batch

normalization to alleviate the overfitting issue. The classification

accuracy is 97.60%. The proportion of 80:20 training and testing data

was respectively used. A major proportion of training data may lead to

overfitting as it becomes specialized for known data but not for unseen

or unknown data.

The authors Talukder et al. (22) presented a technique to classify

brain tumors. They used different pretrained models and obtained an

accuracy of 99.68% on ResNet50V2. The lack of sharp images is the

main shortcoming of this study. In their work, Aloraini et al. (26)

presented another technique in which the authors utilized a hybrid

method combining a transformer with an attention mechanism to

capture global features. Local features were extracted using a

convolutional neural network (CNN). The approach attained an

accuracy of 99.10% for the Figshare dataset. Few misclassifications

were reported due to visual similarity between classes. In their work,

authors Athisayamani et al. (27) introduced a new adaptive Canny

Mayfly algorithm for edge identification. An algorithm that reduces the

dimension of retrieved features, the enhanced chimpanzee

optimization algorithm (EChOA), is utilized to choose features. The

feature classification process is then done using the Softmax classifier

and ResNet-152. The proposed technique achieved an accuracy of

98.85%. In their presented work, the authorsMishra et al. (28) provided

a method for classifying brain tumors using a K-NN classifier, where

the parameter } k } is adjusted and the best feature set is selected using

the binary version of the comprehensive learning elephant herding

optimization (CLEHO) algorithm. The presented method obtained an

accuracy of 98.97%, better than the recent techniques. A pretrained

model-based approach was suggested by the authors Malla et al. (25),

in which a transfer learning DCNN framework known as VGGNet was

used. They employed transfer learning aspects such as fine-tuning the

convolutional network and freezing layers for better performance.

Features were extracted from the Global Average Pooling (GAP)

layer. The technique resulted in an accuracy of 98.93% on the

Figshare dataset. In the given approach, the feature dimensionality

issue was not addressed, and that intended to address it in

future research.

In another work, authors Cinar et al. (29) presented a

Convolutional Neural Network (CNN) architecture for brain

tumor classification. The model was compared with ResNet50,

VGG19, DensetNet121, and InceptionV3 pretrained models. The

presented model achieved an average classification accuracy of

98.32% on the prescribed dataset. The authors determined to
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enhance their technique using area and size-oriented metrics. In

another technique, the authors Deepak et al. (30) coined an

approach in which they trained CNN using three different

methods: cross-entropy loss, class-weighted loss, and weighted

local loss. They fused the features, and classification was

performed with an accuracy of 95.40%. Another approach by

authors by authors Zulfiqar et al. (31) suggested an approach in

which five variations of the EfficientNets family’s pretrained

models, EfficientNetB0 through EfficientNetB4, were fine-tuned.

They also investigated how data augmentation affects the model’s

accuracy. The best model’s attention maps are finally visualized

using Grad-CAM, successfully highlighting the tumorous region of

the brain cell. The achieved accuracy was 98.86%.
3 Methodology

The proposed methodology of brain tumor classification is

illustrated in Figure 2. This section starts with the preprocessing

phase in which the Figshare brain tumor dataset (32) is obtained.

The contrast enhancement step is crucial to improving the quality of
Frontiers in Oncology 05
low-contrast images, and it was performed using a statistical technique

presented in (33). Data augmentation is performed on contrast-

enhanced images. This step is taken into account due to the high

imbalance of classes in the original dataset. Augmentation of the data is

performed using sparse autoencoders (34). The said technique

augments the data by learning the most important features of the

original data and leaving behind the least important features. Two

pretrained models named InceptionResNetV2 (35) and EfficientNetB0

(36) are used and fine-tuned for the input of preprocessed data.

Dynamic and optimized selection of hyperparameters of both models

is carried out using Bayesian-based optimization (37). Features are

extracted from each optimized resultant model. To further optimize the

features, a nature-inspired algorithm named the Marine Predators

Algorithm (MPA) (38) is used on the obtained features of each

model. Feature fusion is carried out, final classification is performed.
3.1 Dataset of this work

The Figshare dataset includes 3,064 T1 weighted contrast-

enhanced MRI scans collected from 233 patients. There are three
FIGURE 2

Proposed methodology of brain tumor classification using deep learning and optimization algorithm.
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classes of these scans named meningioma, glioma, and pituitary,

with 708, 1,426, and 930 MRI scans, respectively, in each class (32).

Meningiomas are the most prevalent intracranial tumor, accounting

for more than one-third of all primary central nervous system

(CNS) tumors. They are typically benign tumors that can be

observed or preferentially treated with extensive complete

resection, which results in satisfactory outcomes. Meningioma

with complex histology or in vulnerable areas has proven difficult

to treat and predict prognostic outcomes (39).

Gliomas are divided into different categories based on the cells

of their origin. They make up around 80% of all malignant primary

brain tumors and are most frequent malignancies of the central

nervous system (CNS). The most dangerous and common variety of

glioma is called glioblastoma multiforme (GBM). More than 60% of

adult brain tumors are caused by it. Despite the wide range

of contemporary treatments available, GBM remains a fatal

condition with a very bad prognosis. The median survival time

for patients is typically 14 to 15 months after diagnosis of the deadly

disease (40).

The anterior pituitary gland is the site of tumors called pituitary

adenomas. They rank as the third most frequent adult cause of

central nervous systemmalignancies (CNS). Most benign adenomas

cause either a large-scale effect or an increase in hormone release.

Depending on their size and hormone produced, pituitary

adenomas appear differently in clinical evaluations (41). Samples

of meningioma, glioma, and pituitary brain tumors from the

Figshare dataset are presented in Figure 1.
3.2 Contrast enhancement

Analyzing medical images is challenging because of the inherent

qualities present in medical images, such as poor contrast, speckle

noise, signal dropouts, and complicated anatomical formation.

Contrast enhancement is a vital component of subjective

evaluation of image quality that aims to improve the overall

excellence of medical imagery for feature visualization and clinical

measurement (42). In fact, despite technological advancements in

healthcare systems, they still produce images that demonstrate a

deficiency in contrast due to improper locales and equipment

limitations. To enhance the contrast of MRI images of the dataset

discussed above, an existing technique for contrast enhancement

(33) is employed. It uses basic statistics and some basic image

processing methods. The approach adjusts the global and local

contrast of a given image separately, then combines both results

using logarithmic image processing (LIP), producing an output that

is further analyzed by an adaptive linear stretching method to

produce the improved version of the image. The overall process of

contrast enhancement is defined as follows:

Letting a low-contrast image ɡ(x,y), at first, the local contrast is

altered using contrast stretching transformation (CST). The CST

process is defined in Equation 1.

k(x,y) =
1

1 + (m=ɡ(x,y))
E (1)
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In the above equation, k(x,y) is the output of the CST procedure

where x, y represents the dimensions of an image. The slope of the

function is set by constant E, and its value is set to 0.5 for this

experiment. The mean value of the input image is represented bym.

A standard logic function is applied to the original image to change

its global contrast. Mathematically, it is defined in Equation 2.

j(x,y) =
exp(ɡ(x,y))

1 + exp(ɡ(x,y))
(2)

The resultant images with altered local and global contrast will be

combined. The Logarithmic Image Processing (LIP) method devised in

(43) is for this purpose and is mathematically defined as follows:

f(x,y) =
k(x,y) + j(x,y)

1 + (k(x,y)*j(x,y))
(3)

An exponent W is used to control the enhancement, and the

entire equation is raised to its power of it. The scalar parameter

(W > 0) and its higher value lead to achieving a good level of

contrast enhancement. Mathematically, it is defined in Equation 4.

f(x,y) =
k(x,y) + j(x,y)

1 + (k(x,y)*j(x,y))

" #W
(4)

Contrast enhancement of the image has been achieved after

employing Equation 4, but the image f(x,y)   does not correspond to

the natural range of pixel values. A linear stretching method with

adaptive form (40) brings a natural range of pixel values to the image.

Mathematically, it is defined by Equation 5.

t(x,y) =  a*   f(x,y) − b (5)

where t(x,y) is a resultant image, and a and b are the control

variables for the stretching process. The value of these control

variables is adjusted manually, but here, Equation 6 and Equation 7

are used to select the values of these variables automatically.

a =
1

max(f(x,y))  −  min(f(x,y))
(6)

b =
min(f(x,y))

max(f(x,y))  −  min(f(x,y))
(7)

In the above equations, the variables max and min represent the

upper and lower bounds of values for pixels of an image f(x,y),  

respectively. The pseudocode of the above mathematical description

is given under Pseudo-code 1. A few visual images are also illustrated

in Figure 3.
Input: Original image g(x,y) and a parameter W.

Computation of CST method by using Equation 1.

Estimation of SL function by using Equation 2.

Calculation of modified LIP method by using Equation 4.

Computation of parameters a and b by using Equations 6

and 7

Processing of contrast by using Equation 5.

Output: Contrast Enhanced image t(x,y)
Pseudo Code 1. Proposed Contrast Enhancement Technique.
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3.3 Data augmentation

Classification performance is negatively impacted by class

imbalance. The impact of imbalance on classification performance

gets more robust with increasing task size. The effect of imbalance

depends on the distribution of observations (i.e., images)

throughout the classes and cannot be solely attributed to a lower

overall number of training cases (44). In Section 3.1, it is noted that

our dataset has a high-class imbalance. Hence, creating a dataset

bias may lead to an overfitting problem for some classes. To fill that

gap, we employed a sparse autoencoder (45) to augment the dataset

instead of traditional methods.

Sparse Autoencoders learn a compressed representation of the

input data. The following hyperparameters are used to train a sparse

autoencoder network:

Hyperparameters Value

Hidden size 300

Maximum epochs 2000

L2WeightRegularization 0.001

SparsityRegularization 4

SparsityProportion 0.15
F
rontiers in Oncology
Hidden size parameter represents the number of neurons in

layers. Few dozen neurons are enough for simpler tasks, but in order
07
to use it with complex tasks, a few hundred neurons are used. A

hidden size of 300 might be able to prevent overfitting while still

having sufficient capacity to learn from the data, particularly in

situations where bigger hidden sizes could cause overfitting.

One whole cycle through the whole training dataset is referred

to as an epoch. The hyperparameter for maximum epochs indicates

the maximum number of times the training dataset will be

processed by the learning algorithm. In the proposed technique,

the training dataset for augmentation took 2,000 epochs to converge

at a suitable result for MRI images.

The intensity or weight of L2 regularization given to a neural

network’s weights during training is commonly denoted by the

hyperparameter L2WeightRegularization, which has a value of

0.001. The selection of 0.001 maintains a balance between letting

the model learn from the data and regularizing it to avoid

overfitting. It is also referred to as weight decay.

The sparsity regularization weight that is given to a neural

network during training is indicated by the hyperparameter

SparsityRegularization, and the chosen value for it is 4. By

encouraging the model to have fewer active (non-zero) weights,

the objective is to cause the weight matrices to become sparse,

which means that during the training phase, a large number of the

weights are driven to be zero or almost zero. Sparsity regularization

helps to create a more effective and sparse representation for better

feature selection.

The hyperparameter of “SparsityProportion” with a value of

0.15 commonly refers to a threshold sparsity level, which is used
FIGURE 3

Visual illustration of the contrast enhancement process. The left images are original, and the right images are generated using contrast enhancement.
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with sparsity regularization. The target of around 15% of the neural

network’s weights becoming zero or almost zero is indicated by the

value of 0.15. The sparsity regularization hyperparameter sets a

threshold of 4, and weights that are below threshold are settled to

zero. The value of 0.15 represents the proportion of weights that

should actually fall below the specified threshold value during the

training process.

The specified values for each hyperparameter are adjusted for

augmentation of MRI images. The resultant images obtained from

this step are used to augment the data.

The overall representation of sparse autoencoders is provided

in Figure 4.

The total number of observations for each class increased to

2,000 after employing the proposed sparse encoder network. The

newly generated images have been utilized to train selected deep

learning models.
3.4 Hyperparameter selection for modified
EfficientNetB0 and InceptionResNetV2

The augmented dataset is used to train fine-tuned deep-learning

models. Three hyperparameters for both models are optimized

using Bayesian optimization to train the models. These

hyperparameters are named InitialLearnRate, Momentum, and

L2Regularization. The dynamic tuning of hyperparameters is a

crucial task for deep learning models. In this case, dynamically

selected values for specific hyperparameters are used until a specific

best-value threshold is achieved. The particular model is then

trained, and features are extracted for classification tasks.

Bayesian optimization (BO) is an effective technique for

hyperparameter tuning. Implementation (46) can be achieved by

setting an optimization goal. The Equations 8 and 9 below describes

the BO process.

x0 = arg   max
xєA

f (x) (8)
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In the equation, search space is A for input x. BO is based on the

Bayes theorem that is mathematically defined as follows:

P(D│ F) ∝   P(F │D)P(D) (9)

Given that an event or hypothesis F has occurred, it is the

likelihood that the event or hypothesis D will also occur, where F

denotes the evidence data, D denotes the model, and P(D│ F) is the

posterior probability that is proportional to the likelihood P(F │D)

and is multiplied with a probability of D. The foundation of BO is

the combination of sample data (evidence) and the prior

distribution of the function f (x) to produce the posterior of the

function. Then, based on the criterion, the posterior information is

used to determine the location where the function f (x) is

maximized. The criterion is also called an acquisition function (v)

and is used to estimate the next sample point. Sampling points are

searched using exploration and exploitation sampling methods

while searching the sampling space. Exploration tends to search

for sampling areas with high uncertainty. Exploitation searches for

those samples that are of high value. These methods improve the

performance, even with multiple local maxima solutions.

The prior distribution of the function f (x), a crucial component in

the statistical inference of the posterior distribution, is a requirement

for Bayesian optimization in addition to sample information. The

posterior distribution is updated using the Gaussian process to better

align with the data, improving our forecasts’ accuracy and knowledge.

Algorithm 1 describes the working of BO.
1: For i = 1, 2,…

2: Find xi by optimizing the acquisition function v over

function f: xi = arg max v
x

(x│D1 :i−1).(Equation 10)

3: Sample the objective function: yi   = f(xi).

4: Augment the data D1 :i   =   D1 :i−1  ,   (xi,yi)f g and update the

posterior of function f.

5: End For.
Algorithm 1. Bayesian optimization.
FIGURE 4

Representation of sparse autoencoder for data augmentation.
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The algorithm consists of two parts: acquisition function

maximization using step 2 and posterior distribution update

using steps 3 and 4. Furthermore, the training dataset is denoted

by D1 : i−1   = xn, ynf gi−1n=1  with i − 1 observations of function f .

Each processed observation updates the posterior distribution.

The updated distribution helps to find the highest value of the

acquisition function at some point, which is then added to the

training dataset. This process continues until the maximum

number of iterations is reached or the difference between the

current and best values so far is less than a predetermined

threshold. The following starting and stopping criteria are

selected for experiments. Number of seed points = 4;

Maximum Objective Evaluation = 30, and Maximum time =

Infinite by default.

A Gaussian process prior with additional Gaussian noise in the

observations serves as the fundamental probabilistic model for the

objective function f . Therefore, the Gaussian process with mean m
(x; q) and covariance kernel function k(x, x0, q) represent the prior
distribution on f (x) :Here, x represents the initial value, x 0 denotes
the updated value, and q is a parameter containing a kernel vector

vector. Therefore, looking into more detail, we show a set of points

x =   x 0 with associated objective function F =   fi and the prior joint

probability distribution of the function value k(x, x0) where kij=k(xi
, xj) and initially m = 0. Moreover, Gaussian noise is added, which is

denoted by s 2 so the prior distribution has covariance k(x, x0, q) +
s 2x,   and therefore, the final Gaussian process regression is

depicted by the following Equation 11.

k(xi, xj, q) = s 2
f   exp −

1
2
  ∑

d

m=1

(xi, xj)
2

s 2
m

� �
(11)

where sm   is length scale predictionm andm = 1, 2, 3,…d, sf is

the signal standard deviation, qm = log (sm),   qd+1 = log(sf ), and k

(x, x0, q) is a Kernel function that significantly affects the quality of

Gaussian process regression. In Bayesian optimization, the ARD

Matern 5/2 kernel is optimized by default and is given in the

following Equation 12.

k(xi, xj │ q) = s 2
f 1 +

ffiffiffi
5

p
  r +

5
3
  r2

� �
exp −

ffiffiffi
5

p
  r

� �
(12)

where r =od
m=0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xim−xjm)

2

s2
m

q
 . BO employs the acquisition function

to derive the highest value of the function f after collecting the posterior

distribution of the objective function. Typically, we believe the large

value of the objective function f matches the high value of the

acquisition function. Therefore, the increasing the acquisition function

is the same as increasing the function f , as presented in Equation 13:

x0 = arg   max
xєA

  u(x│D) (13)

The acquisition function named expected improvement per

second plus is employed for hyperparameter optimization. The

family of acquisition functions known as “expected improvement”

assesses the expected rate of improvement in the objective function

while ignoring values that increase the objective. The equation for

expected improvement is defined in Equation 14:
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EI(x,Q) = EQ½max(0,mQ(xbest) − f (x))� (14)

where xbest is the location of the lowest posterior mean and

mQ(xbest) is the lowest value of the posterior mean. The anticipated

improvement per second used by the acquisition function during

the objective function assessment is formulated in Equation 15:

EIpS(x) =
EIQ(x)
mS(x)

(15)

where mS(x) is the posterior mean of the timing Gaussian

process model. Finally, the maximization process was performed

and returned the best hyperparameter value. The initial learn rate

(InitialLearnRate) range is 0.01–0.9, the momentum value is

selected between 0.8 and 0.98, and the L2Regularization range is

1e − 10   (0:0000000001)   to   1e − 2   (0:01). To find the values of the

hyperparameters, the search space needs to be transformed

logarithmically. A logarithmic transformation is used to improve

the search process order-of-magnitude balance. Results for

optimizing the hyperparameters for EfficientNetB0 are provided

in Figure 5A. While optimizing the hyperparameters, the best

objective function value is achieved during iteration number 5.

Op t im iz ing r e su l t s f o r hype rpa r ame t e r s o f th e

InceptionResNetV2 model are provided in Figure 5B. The best

object value (i.e., optimized hyperparameters) is achieved at

iteration number 5, the best and last iteration per already defined

termination criteria.
3.5 Training and feature extraction

Both fine-tuned models have been trained on the augmented

dataset, and deep features are extracted from the global average

pooling layer. The sigmoid activation function has been employed

in the feature extraction process and obtained a feature vector of

N � 1280 and N � 1536 from fine-tuned EfficientNetb0 and fine-

tuned InceptionResNetV2, respectively. The complex patterns are

captured from the deeper layers of the above models, and higher

spatial dimensions are achieved. The Global Average Pooling layer

reduces the higher dimensions to a fixed-size vector; however,

optimizing the features’ size for accurate classification is necessary.
3.6 Improved MPA optimization

In this work, we proposed an improved Quantum Theory-based

Marine Predator Algorithm to select the best features. The MPA is a

metaheuristics algorithm. Random walk describes the behavior of

particles or objects in various physical and biological domains.

These are effective methods for studying the movement of

organisms such as bacteria or animals looking for food. The

random character of each step in these circumstances allows for a

realistic picture of how these organisms explore and navigate their

surroundings. Lévy and Brown’s movements are random walks.

Different velocity ratios are extracted and used in the three phases of

MPA. These are strategies behind MPA (38). MPA is based on

population as many other metaheuristic algorithms. The initial
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solution is homogeneously disseminated over the entire search

space through the first sample see, Equation 16.

Y0 = Ymin + rand   (Ymax − Ymin) (16)

Upper and lower bounds of variables are represented with Ymax

and Ymin, respectively, whereas uniform random vector is denoted

by rand whose range is between 0 and 1.

According to the notion of survival of the fittest, top natural

predators are better foragers. As a result, the top predator, also

known as elite, in the E matrix is chosen as the fittest solution. The

chosen matrix is constructed, and arrays of the matrix provide a

detail of searching and finding the prey based on the position of the

prey. The matrix is given in Equation 17:

E =  

YI
1,1    Y

I
1,2  …    YI

1,d

YI
2,1    Y

I
2,2  …    YI

2,d

:             :                     :

:             :                     :

:             :                     :

YI
n,1    Y

I
n,2  …    YI

n,d

2
666666666666664

3
777777777777775
n  X   d

(17)

In the above matrix, Y1
	!

is a vector representing the top

predator, and it is repeated n times to create the E matrix.
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Dimensions are represented by d, whereas search agents are

denoted by n. Predators and prey are considered search agents

because predators look for its prey and the prey is looking for its

food. The E matrix is updated once a better predator replaces the

existing top predator.

Another matrix with the same dimensions is constructed

depending on the position of the prey. Predator updates the

position based on the prey’s position matrix. The matrix is

named P and is given in Equation 18:

P =  

Y1,1    Y1,2  …    Y1,d

Y2,1    Y2,2  …    Y2,d

:             :                     :

:             :                     :

:             :                     :

Yn,1    Yn,2  …    Yn,d

2
666666666666664

3
777777777777775
n  X   d

(18)

In P matrix Yi,j the j represents the jth dimension, and i

represents the ith prey. These two matrices are the backbone

for optimization.

There are three phases of MPA. These are based on the predator

and prey’s life cycle and velocity criteria. These three phases are

discussed separately as follows: In the first phase, the predator is

considered moving faster than the prey, which is also called as the
B

A

FIGURE 5

Summary of best selected hyperparameter values using BO. (A) Bayesian optimized (BO) hyperparameters for training of EfficientNetB0. (B) Bayesian
optimized (BO) hyperparameters for training of InceptionResNetV2.
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high-velocity ratio (velocity   ≥   10) phase. The ideal predator

strategy is to remain still. The mathematical model for this phase

is defined in Equation 19:

While   Iteration   <  
1
3
 Max _ Iteration

stepsizei
				!

=   RB
	!

 ⊗ (Ei
!

−   RB
	!

 ⊗   Pi
!
)     i = 1,…n

Pi
!

= Pi
!

+ T :~R⊗ stepsizei
				!

(19)

This scenario occurs in the first third of iterations. Iteration

represents the current iteration, whereas Max _ Iteration represents

maximum iterations. RB is a vector containing random values from

the normal distribution exhibiting Brownian movement. Entry-wise

multiplications are denoted by ⊗. Movement of prey is simulated

by the multiplication of RB
	!

 ⊗   Pi
!
. Here, T is a constant, and its

value is 0:5. R denotes a vector of uniform random numbers

between 0 and 1.

The second phase occurs in unit velocity ratio or when the prey

and predator move at the same speed. It means that the predator is

actively looking for prey, and the prey is actively looking for its food.

This optimization stage is where the transition from exploration to

exploitation occurs. The prey does exploitation, whereas

exploration is the predator’s primary goal. Half of the population

is designated for exploitation and the other half for exploration. If

the velocity ratio (velocity   ≈   1), then the prey moves in Lévy and

the predator follows the Brownian motion. A mathematical model

for this is given below:

While  
1
3
 Max _ Iteration   <   Iteration   <

2
3
 Max _ Iteration

The first half of the population can be modeled by Equation 20:

stepsizei
				!

=   RL
	!

 ⊗ (Ei
!

−   RL
	!

 ⊗   Pi
!
)     i = 1,…

n
2

Pi
!

= Pi
!

+ T :~R⊗ stepsizei
				!

(20)

In the above equation, RL
	!

represents the Lévy movement of the

first half of the population. The multiplication of RL
	!

 ⊗   Pi
!

describes the Lévy movement of the prey, and adding the step

size of the prey position determines its movement. The second half

of the population can be modeled in the given below Equation 21:

stepsizei
				!

=   RB
	!

 ⊗ ( RB
	!⊗   Ei

!
−   Pi

!
)     i =

n
2
, : :, n

Pi
!

= Ei
!

+ T : CF
	!⊗ stepsizei

				!
(21)

where CF = (1 − Iteration
Max _ Iteration )

(2 Iteration
Max _ Iteration) is regarded as an

adaptive parameter to regulate the predator’s movement’s step

size. The multiplication of RB
	!⊗   Ei

!
determines the step size in

the Brownian movement of the predator, whereas the prey modifies

its position in relation with the predator’s movement. The third

phase starts with a low velocity ratio or when a predator has a faster

pace than the prey. It is the last phase of optimization. High

exploitation capability is demonstrated in this phase. In such a
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low-velocity ratio of velocity =   0:1, the predator adopts the Lévy

strategy. The mathematical model is provided in Equation 22:

While   Iteration >  
2
3
 Max _ Iteration

stepsizei
				!

=   RL
	!

 ⊗ ( RL
	!⊗   Ei

!
−   Pi

!
)     i = 1, : :, n

Pi
!

= Ei
!

+ T : CF
	!⊗ stepsizei

				!
(22)

In the Lévy method, multiplying RL
	!⊗   Ei

!
simulates the

predator’s movement, whereas adding the step size to the Elite

position assists in updating the position of the prey. Fish

aggregating devices (FADs), considered local optima in their

search space, are where sharks spend most of their time (i.e.,

more than 80% of the time). They make longer jumps in diverse

directions during the remaining 20% of their time, probably to

locate different prey distributions. To ensure a more dynamic search

during the simulation, these lengthier hops help prevent them from

being stuck in local optima. The FAD effect’s mathematical

elaboration can be represented as the following Equation 23:

Pi
!

=  
Pi
!

+ CF½Ymin
		!

+  ~R  ⊗   (Ymax
		!

−  Ymin
		!

)�  ⊗  ~U         if   r   ≤ FADs

Pi
!

+  ½FADs   (1 − r) + r�   (Pr1	! −   Pr2
	!

)                         if   r   ≥ FADs

8<
:

(23)

The likelihood that FADs may affect the optimization process is

represented by the probability, given as 0:2. A binary vector ~U is

made up of zeros and ones. It is created by a random vector with

values between [0,1], with a zero set for values below 0.2 and one for

values above 0.2. Additionally, r stands for a random number

uniformly distributed between [0,1]. Ymin
		!

and Ymax
		!

denote lower

and upper bounds of dimensions. P matrix’s random indexes are

denoted by subscripts r1 and r2.

Novelty in this method

The problem of the MPA algorithm is finding an optimal global

position; therefore, we added a concept of Quantum Theory that

improves populations’ motion behavior. The initial population in

the modified version is defined as follows:

Zi(k + 1) = Zmin + r � ½Zmax − Zmin�
where Zi denotes the ith iteration value, r is a random value

between (0,1), k is a current iteration, and Zmax and Zmin denote the

upper and lower limits, respectively. The fitness value is computed

to find the best solution in the next step. The following Equations

24–27 is utilized for this purpose:

~LQ = Zi,j(k + 1) =
Ci − b* Jbest − Zi,j(k))� ln ( 1

u


 �
,       if  T ≥ Entropy

Ci + b* Jbest − Zi,j(k))� ln ( 1
u


 �
,       if  T ≥ Entropy

(

(24)

Q Zj
i,k+1

� �
=

1

Lengthji,k
exp −

2 zji,k+1 − sji,k

��� ���
Lengthji,k

0
@

1
A (25)

Ci = q � cBesti + (1 − q)� ɡBest (26)
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Jbest =
1
No

N
i=1cBesti (27)

The notation cBesti denotes the best position in the ith iteration

for the predator, and gBest is the best position for all predators at

each iteration. The average best predator is denoted by Jbest , and q is

the distribution of a chaotic number on (0,1). The b denotes the

contraction expression phase, and it is used to control the

convergence rate. Mathematically, b is defined by Equation 28:

b = bmax −
bmax − bmin

Iterationsmax

 �
� Iterations

� �
(28)

Hence, the final equation is formulated as the following Equation 29:

Step
		!

= ~CQ⨂(Elite
		!

i −~CQ ⊗Prey
		!

i),   i = 1, 2,…
n
2

(29)

Every solution in the current iteration is compared with its

equivalent in the prior iteration for fitness. If the current solution is

found to be a superior match, the previous one is superseded. This

iterative procedure improves solution quality with time and imitates

the behavior of predators that return to locations with abundant

prey after successful foraging attempts. After completion of

optimization, a feature vector of dimension N � 380   and a

feature vector of N � 313, respectively, are obtained.
3.7 Feature fusion and classification

The selected features are finally fused and later classified using

machine learning classifiers. The fusion process improves an

object’s information that directly relates to better accuracy. In this
Frontiers in Oncology 12
work, a simple serial-based fusion has been chosen to combine the

selected feature vectors in a single vector.

Using the following equation, we can determine the dimension of

the serial-based fusion vector if we have two feature vectors, f 1 and f 2,

with dimensions of N � 380 and N � 313, respectively, where N

denotes the total number of observations as defined by Equation 30.

R =  
f 1

f 2

 !
N�380   +N�  313

(30)

The resultant feature vector is obtained of dimension N � 693.

The fused feature vector is finally classified using traditional

machine learning classifiers named as Cubic SVM and Weighted

KNN and neural network-based classifiers such as narrow, wide, tri-

layered, bi-layered, and medium. The hyperparameters used to train

these classifiers are provided in Table 1 as follows:
3.8 Dataset and performance evaluation

The augmented Figshare dataset is used for our experiments

and is contributed by (11). The dataset is publicly available for

research purposes. A model or algorithm’s ability to predict

outcomes based on the available data is measured using

performance metrics in machine learning. The calculated

measures contain each classifier’s sensitivity rate, false negative

rate (FNR), precision rate, and area under the curve (AUC). Time

and accuracy measures are also used to interpret the performance of

each classifier. Table 2 provides more details on these

performance metrics.
TABLE 1 Classifiers and training hyperparameters of each classifier.

Classifier Training hyperparameters Classifier Training hyperparameters

Cubic SVM Kernel function: Cubic
Kernel scale: Automatic
Box constraint level: 1
Multiclass method: one-vs-one
Standardize data: true

Weighted KNN Number of neighbors: 10
Distance metric: Euclidean
Distance weight: squared inverse
Standardize data: true

Wide neural network Number of fully connected layers: 1
First layer size: 100
Activation: ReLU
Iteration limit: 1000
Regularization strength (Lambda): 0
Standardize data: yes

Medium neural network Number of fully connected layers: 1
First layer size: 25
Activation: ReLU
Iteration limit: 1000
Regularization strength (Lambda): 0
Standardize data: yes

Bilayered neural network Number of fully connected layers: 2
First layer size: 10
Second layer size: 10
Activation: ReLU
Iteration limit: 1000
Regularization strength (Lambda): 0
Standardize data: yes

Trilayered neural network Number of fully connected layers: 3
First layer size: 10
Second layer size: 10
Third layer size: 10
Activation: ReLU
Iteration limit: 1000
Regularization strength (Lambda): 0
Standardize data: yes

Narrow neural network Number of fully connected layers: 1
First layer size: 10
Activation: ReLU
Iteration limit: 1000
Regularization strength (Lambda): 0
Standardize data: yes
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TP is for true positive, TN is for true negative, FP is for false

positive, and FN is for false negative.

The reason to choose each measure provided in Table 1 is

given below:
Fron
• Accuracy is the ratio of accurately predicted occurrences to

total instances. This gives a general idea of how well a

model is predicting in every class. Accuracy by itself,

though, could not be enough if the classes are

unbalanced. In our proposed technique, classes are

balanced. Balance among classes is achieved by data

augmentation process.

• Time required to finish a specific task is given in seconds.

• Sensitivity quantifies the percentage of actual positive

instances that the model accurately predicted. In order to

reduce false negatives, it is very crucial. For example, in the

medical domain, high sensitivity indicates that the model is

effective in identifying positive cases.

• False negative rate refers to the percentage of true positive

cases that were mistakenly forecast as negative. It stands for

the probability of overlooking favorable examples. When

the cost of missing positive occurrences is large, it is

essential to reduce false negative rate.

• Precision gauges how well the model predicts positive

occurrences. If you wish to reduce false positives,

accuracy is crucial. For instance, high precision in

medical diagnosis indicates that the model is likely to be

accurate when it predicts a positive case.

• The area under the receiver operating characteristic (ROC)

curve is known as the area under the curve (AUC). The

trade-off between true positive rate (sensitivity) and false

positive rate is represented graphically by the ROC curve.

AUC offers a single scalar value that sums up the model’s

overall performance. Perfect categorization is indicated by

an AUC of 1.0; random chance is suggested by an AUC

of 0.5.
4 Results and discussion

4.1 Experimental setup

In this section, detailed experimental setup is discussed. The data

augmentation is performed using a sparse auto-encoder. A single
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hidden layer with 300 neurons is selected while the training

parameters like a maximum epochs are 2,000, L2Weight

Regularization is set equal to 0.001, SparsityRegularization is equal to

4, and finally, SparsityProportion is set to 0.15. Hyperparameter

optimization is performed to optimize the parameters of fine-tuned

deep models such as EfficientNetB0 and InceptionResNetV2. The

original dataset is split into a ratio of 50:50 in training and test

proportions. After that, the training and testing images are separately

augmented and trainedmodels. The gradient vectors are accelerated via

stochastic gradient descent (SGDM) for quicker convergence at the

convolutional layers. During the algorithm learning phase for both

models, a mini-batch size 128 is chosen. Additionally, the experiments

are carried out using MATLAB R2023a on a machine equipped with

128 GB of RAM and CPU Intel(R) Core(TM) i7-6700 @ 3.40 GHz and

12 GB RTX3000.
4.2 Proposed framework results (fine-
tuned models)

In this section, results of the first step of the proposed

framework are presented. The hyperparameter optimization using

the Bayesian method is performed separately for EfficientNetB0 and

InceptionResNetV2 models and numerical results are computed.

4.2.1 Fine-tuned Bayesian optimization-
based EfficientNetB0

Table 3 describes the classification performance of fine-tuned

EfficientNetB0 deep architecture with an accuracy value of 99.10%,

achieved by the Cubic SVM classifier. The wide neural network

obtained the second best accuracy of 98.90%. The rest of the

classifiers obtained accuracies of 98.80%, 98.70%, 98.60%, and

98.50%. The sensitivity and precision rates of each classifier are

also noted, and the maximum value of Cubic SVM is 99.10%. In

addition, the performance of Cubic SVM can be confirmed by a

confusion matrix, given in Figure 6A. The diagonal numbers in the

figure represent the number of true observations and the true

positive rate for glioma, meningioma, and pituitary classes. The

computational time of each classifier is also noted during the

classification process, and it is observed that the minimum noted

time is 12.512 (seconds) for Medium Neural Network.

4.2.2 Fine-tuned Bayesian optimization-
based InceptionResNetV2

In the second step, the classification results are computed using

fine-tuned InceptionResNetV2 with the initialization of BO-based
TABLE 2 Performance measures used to validate the proposed methodology.

Name Accuracy
(%)

Time Sensitivity rate (%) False negative
rate (%)

Precision
rate (%)

Area under
the curve

Performance
measure

TP + TN
TP + TN + FP + FN

Seconds TP
TP + FP

FN
TP + FP

TP
TP + FN

Z b

a
f (x)dx

Description It is a characteristic or
condition of being precise
or accurate.

Precise time
to finish
a task

Measures how successfully
a test finds true positives.

Probability of failure to
detect a true positive.

Degree of false
positives in
the result

x-axis integral
over a
particular time
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hyperparameters. The results of this step are given in Table 4, which

shows the maximum accuracy of 98.10 for the Cubic SVM classifier.

The minimum computational time of this step is 20.543 (second)

for the Narrow Neural Network classifier. In addition, the

performance of the Cubic SVM classifier can be confirmed by a

confusion matrix, illustrated in Figure 6B. Compared with the

performance of this step with step 1, it is observed that the

accuracy of this step is degraded by approximately 1%. Moreover,

the increase in time shows the drawbacks of this step. In order to

reduce the drawbacks of this step, a feature selection method is

employed, which selects only important features for classification.
4.3 Feature selection using proposed
QTbMPA feature selection

The third and fourth steps correspond to the best

feature selection.

4.3.1 QTbMPA feature selection on fine-
tuned EfficientNetB0

In the third step, the proposed feature selection method is

applied to deep extracted features; in return, the best optimal
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features are obtained. The results of the feature selection method

on fine-tuned EfficientNetB0 are presented in Table 5. In this table,

the maximum accuracy of 99.00% by the Cubic SVM classifier is

shown. The sensitivity and precision rate of this classifier are also

99% that the confusion matrix in Figure 7A can confirm. Wide

neural network obtained the second best accuracy of 98.80%. Each

classifier’s computational time is noted, and its minimum reported

time is 3.8078 (sec). In step 1, the minimum time was 12.52 (s),

which is now reduced by almost 300%. Moreover, the accuracy of

this step is consistent, which can be a strength of the proposed

feature selection method.
4.3.2 QTbMPA feature selection on fine-
tuned InceptionResNetV2

I n t h e f ou r t h s t e p , f e a t u r e s o f t h e fine - t un ed

InceptionResNetV2 model are selected using the proposed

QTbMPA method and classification is performed. Table 6

describes the results of this step, showing an maximum accuracy

of 97.70% by Cubic SVM. The sensitivity and precision rate of this

classifier is also 97.70%. The confusion matrix in Figure 7B can

further confirm these values. The computational time of each

classifier is also given in this table, and the minimum reported
TABLE 3 Classification results using the BO-based EfficientNetB0 model.

Classifier Accuracy (%) Time (s)
Sensitivity
rate (%)

False negative
rate (%)

Precision
rate (%)

Area under
curve (%)

Cubic SVM 99.10 20.227 99.10 0.90 99.10 1.00

Wide neural network 98.90 14.505 98.93 1.07 98.93 1.00

Medium neural network 98.80 12.512 98.76 1.24 98.76 1.00

Bilayered neural network 98.70 15.886 98.66 1.34 98.66 0.99

Weighted KNN 98.60 26.907 98.63 1.37 98.63 1.00

Narrow neural network 98.60 15.377 98.60 1.40 98.60 0.99

Trilayered neural network 98.50 16.059 98.53 1.47 98.53 1.00
Bold denotes the best values.
BA

FIGURE 6

Confusion matrix of EffficientNetB0 and InceptionResNetV2 hyperparameter optimization using BO. (A) Confusion matrix of fine-tuned
EffficientNetB0 hyperparameter optimization using BO. (B) Confusion matrix of fine-tuned InceptionResNetV2 hyperparameter optimization
using BO.
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time is 6.1486 (s) for Cubic SVM. Compared with the

computational time of this step with the second step, the time is

reduced almost 300%.
4.3.3 Fusion of best selected features
Finally, the best-selected features of both models, in the third

and fourth steps, are fused using a serial approach. The cubic SVM

classifier obtained the maximum accuracy of 99.80% and the

sensitivity and precision rates of 99.83% (can be seen in Table 7).

The confusion matrix in Figure 8 can further confirm these values.

A minor increase in computational time is observed after the fusion

process; however, the accuracy is significantly improved for all

classifiers. In comparison, with all previous steps, noted accuracy

has significantly improved and is the highest among all early noted

accuracies. Moreover, Table 8 shows a detailed comparison of the

proposed method with state-of-the-art techniques and shows

significant improvement.
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4.4 Discussion

A t-test is a statistical technique used to compare the mean

values of two groups. It is frequently used in hypothesis testing to

see whether a particular process or treatment has a noticeable effect

on the target population or whether there is a significant difference

between the two groups. In order to test the significant difference

between the classifiers, t-test is applied.

In the proposed technique, t-test is conducted to check any

considerable gap between accuracies at different stages of our

proposed model. The gap is resulted when we have unbalanced

classes of dataset (54). The augmented step balanced the classes of

dataset; however, to validate our augmentation step, t-test is applied

on all phases of the proposed technique. The test starts by setting a

null hypothesis as below:

H0   =  The   accuracy   of   the   chosen   classifiers   differs   significantly  

over   the   phases   of   proposed   technique :
TABLE 4 Classification results of using BO-based InceptionResNetV2.

Classifier
Accuracy

(%)
Time (s)

Sensitivity
rate (%)

False negative
rate (%)

Precision
rate (%)

Area under
curve (%)

Cubic SVM 98.10 21.966 98.06 1.94 98.06 1.00

Narrow
neural network

97.90 20.543 97.93 2.07 97.93 0.99

Wide neural network 97.90 49.824 97.93 2.07 97.93 1.00

Bilayered
neural network

97.90 36.736 97.93 2.07 97.93 0.99

Trilayered
neural network

97.90 36.711 97.86 2.14 97.86 0.99

Medium
neural network

97.80 29.453 97.80 2.20 97.80 1.00

Weighted KNN 97.10 34.365 97.13 2.87 97.13 1.00
Bold denotes the best values.
TABLE 5 Proposed classification results after employing the QTbMPA selection method on features returned from the Bayesian-based
EfficientNetB0 model.

Classifier
Accuracy

(%)
Time (s)

Sensitivity
rate (%)

False negative
rate (%)

Precision
rate (%)

Area under
curve (%)

Cubic SVM 99.00 5.4668 99.00 1.00 99.00 1.00

Wide neural network 98.80 4.5414 98.83 1.17 98.83 1.00

Medium
neural network

98.60 3.8831 98.63 1.37 98.63 1.00

Weighted KNN 98.60 7.4494 98.56 1.44 98.56 1.00

Trilayered
neural network

98.50 4.9574 98.53 1.47 98.53 0.99

Narrow
neural network

98.50 3.9573 98.50 1.5 98.50 1.00

Bilayered
neural network

98.50 3.8078 98.50 1.5 98.50 0.99
Bold denotes the best values.
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Additionally, two best-performing classifiers at all phases of the

proposed technique are chosen. The accuracy achieved by respective

classifier at each phase is selected to conduct experiments.

A detailed overview of test is given below:
The mean of the differences for all experiments are calculated

using the following Equations 31–34:

Difference   (J) =   Accuracy(k) − Accuracy(l)j j (31)

Mean   (m) =  
1
No

I
k=1 Jkj j (32)
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where I is the number of experiments and the noted mean

value after this step is 0:48. After calculating the Mean   (m), the
standard   deviation   (s ) is calculated by using the following

equation:
standard   deviation   (s ) =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(oI

k=1(Jk) − m)2

I − 1

s
(33)

The resultant standard deviation value is 0:357, later used in the

T   Selection formula.
TABLE 6 Proposed classification results after employing the QTbMPA selection method on features returned from the Bayesian-based
InceptionResNetV2 model.

Classifier Accuracy (%) Time (s)
Sensitivity
rate (%)

False
negative
rate (%)

Precision
rate (%)

Area under
curve (%)

Cubic SVM 97.70 6.1486 97.70 2.30 97.70 1.00

Narrow neural network 97.60 7.8251 97.60 2.40 97.60 0.99

Medium neural network 97.60 7.3787 97.60 2.40 97.60 0.99

Bilayered
neural network

97.50 7.7592 97.50 2.50 97.5 0.98

Wide neural network 97.30 11.376 97.20 2.80 97.20 0.99

Trilayered
neural network

97.30 8.9962 97.26 2.74 97.26 0.99

Weighted KNN 97.20 6.8459 97.16 2.84 97.16 0.99
Bold denotes the best values.
BA

FIGURE 7

Confusion matrix of the QTbMPA selection technique for EffficientNetB0 and InceptionResNetV2. (A) Confusion matrix of QTbMPA based best
selected EfficentNetB0 deep features. (B) Confusion matrix of QTbMPA based best selected InceptionResNetV2 deep features.
Phases → BO
based

EfficientNetB0

BO
based

InceptionResNetV2

MPA Optimization
for EfficientNetB0

MPA Optimization
for InceptionResNetV2

Feature
fusionClassifiers

↓

Cubic SVM 99.10 98.10 99.00 99.70 99.80

Weighted
KNN

98.60 97.10 98.60 97.20 99.80
f
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 T   Selection =

ffiffiffiffi
I  

p �   m  
s

(34)

The value 3:012 was obtained after calculation using the above

formula. The obtained value will be considered as a decisive point to

conduct the Student 0 s  T − Test. Moreover, the degree   of   freedo

m   (df ) is calculated using the formula: df = n − 1; the resultant

value is four and selected p   value   =   0:05 (55). After looking at the

corresponding output value in the t-test chart, the value is

( − 2:776,   +2:776). The decisive T   Selection value is 3:012; based

on the given below formulation in equation 35, it is established that

H0 is rejected, and there is no noteworthy difference between the

atp10ccuracy of the selected classifiers.

If   (T   Selection   >=  −2:776   and   <=   +   2:776) (35)

Hypothesis test establishes that throughout the phases of the

proposed technique, there is a consistency in accuracy of each

phase; it means that the class imbalance problem is accurately

addressed. Inconsistent accuracies are the result of imbalance
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classes of dataset, which lead to loss of accuracies. The proposed

data augmentation step helps to properly address class

imbalance problem.

Heat map-based analysis: Heat map-based techniques are

employed to express the decisive features of classification for each

class. Grad-CAM, LIME, and Occlusion Sensitivity are three

methods commonly used to represent decision features for

classification of an image. Grad-CAM uses gradients to determine

the classification score about the final convolutional feature map. It

draws attention to that part of input image that has the biggest

influence on this score. The method uses a global average pooling

layer to extract features. Equation 36 serves as the basis for this

procedure, which is illustrated below:

bcɡ =  
1
N
 oioj

∂cy
∂Bɡ

i,j

(36)

where bcg represents class scores of ɡ features from the Global

Average Pooling layer, N represents total pixels in a feature map, c
FIGURE 8

Classification results after the fusion of selected feature features.
TABLE 7 Classification results after fusing of the best selected features of both models.

Classifier
Accuracy

(%)
Time (s)

Sensitivity
rate (%)

False negative
rate (%)

Precision
rate (%)

Area under
curve (%)

Cubic SVM 99.80 11.198 99.83 0.17 99.83 1.00

Weighted KNN 99.80 13.699 99.80 0.20 99.80 1.00

Wide neural network 99.80 6.776 99.76 0.24 99.76 1.00

Medium
neural network

99.70 5.6234 99.70 0.30 99.70 1.00

Bilayered
neural network

99.70 5.0002 99.66 0.34 99.66 1.00

Trilayered
neural network

99.70 5.6399 99.66 0.34 99.66 1.00

Narrow
neural network

99.60 6.2125 99.60 0.40 99.60 1.00
Bold denotes the best values.
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depicts the class score, and y is the considered output. The whole

expression ∂ Bɡ
i,j represents the convolution map. In the expression,

i and j represent two dimensions and B represents gradients.

Features with negative weight can be possible using the above

equation; therefore, the Relu activation function is used to

convert the negative weights to positive and is represented using

the given below Equation 37:

M = Relu(obcg   :  B
g)  (37)

Mathematical details of LIME and Occlusion Sensitivity can be

seen from (56) and (57), respectively. Figure 9 represents the

visualization of important features of each class using the

explained methods of the heat map.
5 Conclusion

This article presents a novel deep learning framework with

an efficient QTbMPA feature selection technique for the

classification of brain tumor types such as meningioma,

glioma, and pituitary from MRI images. Instead of manual

data augmentation, a sparse autoencoder architecture was
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proposed and generated new images based on the training set.

Two lightweight deep learning architectures were modified and

trained with the help of BO hyperparameter initialization. The

deeper layer (global average pool) was employed for feature

extraction and performed classification. The classification

process shows that there exist few irrelevant features, which

are impacted on the classification computational time.

Therefore, we proposed an efficient QTbMPA feature selection

algorithm that almost 300% reduced the computational time

and maintained the classification accuracy. The selected

features were finally fused and classified using ML and neural

network classifiers. On the augmented dataset, the proposed

framework obtained an improved accuracy of 99.80% than the

SOTA technique.

The goal of the proposed research is to create a deep learning

(DL) model for brain tumor classification, utilizing DL’s

capabilities to classify various forms of brain tumors more

accurately. This finding could have a significant clinical impact

in neuro-oncology and have a wide variety of potential

applications. The proposed research can assist doctors and

radiologists in making accurate diagnoses when using medical

imaging data, such as MRI scans, to identify brain tumors. It

offers dependable and consistent tumor categorization results,
TABLE 8 Summary of recent state-of-the-art (SOTA) techniques for brain tumor classification using Figshare dataset.

Serial no. Reference Year Dataset Accuracy (%)

1 Alanazi et al. (19) 2022 Figshare 95.75

2 Raza et al. (20) 2022 Figshare 99.67

3 Tummala et al. (21) 2022 Figshare 98.70

4 Polat et al. (22) 2022 Figshare 99.18

5 Shaik et al. (23) 2022 Figshare 96.51

6 Haq et al. (24) 2022 Figshare 98.00

7 Rahman et al. (25) 2023 Figshare 97.60

8 Talukder et al. (47) 2023 Figshare 99.68

9 Aloraini et al. (26) 2023 Figshare 99.10

10 Athisayamani et al. (27) 2023 Figshare 98.85

11 Mishra et al. (28) 2023 Figshare 98.97

12 Agrawal et al. (48) 2023 Figshare 96.40

13 Malla et al. (49) 2023 Figshare 98.93

14 Asif et al. (50) 2023 Figshare 98.69

15 Cinar et al. (29) 2023 Figshare 98.32

16 Deepak et al. (30) 2023 Figshare 95.40

17 Zulfiqar et al. (31) 2023 Figshare 98.86

18 Shyamala et al. (51) 2023 Figshare 94.70

19 Yapici et al. (52) 2023 Figshare 99.47

20 Sahoo et al. (53). 2023 Figshare 97.00

Proposed Figshare 99.80
Bold denotes the best values.
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lowering the misdiagnosis risk and enabling early brain tumor

discovery. Furthermore, the accurate classification of brain

tumors might help in developing customized treatment plans

for patients. The model assists physicians in developing

customized treatment regimens that lead to more accurate and

successful treatment outcomes by aiding in the identification of

the exact type of tumor.
5.1 Limitations and future work

Although we obtained the maximum accuracy, there are few

limitations that make the proposed architecture more consistent.

The limitations of this work are selection of pretrained models and

best feature selection. The pretrained models have been selected

based on the Top-5 accuracy on ImageNet dataset and total number

of parameters. In addition, the selection process reduces the

overfitting, but still there are few irrelevant features selected for
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the classification. The proposed architecture has been evaluated on

brain tumor MRIs of the Figshare dataset; however, in future, it will

be tested on BRATS datasets. Moreover, a new self-attention and

vision transformer model will be proposed for the improved

accuracy and efficiency.
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